1
|
Ding J, Zhang M, Chang J, Hu Z, He P, Wang J, Feng L. Characterization of a multidrug-resistant hypovirulent ST1859-KL35 klebsiella quasipneumoniae subsp. similipneumoniae strain co-harboring tmexCD2-toprJ2 and bla KPC-2. J Glob Antimicrob Resist 2025; 42:253-261. [PMID: 40113085 DOI: 10.1016/j.jgar.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
OBJECTIVES The rise of multidrug-resistant (MDR) Klebsiella pneumoniae is a significant public health threat. Klebsiella quasipneumoniae is often misidentified as K. pneumoniae, and its genetic and virulence traits remain underexplored. This study characterizes the genomic and phenotypic features of a K. quasipneumoniae subsp. similipneumoniae strain (KP24). METHODS Antibiotic susceptibility was tested using microbroth dilution assay. Virulence was evaluated through serum killing assay and Galleria mellonella infection model. Whole genome sequencing (WGS) and bioinformatics analysis determined sequence typing, resistance profiles, and plasmid types. Conjugation assays assessed plasmid transferability, while phylogenetic analysis explored genetic relationships. RESULTS KP24 exhibited an MDR phenotype, including resistance to carbapenems, ceftazidime/avibactam, and tigecycline. KP24 showed significantly higher serum survival and G. mellonella lethality than ATCC700603, though it was less virulent than the hypervirulent strain NUTH-K2044. WGS identified KP24 as ST1859 and KL35, harboring the aerobactin virulence gene cluster (iucABCDiutA) and multiple resistance genes, including tmexCD2-toprJ2, blaKPC-2, blaOXA-10, blaIMP-4, and qnrS1. Notably, the tmexCD2-toprJ2 and blaKPC-2 genes were located on the same plasmid (pKP24-1), an uncommon co-existence. Conjugation assays confirmed the independent transferability of pKP24-1 to Escherichia coli J53. Phylogenetic analysis revealed that ST1859 forms a distinct monoclade with low genetic diversity, closely related to ST334, suggesting regional expansion and potential global dissemination. CONCLUSIONS KP24 represents a hypovirulent yet multidrug-resistant strain of K. quasipneumoniae subsp. similipneumoniae, with a concerning combination of virulence and resistance determinants. The co-location of tmexCD2-toprJ2 and blaKPC-2 on a transferable plasmid highlights the potential for horizontal gene transfer of critical resistance mechanisms.
Collapse
Affiliation(s)
- Jiawei Ding
- Department of Medical Laboratory, Yan'an Hospital of Kunming city, Kunming City, Yunnan Province, People's Republic of China
| | - Mengying Zhang
- Department of Blood Transfusion, Yan'an Hospital of Kunming city, Kunming City, Yunnan Province, People's Republic of China
| | - Jiyong Chang
- Department of Medical Laboratory, Yan'an Hospital of Kunming city, Kunming City, Yunnan Province, People's Republic of China
| | - Zidan Hu
- Department of Medical Laboratory, Yan'an Hospital of Kunming city, Kunming City, Yunnan Province, People's Republic of China
| | - Pei He
- Department of Medical Laboratory, Yan'an Hospital of Kunming city, Kunming City, Yunnan Province, People's Republic of China
| | - Jia Wang
- Department of Medical Laboratory, Yan'an Hospital of Kunming city, Kunming City, Yunnan Province, People's Republic of China
| | - Lei Feng
- Department of Medical Laboratory, Yan'an Hospital of Kunming city, Kunming City, Yunnan Province, People's Republic of China.
| |
Collapse
|
2
|
Waliaula PK, Kiarie EG, Diarra MS. Predisposition factors and control strategies of avian pathogenic Escherichia coli in laying hens. Front Vet Sci 2024; 11:1474549. [PMID: 39559543 PMCID: PMC11571327 DOI: 10.3389/fvets.2024.1474549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Shift in laying hens housing from conventional cage-based systems to alternatives has impacted their health and performance. Microorganisms colonize young chick in the early stages of their physiological and immune development. These colonizing microbes originate from parent and the environment. Escherichia coli is among the normal gut colonizing bacteria however, some E. coli strains known as avian pathogenic E. coli (APEC), cause local or systemic infections (colibacillosis) responsible of significant economic losses to the poultry industry. Potential APEC strains and other poultry gut microbiota are influenced by several factors such as housing system, and the use of feed additives (prebiotics, probiotics, symbiotic, among others). This review will discuss the status of pullets and layers immunity, gut health, and predisposing factors of colibacillosis. Dietary interventions and some colibacillosis mitigation strategies in pullets and laying hens are reviewed and discussed. With the development of sequencing technologies and the use of feed additives as alternatives to antibiotics, future studies need to understand some of the complex associations between the feed additives, the rearing environment, and their selective pressure on gut microbiota, including E. coli, and their impacts on immune development in pullets and hens.
Collapse
Affiliation(s)
- Paul K. Waliaula
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Moussa S. Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
3
|
Salamandane A, Leech J, Almeida R, Silva C, Crispie F, Cotter PD, Malfeito-Ferreira M, Brito L. Metagenomic analysis of the bacterial microbiome, resistome and virulome distinguishes Portuguese Serra da Estrela PDO cheeses from similar non-PDO cheeses: An exploratory approach. Food Res Int 2024; 189:114556. [PMID: 38876593 DOI: 10.1016/j.foodres.2024.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to evaluate the microbiome, resistome and virulome of two types of Portuguese cheese using high throughput sequencing (HTS). Culture-dependent chromogenic methods were also used for certain groups/microorganisms. Eight samples of raw ewe's milk cheese were obtained from four producers: two producers with cheeses with a PDO (Protected Designation of Origin) label and the other two producers with cheeses without a PDO label. Agar-based culture methods were used to quantify total mesophiles, Enterobacteriaceae, Escherichia coli, Staphylococcus, Enterococcus and lactic acid bacteria. The presence of Listeria monocytogenes and Salmonella was also investigated. The selected isolates were identified by 16S rRNA gene sequencing and evaluated to determine antibiotic resistance and the presence of virulence genes. The eight cheese samples analyzed broadly complied with EC regulations in terms of the microbiological safety criteria. The HTS results demonstrated that Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus plantarum, Lacticaseibacillus rhamnosus, Enterococcus durans and Lactobacillus coryniformis were the most prevalent bacterial species in cheeses. The composition of the bacterial community varied, not only between PDO and non-PDO cheeses, but also between producers, particularly between the two non-PDO cheeses. Alpha-diversity analyses showed that PDO cheeses had greater bacterial diversity than non-PDO cheeses, demonstrating that the diversity of spontaneously fermented foods is significantly higher in cheeses produced without the addition of food preservatives and dairy ferments. Despite complying with microbiological regulations, both PDO and non-PDO cheeses harbored potential virulence genes as well as antibiotic resistance genes. However, PDO cheeses exhibited fewer of these virulence and antibiotic resistance genes compared to non-PDO cheeses. Therefore, the combination of conventional microbiological methods and the metagenomic approach could contribute to improving the attribution of the PDO label to this type of cheese.
Collapse
Affiliation(s)
- Acácio Salamandane
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Faculdade de Ciências de Saúde, Universidade Lúrio, Campus Universitário de Marrere, Nampula 4250, Mozambique
| | - John Leech
- Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | - Rita Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Carolina Silva
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; VistaMilk, Ireland
| | - Manuel Malfeito-Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Luísa Brito
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
4
|
Awawdeh L, Forrest R, Turni C, Cobbold R, Henning J, Gibson J. Virulence-associated genes in faecal and clinical Escherichia coli isolates cultured from broiler chickens in Australia. Aust Vet J 2024; 102:398-406. [PMID: 38721873 DOI: 10.1111/avj.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 08/03/2024]
Abstract
A healthy chicken's intestinal flora harbours a rich reservoir of Escherichia coli as part of the commensal microbiota. However, some strains, known as avian pathogenic E. coli (APEC), carry specific virulence genes (VGs) that enable them to invade and cause extraintestinal infections such as avian colibacillosis. Although several VG combinations have been identified, the pathogenic mechanisms associated with APEC are ill-defined. The current study screened a subset of 88 E. coli isolates selected from 237 pre-existing isolates obtained from commercial poultry flocks in Australia. The 88 isolates were selected based on their enterobacterial repetitive intergenic consensus (ERIC) and antimicrobial resistance (AMR) profiles and included 29 E. coli isolates cultured from chickens with colibacillosis (referred to as clinical E. coli or CEC) and 59 faecal E. coli (FEC) isolates cultured from clinically healthy chickens. The isolates were screened for the presence of 35 previously reported VGs. Of these, 34 were identified, with iucA not being detected. VGs focG, hlyA and sfa/foc were only detected in FEC isolates. Eight VGs had a prevalence of 90% or above in the CEC isolates. Specifically, astA (100%); feoB (96.6%); iutA, iss, ompT, iroN and hlyF (all 93.1%); and vat (89.7%). The prevalence of these were significantly lower in FEC isolates (astA 79.7%, feoB 77.9%, iutA 52.5%, iss 45.8%, ompT 50.9%, iroN 37.3%, hlyF 50.9% and vat 42.4%). The odds ratios that each of these eight VGs were more likely to be associated with CEC than FEC ranged from 7.8 to 21.9. These eight VGs may be used to better define APEC and diagnostically detect APEC in Australia. Further investigations are needed to identify the roles of these VGs in pathogenicity.
Collapse
Affiliation(s)
- L Awawdeh
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - R Forrest
- Nursing & Health Science, Te Pūkenga|Eastern Institute of Technology, Napier, New Zealand
| | - C Turni
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Dutton Park, Queensland, Australia
| | - R Cobbold
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - J Henning
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - J Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
5
|
Soleau N, Ganet S, Werlen S, Collignon L, Cointe A, Bonacorsi S, Sergentet D. First Isolation of the Heteropathotype Shiga Toxin-Producing and Extra-Intestinal Pathogenic (STEC-ExPEC) E. coli O80:H2 in French Healthy Cattle: Genomic Characterization and Phylogenetic Position. Int J Mol Sci 2024; 25:5428. [PMID: 38791466 PMCID: PMC11121960 DOI: 10.3390/ijms25105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The emerging heteropathotype shigatoxigenic (STEC) and extra-intestinal pathogenic Escherichia coli (ExPEC) O80:H2 has been the second leading cause of pediatric HUS in France since the mid-2010s. In contrast with other highly pathogenic STEC serotypes, for which ruminants have clearly been identified as the main human infection source, this heteropathotype's reservoir remains unknown. In this context, we describe for the first time the isolation of seven STEC O80:H2 strains from healthy cattle on a single cattle farm in France. This study aimed at (i) characterizing the genome and (ii) investigating the phylogenetic positions of these O80:H2 STEC strains. The virulomes, resistomes, and phylogenetic positions of the seven bovine isolates were investigated using in silico typing tools, antimicrobial susceptibility testing and cgMLST analysis after short-read whole genome sequencing (WGS). One representative isolate (A13P112V1) was also subjected to long-read sequencing. The seven isolates possessed ExPEC-related virulence genes on a pR444_A-like mosaic plasmid, previously described in strain RDEx444 and known to confer multi-drug resistance. All isolates were clonally related and clustered with human clinical strains from France and Switzerland with a range of locus differences of only one to five. In conclusion, our findings suggest that healthy cattle in France could potentially act as a reservoir of the STEC-ExPEC O80:H2 pathotype.
Collapse
Affiliation(s)
- Nathan Soleau
- ‘Bacterial Opportunistic Pathogens and Environment’ (BPOE) Research Team, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France; (N.S.); (S.G.)
| | - Sarah Ganet
- ‘Bacterial Opportunistic Pathogens and Environment’ (BPOE) Research Team, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France; (N.S.); (S.G.)
- Laboratoire d’Étude des Microorganismes Alimentaires Pathogènes–French National Reference Laboratory for Escherichia coli Including STEC (NRL-STEC), VetAgro Sup–Campus Vétérinaire, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France
| | - Stéphanie Werlen
- Laboratoire d’Étude des Microorganismes Alimentaires Pathogènes–French National Reference Laboratory for Escherichia coli Including STEC (NRL-STEC), VetAgro Sup–Campus Vétérinaire, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France
| | - Lia Collignon
- Laboratoire d’Étude des Microorganismes Alimentaires Pathogènes–French National Reference Laboratory for Escherichia coli Including STEC (NRL-STEC), VetAgro Sup–Campus Vétérinaire, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France
| | - Aurélie Cointe
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université Paris-Cité, IAME, UMR 1137, INSERM, 75018 Paris, France; (A.C.); (S.B.)
| | - Stéphane Bonacorsi
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université Paris-Cité, IAME, UMR 1137, INSERM, 75018 Paris, France; (A.C.); (S.B.)
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ (BPOE) Research Team, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France; (N.S.); (S.G.)
- Laboratoire d’Étude des Microorganismes Alimentaires Pathogènes–French National Reference Laboratory for Escherichia coli Including STEC (NRL-STEC), VetAgro Sup–Campus Vétérinaire, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France
| |
Collapse
|
6
|
Quinn MW, Daisley BA, Vancuren SJ, Bouchema A, Niño E, Reid G, Thompson GJ, Allen-Vercoe E. Apirhabdus apintestini gen. nov., sp. nov., a member of a novel genus of the family Enterobacteriaceae, isolated from the gut of the western honey bee Apis mellifera. Int J Syst Evol Microbiol 2024; 74. [PMID: 38652096 DOI: 10.1099/ijsem.0.006346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
A Gram-negative, motile, rod-shaped bacterial strain, CA-0114T, was isolated from the midgut of a western honey bee, Apis mellifera. The isolate exhibited ≤96.43 % 16S rRNA gene sequence identity (1540 bp) to members of the families Enterobacteriaceae and Erwiniaceae. Phylogenetic trees based on genome blast distance phylogeny and concatenated protein sequences encoded by conserved genes atpD, fusA, gyrB, infB, leuS, pyrG and rpoB separated the isolate from other genera forming a distinct lineage in the Enterobacteriaceae. In both trees, the closest relatives were Tenebrionicola larvae YMB-R21T and Tenebrionibacter intestinalis BIT-L3T, which were isolated previously from Tenebrio molitor L., a plastic-eating mealworm. Digital DNA-DNA hybridization, orthologous average nucleotide identity and average amino acid identity values between strain CA-0114T and the closest related members within the Enterobacteriaceae were ≤23.1, 75.45 and 76.04 %, respectively. The complete genome of strain CA-0114T was 4 451669 bp with a G+C content of 52.12 mol%. Notably, the apparent inability of strain CA-0114T to ferment d-glucose, inositol and l-rhamnose in the API 20E system is unique among closely related members of the Enterobacteriaceae. Based on the results obtained through genotypic and phenotypic analysis, we propose that strain CA-0114T represents a novel species and genus within the family Enterobacteriaceae, for which we propose the name Apirhabdus apintestini gen. nov., sp. nov. (type strain CA-0114T=ATCC TSD-396T=DSM 116385T).
Collapse
Affiliation(s)
- Matthew W Quinn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Biology, Western University, London, ON, N6A 5C1, Canada
| | - Sarah J Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira Bouchema
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elina Niño
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
- University of California Agriculture and Natural Resources, Oakland, CA, 95618, USA
| | - Gregor Reid
- Department of Microbiology & Immunology, Western University, London, ON, N6A 5B7, Canada
| | - Graham J Thompson
- Department of Biology, Western University, London, ON, N6A 5C1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
7
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
8
|
Ikeda R, Laforêt F, Antoine C, Adachi M, Nakamura K, Habets A, Kler C, De Rauw K, Hayashi T, Mainil JG, Thiry D. Virulence of Shigatoxigenic and Enteropathogenic Escherichia coli O80:H2 in Galleria mellonella Larvae: Comparison of the Roles of the pS88 Plasmids and STX2d Phage. Vet Sci 2023; 10:420. [PMID: 37505826 PMCID: PMC10385740 DOI: 10.3390/vetsci10070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
The invasiveness properties of Shigatoxigenic and enteropathogenic Escherichia coli (STEC and EPEC) O80:H2 in humans and calves are encoded by genes located on a pS88-like ColV conjugative plasmid. The main objectives of this study in larvae of the Galleria mellonella moth were therefore to compare the virulence of eight bovine STEC and EPEC O80:H2, of two E. coli pS88 plasmid transconjugant and STX2d phage transductant K12 DH10B, of four E. coli O80:non-H2, and of the laboratory E. coli K12 DH10B strains. Thirty larvae per strain were inoculated in the last proleg with 10 μL of tenfold dilutions of each bacterial culture corresponding to 10 to 106 colony-forming units (CFUs). The larvae were kept at 37 °C and their mortality rate was followed daily for four days. The main results were that: (i) not only the STEC and EPEC O80:H2, but also different E. coli O80:non-H2 were lethal for the larvae at high concentrations (from 104 to 106 CFU) with some variation according to the strain; (ii) the Stx2d toxin and partially the pS88 plasmid were responsible for the lethality caused by the E. coli O80:H2; (iii) the virulence factors of E. coli O80:non-H2 were not identified. The general conclusions are that, although the Galleria mellonella larvae represent a useful first-line model to study the virulence of bacterial pathogens, they are more limited in identifying their actual virulence properties.
Collapse
Affiliation(s)
- Rie Ikeda
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Fanny Laforêt
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Céline Antoine
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Mare Adachi
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Keiji Nakamura
- Department of Bacteriology, Faculty of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Audrey Habets
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Cassandra Kler
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Klara De Rauw
- Belgium National Reference Center of STEC (NRC STEC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Jacques G Mainil
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| | - Damien Thiry
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liege, Belgium
| |
Collapse
|
9
|
Li W, Zhao J, Tian H, Shen Y, Wang Y, Shao M, Xiong T, Yao Y, Zhang L, Chen X, Xiao H, Xiong Y, Yang S, Tan C, Xu H. Gut microbiota enhance energy accumulation of black-necked crane to cope with impending migration. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12598-x. [PMID: 37249588 DOI: 10.1007/s00253-023-12598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Less is known about the role of gut microbiota in overwintering environmental adaptation in migratory birds. Here, we performed metagenomic sequencing on fresh fecal samples (n = 24) collected during 4 periods of overwintering (Dec: early; Jan: middle I; Feb: middle II; Mar: late) to characterize gut microbial taxonomic and functional characteristics of black-necked crane (Grus nigricollis). The results demonstrated no significant change in microbial diversity among overwintering periods. Analysis of compositions of microbiomes with bias correction (ANCOM-BC) determined 15 Proteobacteria species enriched in late overwintering period. Based on previous reports, these species are associated with degradation of chitin, cellulose, and lipids. Meanwhile, fatty acid degradation and betalain biosynthesis pathways are enriched in late overwintering period. Furthermore, metagenomic binning obtained 91 high-quality bins (completeness >70% and contamination <10%), 5 of which enriched in late overwintering period. Carnobacterium maltaromaticum, unknown Enterobacteriaceae, and Yersinia frederiksenii have genes for chitin and cellulose degradation, acetate, and glutamate production. Unknown Enterobacteriaceae and Y. frederiksenii hold genes for synthesis of 10 essential amino acids required by birds, and the latter has genes for γ-aminobutyrate production. C. maltaromaticum has genes for pyridoxal synthesis. These results implied the gut microbiota is adapted to the host diet and may help black-necked cranes in pre-migratory energy accumulation by degrading the complex polysaccharide in their diet, supplying essential amino acids and vitamin pyridoxal, and producing acetate, glutamate, and γ-aminobutyrate that could stimulate host feeding. Additionally, enriched Proteobacteria also encoded more carbohydrate-active enzymes (CAZymes) and antibiotic resistance genes (ARGs) in late overwintering period. KEY POINTS: • Differences in gut microbiota function during overwintering period of black-necked cranes depend mainly on changes in core microbiota abundance • Gut microbiota of black-necked crane adapted to the diet during overwintering period • Gut microbiota could help black-necked cranes to accumulate more energy in the late overwintering period.
Collapse
Affiliation(s)
- Wenhao Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Hong Tian
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yanqiong Shen
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yuanjian Wang
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Mingcui Shao
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Tingsong Xiong
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xinyu Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Cui Tan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
10
|
Hallal Ferreira Raro O, Nordmann P, Dominguez Pino M, Findlay J, Poirel L. Emergence of Carbapenemase-Producing Hypervirulent Klebsiella pneumoniae in Switzerland. Antimicrob Agents Chemother 2023; 67:e0142422. [PMID: 36853006 PMCID: PMC10019205 DOI: 10.1128/aac.01424-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Increasing occurrence of multidrug-resistant (MDR) and hypervirulent (hv) Klebsiella pneumoniae (MDR-hvKp) convergent clones is being observed. Those strains have the potential of causing difficult-to-treat infections in healthy adults with an increased capacity for mortality. It is therefore crucial to track their dissemination to prevent their further spread. The aim of our study was to investigate the occurrence of carbapenemase-producing hvKp isolates in Switzerland and to determine their genetic profile. A total of 279 MDR carbapenemase-producing K. pneumoniae from patients hospitalized all over Switzerland was investigated, and a rate of 9.0% K. pneumoniae presenting a virulence genotype was identified. Those isolates produced either KPC, NDM, or OXA-48 and had been either recovered from rectal swabs, urine, and blood. A series of previously reported K. pneumoniae clones such as ST23-K1, ST395-K2, and ST147-K20 or ST147-K64 were identified. All the isolates defined as MDR-hvKp (4.7%) possessed the aerobactin and the yersiniabactin clusters. The ST23-K1s were the only isolates presenting the colibactin cluster and achieved higher virulence scores. This study highlights the occurrence and circulation of worrisome MDR-hvKp and MDR nonhypervirulent K. pneumoniae (MDR-nhv-Kp) isolates in Switzerland. Our findings raise an alert regarding the need for active surveillance networks to track and monitor the spread of such successful hybrid clones representing a public health threat worldwide.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University Hospital, Lausanne, Switzerland
| | - Manuel Dominguez Pino
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jacqueline Findlay
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Conrad RA, Evenhuis JP, Lipscomb RS, Birkett C, McBride MJ. Siderophores Produced by the Fish Pathogen Flavobacterium columnare Strain MS-FC-4 Are Not Essential for Its Virulence. Appl Environ Microbiol 2022; 88:e0094822. [PMID: 35969053 PMCID: PMC9469716 DOI: 10.1128/aem.00948-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 01/17/2023] Open
Abstract
Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish. F. columnare virulence mechanisms are not well understood, and current methods to control columnaris disease are inadequate. Iron acquisition from the host is important for the pathogenicity and virulence of many bacterial pathogens. F. columnare iron acquisition has not been studied in detail. We identified genes predicted to function in siderophore production for ferric iron uptake. Genes predicted to encode the proteins needed for siderophore synthesis, export, uptake, and regulation were deleted from F. columnare strain MS-FC-4. The mutants were examined for defects in siderophore production, for growth defects in iron-limited conditions, and for virulence against zebrafish and rainbow trout. Mutants lacking all siderophore activity were obtained. These mutants displayed growth defects when cultured under iron-limited conditions, but they retained virulence against zebrafish and rainbow trout similar to that exhibited by the wild type, indicating that the F. columnare MS-FC-4 siderophores are not required for virulence under the conditions tested. IMPORTANCE Columnaris disease, which is caused by Flavobacterium columnare, is a major problem for freshwater aquaculture. Little is known regarding F. columnare virulence factors, and control measures are limited. Iron acquisition mechanisms such as siderophores are important for virulence of other pathogens. We identified F. columnare siderophore biosynthesis, export, and uptake genes. Deletion of these genes eliminated siderophore production and resulted in growth defects under iron-limited conditions but did not alter virulence in rainbow trout or zebrafish. The results indicate that the F. columnare strain MS-FC-4 siderophores are not critical virulence factors under the conditions tested but may be important for survival under iron-limited conditions in natural aquatic environments or aquaculture systems.
Collapse
Affiliation(s)
- Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Neumann B, Lippmann N, Wendt S, Karlas T, Lübbert C, Werner G, Pfeifer Y, Schuster CF. Recurrent bacteremia with a hypermucoviscous Escherichia coli isolated from a patient with perihilar cholangiocarcinoma: insights from a comprehensive genome-based analysis. Ann Clin Microbiol Antimicrob 2022; 21:28. [PMID: 35751078 PMCID: PMC9233328 DOI: 10.1186/s12941-022-00521-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Background Escherichia coli (E. coli) is a common human pathogen, responsible for a broad spectrum of infections. Sites of infection can vary, but the hepato-biliary system is of particular concern due to the infection-associated formation of gallstones and the spread of pathogens from the bile ducts into the bloodstream. Case presentation The presented case is striking, as the detected isolate showed a positive string test. This hypermucoviscous phenotype is atypical for E. coli and a particular feature of hypervirulent Klebsiella pneumoniae (K. pneumoniae) variants. Objectives To provide new insights into the genomic background of an E. coli strain with an unusual hypermucoviscous phenotype using hybrid short- and long-read sequencing approaches. Results Complete hybrid assemblies of the E. coli genome and plasmids were done and used for genome based typing. Isolate 537–20 was assigned to the multilocus sequence type ST88 and serotype O8:H4. The strain showed a close relationship to avian pathogenic strains. Analysis of the chromosome and plasmids revealed the presence of several virulence factors, such as the Conserved Virulence Plasmidic (CVP) region on plasmid 537-20_1, including several iron acquisition genes (sitABCD, iroABCDEN, iucABCD, hbd) and the iutA gene encoding the receptor of the siderophore aerobactin. The hypermucoviscous phenotype could be caused by encapsulation of putative K. pneumoniae origin. Conclusions Hybrid sequencing enabled detailed genomic characterization of the hypermucoviscous E. coli strain, revealing virulence factors that have their putative origin in K. pneumoniae. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-022-00521-7.
Collapse
Affiliation(s)
- Bernd Neumann
- Division Nosocomial Pathogens and Antibiotic Resistance, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, 38855, Wernigerode, Germany. .,Institute for Hospital Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical University, Nuremberg General Hospital, 90419, Nuremberg, Germany.
| | - Norman Lippmann
- Interdisciplinary Centre for Infectious Diseases, Leipzig University Hospital, 04103, Leipzig, Germany
| | - Sebastian Wendt
- Interdisciplinary Centre for Infectious Diseases, Leipzig University Hospital, 04103, Leipzig, Germany.,Division of Infectious Diseases and Tropical Medicine, Department of Medicine II, Leipzig University Hospital, 04103, Leipzig, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, 04103, Leipzig, Germany
| | - Christoph Lübbert
- Interdisciplinary Centre for Infectious Diseases, Leipzig University Hospital, 04103, Leipzig, Germany.,Division of Infectious Diseases and Tropical Medicine, Department of Medicine II, Leipzig University Hospital, 04103, Leipzig, Germany
| | - Guido Werner
- Division Nosocomial Pathogens and Antibiotic Resistance, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, 38855, Wernigerode, Germany
| | - Yvonne Pfeifer
- Division Nosocomial Pathogens and Antibiotic Resistance, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, 38855, Wernigerode, Germany
| | - Christopher F Schuster
- Division Nosocomial Pathogens and Antibiotic Resistance, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, 38855, Wernigerode, Germany. .,Current Address: Center for Pandemic Vaccines and Therapeutics (ZEPAI), Paul-Ehrlich-Institute, 63225, Langen, Germany.
| |
Collapse
|
13
|
Yang WT, Chiu IJ, Huang YT, Liu PY. Comparative Genomics Revealed Fluoroquinolone Resistance Determinants and OmpF Deletion in Carbapenem-Resistant Escherichia coli. Front Microbiol 2022; 13:886428. [PMID: 35516434 PMCID: PMC9062692 DOI: 10.3389/fmicb.2022.886428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Escherichia coli (E. coli) is a major causative organism of complicated urinary tract infections, bloodstream infections, and pneumonia. With the widespread use of antimicrobial agents, the prevalence of carbapenem resistance in E. coli has been increasing with limited therapeutic options. Fluoroquinolone remains a choice in carbapenem-resistant E. coli (CREc) that were once susceptible to the drug. Despite robust studies on the fluoroquinolone-resistant mechanisms of E. coli, few studies focused specifically on the group of CREc. In this study, we used comparative genomics to identify the fluoroquinolone-resistant mechanisms of CREc and detected gyrA D87N mutation in all the fluoroquinolone-resistant and CREc. Moreover, to investigate the mechanism underlying non-carbapenemase-producing carbapenem-resistant E. coli, we targeted the complete genome sequences for in-depth analysis and found a deletion in OmpF (DEL264-269) that might contribute to carbapenem resistance, which has not been reported before. Further studies focusing on the impact of these mutations on the expression levels are warranted. We further investigate the MLST, serotype, fimH type, phylogroup, and clinical characteristics of the CREc. Combination analysis of clinical and genomic characteristics suggests the polyclonal and highly diverse nature of the CREc in Taiwan. This study provides an insight into the molecular epidemiology of CREc in Taiwan.
Collapse
Affiliation(s)
- Wan-Ting Yang
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Ju Chiu
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan,Yao-Ting Huang
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan,Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan,*Correspondence: Po-Yu Liu
| |
Collapse
|
14
|
Molecular and Genomic Characterization of the Pseudomonas syringae Phylogroup 4: An Emerging Pathogen of Arabidopsis thaliana and Nicotiana benthamiana. Microorganisms 2022; 10:microorganisms10040707. [PMID: 35456758 PMCID: PMC9030749 DOI: 10.3390/microorganisms10040707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
Environmental fluctuations such as increased temperature, water availability, and air CO2 concentration triggered by climate change influence plant disease dynamics by affecting hosts, pathogens, and their interactions. Here, we describe a newly discovered Pseudomonas syringae strain found in a natural population of Arabidopsis thaliana collected from the southwest of France. This strain, called Psy RAYR-BL, is highly virulent on natural Arabidopsis accessions, Arabidopsis model accession Columbia 0, and tobacco plants. Despite the severe disease phenotype caused by the Psy RAYR-BL strain, we identified a reduced repertoire of putative Type III virulence effectors by genomic sequencing compared to P. syringae pv tomato (Pst) DC3000. Furthermore, hopBJ1Psy is found exclusively on the Psy RAYR-BL genome but not in the Pst DC3000 genome. The plant expression of HopBJ1Psy induces ROS accumulation and cell death. In addition, HopBJ1Psy participates as a virulence factor in this plant-pathogen interaction, likely explaining the severity of the disease symptoms. This research describes the characterization of a newly discovered plant pathogen strain and possible virulence mechanisms underlying the infection process shaped by natural and changing environmental conditions.
Collapse
|
15
|
Pan-genome and resistome analysis of extended-spectrum ß-lactamase-producing Escherichia coli: A multi-setting epidemiological surveillance study from Malaysia. PLoS One 2022; 17:e0265142. [PMID: 35271656 PMCID: PMC8912130 DOI: 10.1371/journal.pone.0265142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives
This study profiled the prevalence of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC) in the community and compared their resistome and genomic profiles with isolates from clinical patients through whole-genome sequencing.
Methods
Fecal samples from 233 community dwellers from Segamat, a town in southern Malaysia, were obtained between May through August 2018. Putative ESBL strains were screened and tested using antibiotic susceptibility tests. Additionally, eight clinical ESBL-EC were obtained from a hospital in the same district between June through October 2020. Whole-genome sequencing was then conducted on selected ESBL-EC from both settings (n = 40) for pan-genome comparison, cluster analysis, and resistome profiling.
Results
A mean ESBL-EC carriage rate of 17.82% (95% CI: 10.48%– 24.11%) was observed in the community and was consistent across demographic factors. Whole-genome sequences of the ESBL-EC (n = 40) enabled the detection of multiple plasmid replicon groups (n = 28), resistance genes (n = 34) and virulence factors (n = 335), with no significant difference in the number of genes carried between the community and clinical isolates (plasmid replicon groups, p = 0.13; resistance genes, p = 0.47; virulence factors, p = 0.94). Virulence gene marker analysis detected the presence of extraintestinal pathogenic E. coli (ExPEC), uropathogenic E. coli (UPEC), and enteroaggregative E. coli (EAEC) in both the community and clinical isolates. Multiple blaCTX-M variants were observed, dominated by blaCTX-M-27 (n = 12), blaCTX-M-65 (n = 10), and blaCTX-M-15 (n = 9). The clinical and community isolates did not cluster together based on the pan-genome comparison, suggesting isolates from the two settings were clonally unrelated. However, cluster analysis based on carried plasmids, resistance genes and phenotypic susceptibility profiles identified four distinct clusters, with similar patterns between the community and clinical isolates.
Conclusion
ESBL-EC from the clinical and community settings shared similar resistome profiles, suggesting the frequent exchange of genetic materials through horizontal gene transfer.
Collapse
|
16
|
Luo L, Wang H, Payne MJ, Liang C, Bai L, Zheng H, Zhang Z, Zhang L, Zhang X, Yan G, Zou N, Chen X, Wan Z, Xiong Y, Lan R, Li Q. Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance. Microb Genom 2021; 7. [PMID: 34882085 PMCID: PMC8767325 DOI: 10.1099/mgen.0.000710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escherichia albertii is a recently recognized species in the genus Escherichia that causes diarrhoea. The population structure, genetic diversity and genomic features have not been fully examined. Here, 169 E. albertii isolates from different sources and regions in China were sequenced and combined with 312 publicly available genomes (from additional 14 countries) for genomic analyses. The E. albertii population was divided into two clades and eight lineages, with lineage 3 (L3), L5 and L8 more common in China. Clinical isolates were observed in all clades/lineages. Virulence genes were found to be distributed differently among lineages: subtypes of the intimin encoding gene eae and the cytolethal distending toxin gene cdtB were lineage associated, and the second type three secretion system (ETT2) island was truncated in L3 and L6. Seven new eae subtypes and one new cdtB subtype (cdtB-VI) were identified. Alarmingly, 85.9 % of the Chinese E. albertii isolates were predicted to be multidrug-resistant (MDR) with 35.9 % harbouring genes capable of conferring resistance to 10 to 14 different drug classes. The majority of the MDR isolates were of poultry source from China and belonged to four sequence types (STs) [ST4638, ST4479, ST4633 and ST4488]. Thirty-four plasmids with some carrying MDR and virulence genes, and 130 prophages were identified from 17 complete E. albertii genomes. The 130 intact prophages were clustered into five groups, with group five prophages harbouring more virulence genes. We further identified three E. albertii specific genes as markers for the identification of this species. Our findings provided fundamental insights into the population structure, virulence variation and drug resistance of E. albertii.
Collapse
Affiliation(s)
- Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Michael J Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Liang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Bai
- Division I of Risk Assessment, National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Zhengdong Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ling Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Guodong Yan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xi Chen
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ziting Wan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| |
Collapse
|
17
|
Huang B, Zhang X, Wang C, Bai C, Li C, Li C, Xin L. Isolation and Characterization of Vibrio kanaloae as a Major Pathogen Associated with Mass Mortalities of Ark Clam, Scapharca broughtonii, in Cold Season. Microorganisms 2021; 9:2161. [PMID: 34683482 PMCID: PMC8541523 DOI: 10.3390/microorganisms9102161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
High temperature is a risk factor for vibriosis outbreaks. Most vibrios are opportunistic pathogens that cause the mortality of aquatic animals at the vibrio optimal growth temperature (~25 °C), whereas a dominant Vibrio kanaloae strain SbA1-1 is isolated from natural diseased ark clams (Scapharca broughtonii) during cold seasons in this study. Consistent symptoms and histopathological features reappeared under an immersion infection with SbA1-1 performed at 15 °C. The pathogenicity difference of SbA1-1 was assessed under different temperatures (15 °C and 25 °C). The cumulative mortality rates of ark clams were significantly higher at the low temperature (15 °C) than at the high temperature (25 °C); up to 98% on 16th day post SbA1-1 infection. While the growth ratio of SbA1-1 was retarded at the low temperature, the hemolytic activity and siderophores productivity of SbA1-1 were increased. This study constitutes the first isolation of V. kanaloae from the natural diseased ark clams (S. broughtonii) in cold seasons and the exposition of the dissimilar pathogenicity of SbA1-1 at a different temperature. All the above indicates that V. kanaloae constitutes a threat to ark clam culture, especially in cold seasons.
Collapse
Affiliation(s)
- Bowen Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Xiang Zhang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chongming Wang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Changming Bai
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chen Li
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Lusheng Xin
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| |
Collapse
|
18
|
Yoon S, Lee YJ. Molecular characteristics of Escherichia coli from bulk tank milk in Korea. J Vet Sci 2021; 23:e9. [PMID: 34841747 PMCID: PMC8799942 DOI: 10.4142/jvs.21084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022] Open
Abstract
Background Escherichia coli, which causes subclinical or clinical mastitis in cattle, is responsible for transmitting antimicrobial resistance via human consumption of raw milk or raw milk products. Objectives The objective of this study was to investigate the molecular characteristics of 183 E. coli from bulk tank milk of five different dairy factories in Korea. Methods The molecular characteristics of E. coli such as serogroup, virulence, antimicrobial resistance, and integron genes were detected using polymerase chain reaction and antimicrobial susceptibility were tested using the disk diffusion test. Results In the distribution of phylogenetic groups, group D was the most prevalent (59.6%) and followed by group B1 (25.1%). The most predominant serogroup was O173 (15.3%), and a total of 46 different serotypes were detected. The virulence gene found most often was fimH (73.2%), and stx1, fimH, incC, fyuA, and iutA genes were significantly higher in isolates of phylogenetic group B1 compared to phylogenetic groups A, B2, and D (p < 0.05). Among 64 E. coli isolates that showed resistance to at least one antimicrobial, the highest resistance rate was observed for tetracyclines (37.5%). All 18 integron-positive E. coli carried the integron class I (int1) gene, and three different gene cassette arrangements, dfrA12+aadA2 (2 isolates), aac(6′)-Ib3+aac(6′)-Ib-cr+aadA4 (2 isolates), and dfrA17+aadA5 (1 isolate) were detected. Conclusions These data suggest that the E. coli from bulk tank milk can be an indicator for dissemination of antimicrobial resistance and virulence factors via cross-contamination.
Collapse
Affiliation(s)
- Sunghyun Yoon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.,College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
19
|
Prabhakar PK. Bacterial Siderophores and Their Potential Applications: A Review. Curr Mol Pharmacol 2021; 13:295-305. [PMID: 32418535 DOI: 10.2174/1874467213666200518094445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
The bacterial infection is one of the major health issues throughout the world. To protect humans from the infection and infectious agents, it is important to understand the mechanism of interaction of pathogens along with their susceptible hosts. This will help us to develop a novel strategy for designing effective new drugs or vaccines. As iron is an essential metal ion required for all the living systems for their growth, as well, it is needed by pathogenic bacterial cells for their growth and development inside host tissues. To get iron from the host tissues, microbes developed an iron-chelating system called siderophore and also corresponding receptors. Siderophores are low molecular weight organic complex produced by different strains of bacteria for the procurement of iron from the environment or host body under the iron deficient-conditions. Mostly in the environment at physiological pH, the iron is present in the ferric ionic form (Fe3+), which is water- insoluble and thus inaccessible for them. Such a condition promotes the generation of siderophores. These siderophores have been used in different areas such as agriculture, treatment of diseases, culture the unculturable strains of bacteria, promotion of plant growth, controlling phytopathogens, detoxification of heavy metal contamination, etc. In the medical field, siderophores can be used as "Trojan Horse Strategy", which forms a complex with antibiotics and also delivers these antibiotics to the desired locations, especially in antibiotic-resistant bacteria. The promising application of siderophore-based use of antibiotics for the management of bacterial resistance can be strategies to be used.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Transdisciplinary Research, Lovely Professional University, Phagwara, Punjab-144411, India
| |
Collapse
|
20
|
Moyer TB, Purvis AL, Wommack AJ, Hicks LM. Proteomic response of Escherichia coli to a membrane lytic and iron chelating truncated Amaranthus tricolor defensin. BMC Microbiol 2021; 21:110. [PMID: 33845758 PMCID: PMC8042948 DOI: 10.1186/s12866-021-02176-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. RESULTS Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. CONCLUSIONS This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Rd. CB#3290, Chapel Hill, NC, 27599, USA
| | | | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Rd. CB#3290, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
21
|
Yoon S, Lee YJ. Molecular characteristics of Escherichia coli from bulk tank milk in Korea. J Vet Sci 2021. [DOI: 10.4142/jvs.2021.22.e85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sunghyun Yoon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
22
|
Investigation of Virulence Genes Detected in Antimicrobial-Resistance Pathogens Isolates for Five Countries across the World. Processes (Basel) 2020. [DOI: 10.3390/pr8121589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A large portion of annual deaths worldwide are due to infections caused by disease-causing pathogens. These pathogens contain virulence genes, which encode mechanisms that facilitate infection and microbial survival in hosts. More recently, antimicrobial resistance (AMR) genes, also found in these pathogens, have become an increasingly large issue. While the National Center for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser (NPDIB) database has been compiling genes involved in microbial virulence and antimicrobial resistance through isolate samples, few studies have identified the genes primarily responsible for virulence and compared them to those responsible for AMR. This study performed the first multivariate statistical analysis of the multidimensional NPDIB data to identify the major virulence genes from historical pathogen isolates for Australia, China, South Africa, UK, and US—the largely populated countries from five of the six major continents. The important virulence genes were then compared with the AMR genes to study whether there is correlation between their occurrences. Among the significant genes and pathogens associated with virulence, it was found that the genes fdeC, iha, iss, iutA, lpfA, sslE, ybtP, and ybtQ are shared amongst all five countries. The pathogens E. coli and Shigella, Salmonella enterica, and Klebsiella pneumoniae mostly contained these genes and were common among four of the five studied countries. Additionally, the trend of virulence was investigated by plotting historical occurrences of gene and pathogen frequency in the annual samples. These plots showed that the trends of E. coli and Shigella and Salmonella enterica were similar to the trends of certain virulence genes, confirming the two pathogens do indeed carry important virulence genes. While the virulence genes in the five countries are not significantly different, the US and the UK share the largest amount of important virulence genes. The plots from principal component analysis and hierarchical clustering show that the important virulence and AMR genes were not significantly correlated, with only few genes from both types of genes clustered into the same groups.
Collapse
|
23
|
Wellawa DH, Allan B, White AP, Köster W. Iron-Uptake Systems of Chicken-Associated Salmonella Serovars and Their Role in Colonizing the Avian Host. Microorganisms 2020; 8:E1203. [PMID: 32784620 PMCID: PMC7465098 DOI: 10.3390/microorganisms8081203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing human and animal pathogens, have adopted several mechanisms to sequester iron from the environment depending on availability and source. Chickens act as a major reservoir for Salmonella enterica strains which can lead to outbreaks of human salmonellosis. In this review article we summarize the current understanding of the contribution of iron-uptake systems to the virulence of non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge in this field, to help understand and define the interactions between S. enterica and these important hosts, in comparison to mammalian models.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Brenda Allan
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
| | - Aaron P. White
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
24
|
Caneschi WL, Sanchez AB, Felestrino ÉB, Lemes CGDC, Cordeiro IF, Fonseca NP, Villa MM, Vieira IT, Moraes LÂG, Assis RDAB, do Carmo FF, Kamino LHY, Silva RS, Ferro JA, Ferro MIT, Ferreira RM, Santos VL, Silva UDCM, Almeida NF, Varani ADM, Garcia CCM, Setubal JC, Moreira LM. Serratia liquefaciens FG3 isolated from a metallophyte plant sheds light on the evolution and mechanisms of adaptive traits in extreme environments. Sci Rep 2019; 9:18006. [PMID: 31784663 PMCID: PMC6884506 DOI: 10.1038/s41598-019-54601-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 12/02/2022] Open
Abstract
Serratia liquefaciens strain FG3 (SlFG3), isolated from the flower of Stachytarpheta glabra in the Brazilian ferruginous fields, has distinctive genomic, adaptive, and biotechnological potential. Herein, using a combination of genomics and molecular approaches, we unlocked the evolution of the adaptive traits acquired by S1FG3, which exhibits the second largest chromosome containing the largest conjugative plasmids described for Serratia. Comparative analysis revealed the presence of 18 genomic islands and 311 unique protein families involved in distinct adaptive features. S1FG3 has a diversified repertoire of genes associated with Nonribosomal peptides (NRPs/PKS), a complete and functional cluster related to cellulose synthesis, and an extensive and functional repertoire of oxidative metabolism genes. In addition, S1FG3 possesses a complete pathway related to protocatecuate and chloroaromatic degradation, and a complete repertoire of genes related to DNA repair and protection that includes mechanisms related to UV light tolerance, redox process resistance, and a laterally acquired capacity to protect DNA using phosphorothioation. These findings summarize that SlFG3 is well-adapted to different biotic and abiotic stress situations imposed by extreme conditions associated with ferruginous fields, unlocking the impact of the lateral gene transfer to adjust the genome for extreme environments, and providing insight into the evolution of prokaryotes.
Collapse
Affiliation(s)
- Washington Luiz Caneschi
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Angélica Bianchini Sanchez
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Érica Barbosa Felestrino
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | | | - Isabella Ferreira Cordeiro
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Natasha Peixoto Fonseca
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Morghana Marina Villa
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Izadora Tabuso Vieira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Lauro Ângelo Gonçalves Moraes
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | | | | | | | - Robson Soares Silva
- Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jesus Aparecido Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Rafael Marini Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Vera Lúcia Santos
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Nalvo Franco Almeida
- Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Alessandro de Mello Varani
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica (DB), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Leandro Marcio Moreira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|
25
|
Ibraim IC, Parise MTD, Parise D, Sfeir MZT, de Paula Castro TL, Wattam AR, Ghosh P, Barh D, Souza EM, Góes-Neto A, Gomide ACP, Azevedo V. Transcriptome profile of Corynebacterium pseudotuberculosis in response to iron limitation. BMC Genomics 2019; 20:663. [PMID: 31429699 PMCID: PMC6701010 DOI: 10.1186/s12864-019-6018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Iron is an essential micronutrient for the growth and development of virtually all living organisms, playing a pivotal role in the proliferative capability of many bacterial pathogens. The impact that the bioavailability of iron has on the transcriptional response of bacterial species in the CMNR group has been widely reported for some members of the group, but it hasn't yet been as deeply explored in Corynebacterium pseudotuberculosis. Here we describe for the first time a comprehensive RNA-seq whole transcriptome analysis of the T1 wild-type and the Cp13 mutant strains of C. pseudotuberculosis under iron restriction. The Cp13 mutant strain was generated by transposition mutagenesis of the ciuA gene, which encodes a surface siderophore-binding protein involved in the acquisition of iron. Iron-regulated acquisition systems are crucial for the pathogenesis of bacteria and are relevant targets to the design of new effective therapeutic approaches. RESULTS Transcriptome analyses showed differential expression in 77 genes within the wild-type parental T1 strain and 59 genes in Cp13 mutant under iron restriction. Twenty-five of these genes had similar expression patterns in both strains, including up-regulated genes homologous to the hemin uptake hmu locus and two distinct operons encoding proteins structurally like hemin and Hb-binding surface proteins of C. diphtheriae, which were remarkably expressed at higher levels in the Cp13 mutant than in the T1 wild-type strain. These hemin transport protein genes were found to be located within genomic islands associated with known virulent factors. Down-regulated genes encoding iron and heme-containing components of the respiratory chain (including ctaCEF and qcrCAB genes) and up-regulated known iron/DtxR-regulated transcription factors, namely ripA and hrrA, were also identified differentially expressed in both strains under iron restriction. CONCLUSION Based on our results, it can be deduced that the transcriptional response of C. pseudotuberculosis under iron restriction involves the control of intracellular utilization of iron and the up-regulation of hemin acquisition systems. These findings provide a comprehensive analysis of the transcriptional response of C. pseudotuberculosis, adding important understanding of the gene regulatory adaptation of this pathogen and revealing target genes that can aid the development of effective therapeutic strategies against this important pathogen.
Collapse
Affiliation(s)
- Izabela Coimbra Ibraim
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana Teixeira Dornelles Parise
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Doglas Parise
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michelle Zibetti Tadra Sfeir
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Thiago Luiz de Paula Castro
- Departamento de Biointeração, Instituto de Ciências da Saude, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA
| | - Preetam Ghosh
- Department of Computer Science, Biological Networks Lab, Virginia Commonwealth University, Richmond, VA, USA
| | - Debmalya Barh
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Emannuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Sekhon PK, Chander AM, Mayilraj S, Rishi P. Genomic analysis of Indian strains of Salmonella enterica subsp. enterica serovar Typhi indicates novel genetic repertoire for pathogenicity and adaptations. Mol Biol Rep 2019; 46:3967-3989. [DOI: 10.1007/s11033-019-04843-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/27/2019] [Indexed: 01/23/2023]
|
27
|
Li X, Ma Y, Liang S, Tian Y, Yin S, Xie S, Xie H. Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle. BMC Genomics 2018; 19:889. [PMID: 30526490 PMCID: PMC6286560 DOI: 10.1186/s12864-018-5269-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pectobacterium spp. are necrotrophic bacterial plant pathogens of the family Pectobacteriaceae, responsible for a wide spectrum of diseases of important crops and ornamental plants including soft rot, blackleg, and stem wilt. P. carotovorum is a genetically heterogeneous species consisting of three valid subspecies, P. carotovorum subsp. brasiliense (Pcb), P. carotovorum subsp. carotovorum (Pcc), and P. carotovorum subsp. odoriferum (Pco). RESULTS Thirty-two P. carotovorum strains had their whole genomes sequenced, including the first complete genome of Pco and another circular genome of Pcb, as well as the high-coverage genome sequences for 30 additional strains covering Pcc, Pcb, and Pco. In combination with 52 other publicly available genome sequences, the comparative genomics study of P. carotovorum and other four closely related species P. polaris, P. parmentieri, P. atrosepticum, and Candidatus P. maceratum was conducted focusing on CRISPR-Cas defense systems and pathogenicity determinants. Our analysis identified two CRISPR-Cas types (I-F and I-E) in Pectobacterium, as well as another I-C type in Dickeya that is not found in Pectobacterium. The core pathogenicity factors (e.g., plant cell wall-degrading enzymes) were highly conserved, whereas some factors (e.g., flagellin, siderophores, polysaccharides, protein secretion systems, and regulatory factors) were varied among these species and/or subspecies. Notably, a novel type of T6SS as well as the sorbitol metabolizing srl operon was identified to be specific to Pco in Pectobacterium. CONCLUSIONS This study not only advances the available knowledge about the genetic differentiation of individual subspecies of P. carotovorum, but also delineates the general genetic features of P. carotovorum by comparison with its four closely related species, thereby substantially enriching the extent of information now available for functional genomic investigations about Pectobacterium.
Collapse
Affiliation(s)
- Xiaoying Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Yali Ma
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Shuqing Liang
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Yu Tian
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Sanjun Yin
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Sisi Xie
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| |
Collapse
|
28
|
Soutar CD, Stavrinides J. The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea. Mol Genet Genomics 2018; 293:1453-1467. [PMID: 30027301 DOI: 10.1007/s00438-018-1477-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022]
Abstract
For many pathogenic members of the Enterobacterales, siderophores play an important role in virulence, yet the siderophores of the host-associating members of the genus Pantoea remain unexplored. We conducted a genome-wide survey of environmental and host-associating strains of Pantoea to identify known and candidate siderophore biosynthetic clusters. Our analysis identified three clusters homologous to those of enterobactin, desferrioxamine, and aerobactin that were prevalent among Pantoea species. Using both phylogenetic and comparative genomic approaches, we demonstrate that the enterobactin-like cluster was present in the common ancestor of all Pantoea, with evidence for three independent losses of the cluster in P. eucalypti, P. eucrina, and the P. ananatis-P. stewartii lineage. The desferrioxamine biosynthetic cluster, previously described and characterized in Pantoea, was horizontally acquired from its close relative Erwinia, with phylogenetic evidence that these transfer events were ancient and occurred between ancestral lineages. The aerobactin cluster was identified in three host-associating species groups, P. septica, P. ananatis, and P. stewartii, with strong evidence for horizontal acquisition from human-pathogenic members of the Enterobacterales. Our work identifies and describes the key siderophore clusters in Pantoea, shows three distinct evolutionary processes driving their diversification, and provides a foundation for exploring the roles that these siderophores may play in human opportunistic infections.
Collapse
Affiliation(s)
- Craig D Soutar
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S0A2, Canada.
| |
Collapse
|
29
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
30
|
de Paiva JB, da Silva LPM, Casas MRT, Conceição RA, Nakazato G, de Pace F, Sperandio V, da Silveira WD. In vivoinfluence ofin vitroup-regulated genes in the virulence of an APEC strain associated with swollen head syndrome. Avian Pathol 2016; 45:94-105. [DOI: 10.1080/03079457.2015.1125995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Paixão AC, Ferreira AC, Fontes M, Themudo P, Albuquerque T, Soares MC, Fevereiro M, Martins L, de Sá MIC. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates. Poult Sci 2016; 95:1646-1652. [PMID: 26976911 DOI: 10.3382/ps/pew087] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival.
Collapse
Affiliation(s)
- A C Paixão
- Department of Chemistry, School of Sciences and Technology, University of Évora. 7000-093 Évora, Portugal.
| | - A C Ferreira
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - M Fontes
- Sociedade Agrícola da Quinta da Freiria, Valouro Group. Quinta da Freiria, Roliça, 2540-671 Roliça, Portugal
| | - P Themudo
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - T Albuquerque
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - M C Soares
- Sociedade Agrícola da Quinta da Freiria, Valouro Group. Quinta da Freiria, Roliça, 2540-671 Roliça, Portugal
| | - M Fevereiro
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - L Martins
- Department of Veterinary Medicine, School of Sciences and Technology, and Veterinary Hospital - University of Évora. Núcleo da Mitra, 7000-093 Évora, Portugal; Institute of Mediterranean Agricultural and Environmental Science (ICAAM), University of Évora. Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - M I Corrêa de Sá
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| |
Collapse
|
32
|
Alex A, Antunes A. Whole Genome Sequencing of the Symbiont Pseudovibrio sp. from the Intertidal Marine Sponge Polymastia penicillus Revealed a Gene Repertoire for Host-Switching Permissive Lifestyle. Genome Biol Evol 2015; 7:3022-32. [PMID: 26519859 PMCID: PMC5635592 DOI: 10.1093/gbe/evv199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sponges harbor a complex consortium of microbial communities living in symbiotic relationship benefiting each other through the integration of metabolites. The mechanisms influencing a successful microbial association with a sponge partner are yet to be fully understood. Here, we sequenced the genome of Pseudovibrio sp. POLY-S9 strain isolated from the intertidal marine sponge Polymastia penicillus sampled from the Atlantic coast of Portugal to identify the genomic features favoring the symbiotic relationship. The draft genome revealed an exceptionally large genome size of 6.6 Mbp compared with the previously reported genomes of the genus Pseudovibrio isolated from a coral and a sponge larva. Our genomic study detected the presence of several biosynthetic gene clusters—polyketide synthase, nonribosomal peptide synthetase and siderophore—affirming the potential ability of the genus Pseudovibrio to produce a wide variety of metabolic compounds. Moreover, we identified a repertoire of genes encoding adaptive symbioses factors (eukaryotic-like proteins), such as the ankyrin repeats, tetratrico peptide repeats, and Sel1 repeats that improve the attachment to the eukaryotic hosts and the avoidance of the host’s immune response. The genome also harbored a large number of mobile elements (∼5%) and gene transfer agents, which explains the massive genome expansion and suggests a possible mechanism of horizontal gene transfer. In conclusion, the genome of POLY-S9 exhibited an increase in size, number of mobile DNA, multiple metabolite gene clusters, and secretion systems, likely to influence the genome diversification and the evolvability.
Collapse
Affiliation(s)
- Anoop Alex
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
33
|
The avian pathogenic Escherichia coli O2 strain E058 carrying the defined aerobactin-defective iucD or iucDiutA mutation is less virulent in the chicken. INFECTION GENETICS AND EVOLUTION 2015; 30:267-277. [PMID: 25582605 DOI: 10.1016/j.meegid.2014.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/20/2022]
Abstract
The expression of aerobactin accounts for much of the pathogenesis of avian pathogenic Escherichia coli (APEC). iucA, iucB, iucC and iucD are involved in aerobactin synthesis and iutA is responsible for the expression of a specific outer membrane receptor protein for ferric aerobactin. Knockout mutants of iucD and iucDiutA in the APEC O2 strain E058 were constructed and named E058ΔiucD and E058ΔiucDΔiutA, respectively. To evaluate the pathogenicity of these mutants, we used multiple approaches to assess the effects of mutations on the virulence of APEC E058. Aerobactin-defective mutants E058ΔiucD and E058ΔiucDΔiutA showed significantly decreased pathogenicity compared with the wild-type strain E058, evidenced by the low extent of colonization in selected organs or being outcompeted by E058 in vivo. Chickens challenged with APEC E058 exhibited typical signs and lesions of avian colibacillosis, while those inoculated with the mutants E058ΔiucD or E058ΔiucDΔiutA showed moderate airsacculitis, mild pericarditis and perihepatitis. However, no significant differences in resistance to specific-pathogen-free chicken serum, ingestion by HD-11 cells, and growth rates in LB were observed between the mutants and the wild-type strain. These results indicated that the IucD- and IutA-related virulence factors play a significant role in the pathogenesis of the APEC strain E058.
Collapse
|
34
|
Abstract
ABSTRACT
Plasmids confer genetic information that benefits the bacterial cells containing them. In pathogenic bacteria, plasmids often harbor virulence determinants that enhance the pathogenicity of the bacterium. The ability to acquire iron in environments where it is limited, for instance the eukaryotic host, is a critical factor for bacterial growth. To acquire iron, bacteria have evolved specific iron uptake mechanisms. These systems are often chromosomally encoded, while those that are plasmid-encoded are rare. Two main plasmid types, ColV and pJM1, have been shown to harbor determinants that increase virulence by providing the cell with essential iron for growth. It is clear that these two plasmid groups evolved independently from each other since they do not share similarities either in the plasmid backbones or in the iron uptake systems they harbor. The siderophores aerobactin and salmochelin that are found on ColV plasmids fall in the hydroxamate and catechol group, respectively, whereas both functional groups are present in the anguibactin siderophore, the only iron uptake system found on pJM1-type plasmids. Besides siderophore-mediated iron uptake, ColV plasmids carry additional genes involved in iron metabolism. These systems include ABC transporters, hemolysins, and a hemoglobin protease. ColV- and pJM1-like plasmids have been shown to confer virulence to their bacterial host, and this trait can be completely ascribed to their encoded iron uptake systems.
Collapse
|
35
|
The small RNA RyhB contributes to siderophore production and virulence of uropathogenic Escherichia coli. Infect Immun 2014; 82:5056-68. [PMID: 25245805 DOI: 10.1128/iai.02287-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Escherichia coli, the small regulatory noncoding RNA (sRNA) RyhB and the global ferric uptake regulator (Fur) mediate iron acquisition and storage control. Iron is both essential and potentially toxic for most living organisms, making the precise maintenance of iron homeostasis necessary for survival. While the roles of these regulators in iron homeostasis have been well studied in a nonpathogenic E. coli strain, their impact on the production of virulence-associated factors is still unknown for a pathogenic E. coli strain. We thus investigated the roles of RyhB and Fur in iron homeostasis and virulence of the uropathogenic E. coli (UPEC) strain CFT073. In a murine model of urinary tract infection (UTI), deletion of fur alone did not attenuate virulence, whereas a ΔryhB mutant and a Δfur ΔryhB double mutant showed significantly reduced bladder colonization. The Δfur mutant was more sensitive to oxidative stress and produced more of the siderophores enterobactin, salmochelins, and aerobactin than the wild-type strain. In contrast, while RyhB was not implicated in oxidative stress resistance, the ΔryhB mutant produced lower levels of siderophores. This decrease was correlated with the downregulation of shiA (encoding a transporter of shikimate, a precursor of enterobactin and salmochelin biosynthesis) and iucD (involved in aerobactin biosynthesis) in this mutant grown in minimal medium or in human urine. iucD was also downregulated in bladders infected with the ΔryhB mutant compared to those infected with the wild-type strain. Our results thus demonstrate that the sRNA RyhB is involved in production of iron acquisition systems and colonization of the urinary tract by pathogenic E. coli.
Collapse
|
36
|
Troxell B, Hassan HM. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:59. [PMID: 24106689 PMCID: PMC3788343 DOI: 10.3389/fcimb.2013.00059] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/16/2022] Open
Abstract
In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe3+. However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Immunology and Microbiology, Indiana University School of Medicine Indianapolis, IN, USA
| | | |
Collapse
|