1
|
Scammell K, Cooke R, Yokochi K, Carter N, Nguyen H, White JG. The missing toxic link: Exposure of non-target native marsupials to second-generation anticoagulant rodenticides (SGARs) suggest a potential route of transfer into apex predators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173191. [PMID: 38740216 DOI: 10.1016/j.scitotenv.2024.173191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Anticoagulant rodenticides (ARs) are used globally to control rodent pests. Second-generation anticoagulant rodenticides (SGARs) persist in the liver and pose a significant risk of bioaccumulation and secondary poisoning in predators, including species that do not generally consume rodents. As such, there is a clear need to understand the consumption of ARs, particularly SGARs, by non-target consumers to determine the movement of these anticoagulants through ecosystems. We collected and analysed the livers from deceased common brushtail possums (Trichosurus vulpecula) and common ringtail possums (Pseudocheirus peregrinus), native Australian marsupials that constitute the main diet of the powerful owl (Ninox strenua), an Australian apex predator significantly exposed to SGAR poisoning. ARs were detected in 91 % of brushtail possums and 40 % of ringtail possums. Most of the detections were attributed to SGARs, while first-generation anticoagulant rodenticides (FGARs) were rarely detected. SGAR concentrations were likely lethal or toxic in 42 % of brushtail possums and 4 % of ringtail possums with no effect of age, sex, or weight detected in either species. There was also no effect of the landscape type possums were from, suggesting SGAR exposure is ubiquitous across landscapes. The rate of exposure detected in these possums provides insight into the pathway through which ARs are transferred to one of their key predators, the powerful owl. With SGARs entering food-webs through non-target species, the potential for bioaccumulation and broader secondary poisoning of predators is significantly greater and highlights an urgent need for routine rodenticide testing in non-target consumers that present as ill or found deceased. To limit their impact on ecosystem stability the use of SGARs should be significantly regulated by governing agencies.
Collapse
Affiliation(s)
- Kieran Scammell
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Raylene Cooke
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia.
| | - Kaori Yokochi
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Nicholas Carter
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Hao Nguyen
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne 3207, Vic., Australia
| | - John G White
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| |
Collapse
|
2
|
Patterson CR, Lustig A, Seddon PJ, Wilson DJ, van Heezik Y. Eradicating an invasive mammal requires local elimination and reduced reinvasion from an urban source population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2949. [PMID: 38442922 DOI: 10.1002/eap.2949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024]
Abstract
Invasive mammal eradications are increasingly attempted across large, complex landscapes. Sequentially controlled management zones can be at risk of reinvasion from adjacent uncontrolled areas, and managers must weigh the relative benefits of ensuring complete elimination from a zone or minimizing reinvasion risk. This is complicated in urban areas, where habitat heterogeneity and a lack of baseline ecological knowledge increase uncertainty. We applied a spatial agent-based model to predict the reinvasion of a well-studied species, the brushtail possum (Trichosurus vulpecula), across an urban area onto a peninsula that is the site of an elimination campaign in Aotearoa New Zealand. We represented fine-scale urban habitat heterogeneity in a land cover layer and tested management scenarios that varied four factors: the density of possums remaining following an elimination attempt, the maintenance trap density on the peninsula, and effort expended toward preventing reinvasion by means of a high-density trap buffer at the peninsula isthmus or control of the source population adjacent to the peninsula. We found that achieving complete elimination on the peninsula was crucial to avoid rapid repopulation. The urban isthmus was predicted to act as a landscape barrier and restrict immigration onto the peninsula, but reliance on this barrier alone would fail to prevent repopulation. In combination, complete elimination, buffer zone, and source population control could reduce the probability of possum repopulation to near zero. Our findings support urban landscape barriers as one tool for sequential invasive mammal elimination but reaffirm that novel methods to expose residual individuals to control will be necessary to secure elimination in management zones. Work to characterize the urban ecology of many invasive mammals is still needed.
Collapse
Affiliation(s)
| | - Audrey Lustig
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
- Te Pūnaha Matatini: The Centre for Complex Systems and Networks, Auckland, New Zealand
| | - Philip J Seddon
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
3
|
Du Y, Wang X, Ashraf S, Tu W, Xi Y, Cui R, Chen S, Yu J, Han L, Gu S, Qu Y, Liu X. Climate match is key to predict range expansion of the world's worst invasive terrestrial vertebrates. GLOBAL CHANGE BIOLOGY 2024; 30:e17137. [PMID: 38273500 DOI: 10.1111/gcb.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Understanding the determinants of the range expansion of invasive alien species is crucial for developing effective prevention and control strategies. Nevertheless, we still lack a global picture of the potential factors influencing the invaded range expansion across taxonomic groups, especially for the world's worst invaders with high ecological and economic impacts. Here, by extensively collecting data on 363 distributional ranges of 19 of world's worst invasive terrestrial vertebrates across 135 invaded administrative jurisdictions, we observed remarkable variations in the range expansion across species and taxonomic groups. After controlling for taxonomic and geographic pseudoreplicates, model averaging analyses based on generalized additive mixed-effect models showed that species in invaded regions having climates more similar to those of their native ranges tended to undergo a larger range expansion. In addition, as proxies of propagule pressure and human-assisted transportation, the number of introduction events and the road network density were also important predictors facilitating the range expansion. Further variance partitioning analyses validated the predominant role of climate match in explaining the range expansion. Our study demonstrated that regions with similar climates to their native ranges could still be prioritized to prevent the spread of invasive species under the sustained global change.
Collapse
Affiliation(s)
- Yuanbao Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuyu Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Ecology, Lanzhou University, Lanzhou, Gansu Province, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Sadia Ashraf
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weishan Tu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yonghong Xi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shengnan Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan Province, China
| | - Jiajie Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixia Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Cooke R, Whiteley P, Death C, Weston MA, Carter N, Scammell K, Yokochi K, Nguyen H, White JG. Silent killers? The widespread exposure of predatory nocturnal birds to anticoagulant rodenticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166293. [PMID: 37586529 DOI: 10.1016/j.scitotenv.2023.166293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Anticoagulant rodenticides (ARs) influence predator populations and threaten the stability of ecosystems. Understanding the prevalence and impact of rodenticides in predators is crucial to inform conservation planning and policy. We collected dead birds of four nocturnal predatory species across differing landscapes: forests, agricultural, urban. Liver samples were analysed for eight ARs: three First Generation ARs (FGARs) and five SGARs (Second Generation ARs). We investigated interspecific differences in liver concentrations and whether landscape composition influenced this. FGARs were rarely detected, except pindone at low concentrations in powerful owls Ninox strenua. SGARs, however, were detected in every species and 92 % of birds analysed. Concentrations of SGARs were at levels where potential toxicological or lethal impacts would have occurred in 33 % of powerful owls, 68 % of tawny frogmouths Podargus strigoides, 42 % of southern boobooks N. bookbook and 80 % of barn owls Tyto javanica. When multiple SGARs were detected, the likelihood of potentially lethal concentrations of rodenticides increased. There was no association between landscape composition and SGAR exposure, or the presence of multiple SGARs, suggesting rodenticide poisoning is ubiquitous across all landscapes sampled. This widespread human-driven contamination in wildlife is a major threat to wildlife health. Given the high prevalence and concentrations of SGARs in these birds across all landscape types, we support the formal consideration of SGARs as a threatening process. Furthermore, given species that do not primarily eat rodents (tawny frogmouths, powerful owls) have comparable liver rodenticide concentrations to rodent predators (southern boobook, eastern barn owl), it appears there is broader contamination of the food-web than anticipated. We provide evidence that SGARs have the potential to pose a threat to the survival of avian predator populations. Given the functional importance of predators in ecosystems, combined with the animal welfare impacts of these chemicals, we propose governments should regulate the use of SGARs.
Collapse
Affiliation(s)
- Raylene Cooke
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia.
| | - Pam Whiteley
- Wildlife Health Victoria: Surveillance, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee 3030, Vic., Australia
| | - Clare Death
- Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee, Vic., Australia
| | - Michael A Weston
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Nicholas Carter
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Kieran Scammell
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Kaori Yokochi
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Hao Nguyen
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne 3207, Vic., Australia
| | - John G White
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| |
Collapse
|
5
|
Invasive Urban Mammalian Predators: Distribution and Multi-Scale Habitat Selection. BIOLOGY 2022; 11:biology11101527. [PMID: 36290430 PMCID: PMC9598248 DOI: 10.3390/biology11101527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
A barrier to successful ecological restoration of urban green spaces in many cities is invasive mammalian predators. We determined the fine- and landscape-scale habitat characteristics associated with the presence of five urban predators (black and brown rats, European hedgehogs, house mice, and brushtail possums) in three New Zealand cities, in spring and autumn, in three green space types: forest fragments, amenity parks, and residential gardens. Season contributed to variations in detections for all five taxa. Rodents were detected least in residential gardens; mice were detected more often in amenity parks. Hedgehogs were detected least in forest fragments. Possums were detected most often in forest fragments and least often in residential gardens. Some of this variation was explained by our models. Proximity of amenity parks to forest patches was strongly associated with presence of possums (positively), hedgehogs (positively), and rats (negatively). Conversely, proximity of residential gardens to forest patches was positively associated with rat presence. Rats were associated with shrub and lower canopy cover and mice with herb layer cover. In residential gardens, rat detection was associated with compost heaps. Successful restoration of biodiversity in these cities needs extensive, coordinated predator control programmes that engage urban residents.
Collapse
|
6
|
Blasdell KR, McNamara B, O’Brien DP, Tachedjian M, Boyd V, Dunn M, Mee PT, Clayton S, Gaburro J, Smith I, Gibney KB, Tay EL, Hobbs EC, Waidyatillake N, Lynch SE, Stinear TP, Athan E. Environmental risk factors associated with the presence of Mycobacterium ulcerans in Victoria, Australia. PLoS One 2022; 17:e0274627. [PMID: 36099259 PMCID: PMC9469944 DOI: 10.1371/journal.pone.0274627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years reported cases of Buruli ulcer, caused by Mycobacterium ulcerans, have increased substantially in Victoria, Australia, with the epidemic also expanding geographically. To develop an understanding of how M. ulcerans circulates in the environment and transmits to humans we analyzed environmental samples collected from 115 properties of recent Buruli ulcer cases and from 115 postcode-matched control properties, for the presence of M. ulcerans. Environmental factors associated with increased odds of M. ulcerans presence at a property included certain native plant species and native vegetation in general, more alkaline soil, lower altitude, the presence of common ringtail possums (Pseudocheirus peregrinus) and overhead powerlines. However, only overhead powerlines and the absence of the native plant Melaleuca lanceolata were associated with Buruli ulcer case properties. Samples positive for M. ulcerans were more likely to be found at case properties and were associated with detections of M. ulcerans in ringtail possum feces, supporting the hypothesis that M. ulcerans is zoonotic, with ringtail possums the strongest reservoir host candidate. However, the disparity in environmental risk factors associated with M. ulcerans positive properties versus case properties indicates the involvement of human behavior or the influence of other environmental factors in disease acquisition that requires further study.
Collapse
Affiliation(s)
- Kim R. Blasdell
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
- * E-mail:
| | - Bridgette McNamara
- Department of Infectious Diseases, Barwon Health, Geelong, Victoria, Australia
- Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel P. O’Brien
- Department of Infectious Diseases, Barwon Health, Geelong, Victoria, Australia
- Department of Health, Victorian State Government, Melbourne, Victoria, Australia
| | - Mary Tachedjian
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Victoria Boyd
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Michael Dunn
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBiosciences, Bundoora, Victoria, Australia
| | - Simone Clayton
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Julie Gaburro
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Ina Smith
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
| | - Katherine B. Gibney
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ee Laine Tay
- Department of Health, Victorian State Government, Melbourne, Victoria, Australia
| | - Emma C. Hobbs
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBiosciences, Bundoora, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Eugene Athan
- Department of Infectious Diseases, Barwon Health, Geelong, Victoria, Australia
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria, Australia
| |
Collapse
|
7
|
Cooke R, Whiteley P, Jin Y, Death C, Weston MA, Carter N, White JG. Widespread exposure of powerful owls to second-generation anticoagulant rodenticides in Australia spans an urban to agricultural and forest landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153024. [PMID: 35026248 DOI: 10.1016/j.scitotenv.2022.153024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The powerful owl (Ninox strenua) is a threatened apex predator that consumes mainly arboreal marsupial prey. Low density populations reside in urban landscapes where their viability is tenuous. The catalyst for this research was the reported death of eight powerful owls around Melbourne, Australia, in less than one year (2020/2021). Eighteen deceased owls were toxicologically screened. We assessed toxic metals (Mercury Hg, Lead Pb, Cadmium Cd and Arsenic As) and anticoagulant rodenticides (ARs) in liver (n = 18 owls) and an extensive range of agricultural chemicals in muscle (n = 14). Almost all agricultural chemicals were below detection limits except for p,p-DDE, which was detected in 71% of birds at relatively low levels. Toxic metals detected in some individuals were generally at low levels. However, ARs were detected in 83.3% of powerful owls. The most common second-generation anticoagulant rodenticide (SGAR) detected was brodifacoum, which was present in every bird in which a rodenticide was detected. Brodifacoum was often present at toxic levels and in some instances at potentially lethal levels. Presence of brodifacoum was detected across the complete urban-forest/agriculture gradient, suggesting widespread exposure. Powerful owls do not scavenge but prey upon arboreal marsupials, and generally not rodents, suggesting that brodifacoum is entering the powerful owl food web via accidental or deliberate poisoning of non-target species (possums). We highlight a critical need to investigate SGARs in food webs globally, and not just in species directly targeted for poisoning or their predators.
Collapse
Affiliation(s)
- Raylene Cooke
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Hwy, Burwood 3125, Vic., Australia.
| | - Pam Whiteley
- Wildlife Health Victoria: Surveillance, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee 3030, Vic., Australia
| | - Yun Jin
- Wildlife Health Victoria: Surveillance, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee 3030, Vic., Australia
| | - Clare Death
- Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee 3030, Vic., Australia
| | - Michael A Weston
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Hwy, Burwood 3125, Vic., Australia
| | - Nicholas Carter
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Hwy, Burwood 3125, Vic., Australia
| | - John G White
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Hwy, Burwood 3125, Vic., Australia
| |
Collapse
|
8
|
Adams AL, Recio MR, Robertson BC, Dickinson KJM, van Heezik Y. Understanding home range behaviour and resource selection of invasive common brushtail possums (Trichosurus vulpecula) in urban environments. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
|