1
|
Garduño BM, Holmes TC, Deacon RMJ, Xu X, Cogram P. Octodon degus laboratory colony management principles and methods for behavioral analysis for Alzheimer's disease neuroscience research. Front Aging Neurosci 2025; 16:1517416. [PMID: 39902280 PMCID: PMC11788410 DOI: 10.3389/fnagi.2024.1517416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
The Chilean degu (Octodon degus) is a medium sized, long-lived rodent with traits that make them a natural model for neuroscience research. Their social behaviors, diurnality, and extended developmental time course, when compared to other rodents, make them useful for social behavioral, chronobiology, and developmental research. Lab-kept degus have a long lifespan (5-8 years) and may naturally develop age-related diseases that resemble Alzheimer's disease. While there is significant interest in using the Octodon degus for neuroscience research, including aging and Alzheimer's disease studies, laboratory management and methods for degus research are currently not standardized. This lack of standardization potentially impacts study reproducibility and makes it difficult to compare results between different laboratories. Degus require species-specific housing and handling methods that reflect their ecology, life history, and group-living characteristics. Here we introduce major principles and ethological considerations of colony management and husbandry. We provide clear instructions on laboratory practices necessary for maintaining a healthy and robust colony of degus for Alzheimer's disease neuroscience research towards conducting reproducible studies. We also report detailed procedures and methodical information for degu Apoe genotyping and ethologically relevant burrowing behavioral tasks in laboratory settings.
Collapse
Affiliation(s)
- B. Maximiliano Garduño
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| | - Robert M. J. Deacon
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Patricia Cogram
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Devecioğlu İ, Karakulak E. Three Sliding Probes Placed on Forelimb Skin for Proprioceptive Feedback Differentially yet Complementarily Contribute to Hand Gesture Detection and Object-Size Discrimination. Ann Biomed Eng 2024; 52:982-996. [PMID: 38246964 PMCID: PMC10940487 DOI: 10.1007/s10439-023-03434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
The purpose was to assess the effectiveness of three sliding tactile probes placed on the forelimb skin to provide proprioceptive feedback for the detection of hand gestures and discrimination of object size. Tactile contactors representing the first three fingers were driven along the proximodistal axis by linear servo motors. Twenty healthy subjects were involved in the gesture detection test, with 10 of them also participating in the object-size discrimination task. Motors were controlled by computer in the first four sessions of the gesture detection experiment, while the fifth session utilized a sensorized glove. Both the volar and dorsal sides of the forearm were examined. In the object-size discrimination experiment, the method was exclusively assessed on the volar surface under four distinct feedback conditions, including all fingers and each finger separately. The psychophysical data were further analyzed using a structural equation model (SEM) to evaluate the specific contributions of each individual contactor. Subjects consistently outperformed the chance level in detecting gestures. Performance improved up to the third session, with better results obtained on the volar side. The performances were similar in the fourth and fifth sessions. The just noticeable difference for achieving a 75% discrimination accuracy was found to be 2.90 mm of movement on the skin. SEM analysis indicated that the contactor for the index finger had the lowest importance in gesture detection, while it played a more significant role in object-size discrimination. However, all fingers were found to be significant predictors of subjects' responses in both experiments, except for the thumb, which was deemed insignificant in object-size discrimination. The study highlights the importance of considering the partial contribution of each degree of freedom in a sensory feedback system, especially concerning the task, when designing such systems.
Collapse
Affiliation(s)
- İsmail Devecioğlu
- Biomedical Engineering Department, Çorlu Faculty of Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Ertuğrul Karakulak
- Department of Biomedical Device Technologies, Vocational School of Technical Sciences, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| |
Collapse
|
3
|
Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rodríguez-Moreno CB, Márquez-Valadez B, Gallardo-Caballero M, Rábano A, Llorens-Martín M. Methods to study adult hippocampal neurogenesis in humans and across the phylogeny. Hippocampus 2023; 33:271-306. [PMID: 36259116 PMCID: PMC7614361 DOI: 10.1002/hipo.23474] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
The hippocampus hosts the continuous addition of new neurons throughout life-a phenomenon named adult hippocampal neurogenesis (AHN). Here we revisit the occurrence of AHN in more than 110 mammalian species, including humans, and discuss the further validation of these data by single-cell RNAseq and other alternative techniques. In this regard, our recent studies have addressed the long-standing controversy in the field, namely whether cells positive for AHN markers are present in the adult human dentate gyrus (DG). Here we review how we developed a tightly controlled methodology, based on the use of high-quality brain samples (characterized by short postmortem delays and ≤24 h of fixation in freshly prepared 4% paraformaldehyde), to address human AHN. We review that the detection of AHN markers in samples fixed for 24 h required mild antigen retrieval and chemical elimination of autofluorescence. However, these steps were not necessary for samples subjected to shorter fixation periods. Moreover, the detection of labile epitopes (such as Nestin) in the human hippocampus required the use of mild detergents. The application of this strictly controlled methodology allowed reconstruction of the entire AHN process, thus revealing the presence of neural stem cells, proliferative progenitors, neuroblasts, and immature neurons at distinct stages of differentiation in the human DG. The data reviewed here demonstrate that methodology is of utmost importance when studying AHN by means of distinct techniques across the phylogenetic scale. In this regard, we summarize the major findings made by our group that emphasize that overlooking fundamental technical principles might have consequences for any given research field.
Collapse
Affiliation(s)
- Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Berenice Márquez-Valadez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Gallardo-Caballero
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department, CIEN Foundation, Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
4
|
Nagano A. Training of Motion Control May Not Improve Tool-Manipulation Ability in Rats (Rattus norvegicus). Front Psychol 2022; 13:931957. [PMID: 35911044 PMCID: PMC9326322 DOI: 10.3389/fpsyg.2022.931957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
In recent times, previous studies have reported the manipulation of tools by rats and degus in controlled experimental settings. However, a previous study reported that only one out of eight experimentally naïve rats could manipulate a rake-shaped tool according to the position of a food reward without prior experience of obtaining the reward with the tool before the test. The present study aimed to improve the training of rats and investigate rodents’ ability to manipulate tools according to food position. Stricter criteria were employed when training the rats to promote the rats’ monitoring of their own tool manipulation. Additional training was introduced to give them the opportunity to learn that the reward moved closer to them by pulling an object connected to the reward. The present study showed that only one of eight rats could manipulate a tool according to the position of the reward without prior experience of obtaining the reward with the tool or perceiving that part of the tool came in contact with the reward, as the previous study showed. The change in training did not enhance the rats’ tool-manipulation ability according to the food position. These procedures should be conducted in a wider variety of animals to investigate whether the training in motion control can promote the subjects’ effective tool-use behavior.
Collapse
Affiliation(s)
- Akane Nagano
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Japan
- *Correspondence: Akane Nagano,
| |
Collapse
|
5
|
van Groen T, Kadish I, Popović N, Caballero Bleda M, Baño-Otalora B, Rol MA, Madrid JA, Popović M. Widespread Doublecortin Expression in the Cerebral Cortex of the Octodon degus. Front Neuroanat 2021; 15:656882. [PMID: 33994960 PMCID: PMC8116662 DOI: 10.3389/fnana.2021.656882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that in adulthood rodents show newly born neurons in the subgranular layer (SGL) of the dentate gyrus (DG), and in the subventricular zone (SVZ). The neurons generated in the SVZ migrate through the rostral migratory stream (RMS) to the olfactory bulb. One of the markers of newly generated neurons is doublecortin (DCX). The degu similarly shows significant numbers of DCX-labeled neurons in the SGL, SVZ, and RMS. Further, most of the nuclei of these DCX-expressing neurons are also labeled by proliferating nuclear antigen (PCNA) and Ki67. Finally, whereas in rats and mice DCX-labeled neurons are predominantly present in the SGL and SVZ, with only a few DCX neurons present in piriform cortex, the degu also shows significant numbers of DCX expressing neurons in areas outside of SVZ, DG, and PC. Many areas of neocortex in degu demonstrate DCX-labeled neurons in layer II, and most of these neurons are found in the limbic cortices. The DCX-labeled cells do not stain with NeuN, indicating they are immature neurons.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Inga Kadish
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Natalija Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - María Caballero Bleda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - Beatriz Baño-Otalora
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - María Angeles Rol
- Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain.,Chronobiology Laboratory, Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Juan Antonio Madrid
- Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain.,Chronobiology Laboratory, Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| |
Collapse
|
6
|
A review of the neuroprotective effects of andrographolide in Alzheimer's disease. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Chang LYL, Palanca-Castan N, Neira D, Palacios AG, Acosta ML. Ocular Health of Octodon degus as a Clinical Marker for Age-Related and Age-Independent Neurodegeneration. Front Integr Neurosci 2021; 15:665467. [PMID: 33927598 PMCID: PMC8076605 DOI: 10.3389/fnint.2021.665467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 01/14/2023] Open
Abstract
The aging process and age-related diseases such as Alzheimer’s disease (AD), are very heterogeneous and multifactorial, making it challenging to diagnose the disease based solely on genetic, behavioral tests, or clinical history. It is yet to be explained what ophthalmological tests relate specifically to aging and AD. To this end, we have selected the common degu (Octodon degus) as a model for aging which develops AD-like signs to conduct ophthalmological screening methods that could be clinical markers of aging and AD. We investigated ocular health using ophthalmoscopy, fundus photography, intraocular pressure (IOP), and pupillary light reflex (PLR). The results showed significant presence of cataracts in adult degus and IOP was also found to increase significantly with advancing age. Age had a significant effect on the maximum pupil constriction but other pupil parameters changed in an age-independent manner (PIPR retention index, resting pupil size, constriction velocity, redilation plateau). We concluded that degus have underlying factors at play that regulate PLR and may be connected to sympathetic, parasympathetic, and melanopsin retinal ganglion cell (ipRGC) deterioration. This study provides the basis for the use of ocular tests as screening methods for the aging process and monitoring of neurodegeneration in non-invasive ways.
Collapse
Affiliation(s)
- Lily Y-L Chang
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Nicolas Palanca-Castan
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Santiago, Chile
| | - David Neira
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Santiago, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Santiago, Chile
| | - Monica L Acosta
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Brain Research New Zealand-Rangahau Roro Aotearoa, Auckland, New Zealand
| |
Collapse
|
8
|
Nagano A. Behavioral task to assess physical causal understanding in rats (Rattus norvegicus). CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-020-01315-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Octodon degus: a natural model of multimorbidity for ageing research. Ageing Res Rev 2020; 64:101204. [PMID: 33152453 DOI: 10.1016/j.arr.2020.101204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Integrating the multifactorial processes co-occurring in both physiological and pathological human conditions still remains one of the main challenges in translational investigation. Moreover, the impact of age-associated disorders has increased, which underlines the urgent need to find a feasible model that could help in the development of successful therapies. In this sense, the Octodon degus has been indicated as a 'natural' model in many biomedical areas, especially in ageing. This rodent shows complex social interactions and high sensitiveness to early-stressful events, which have been used to investigate neurodevelopmental processes. Interestingly, a high genetic similarity with some key proteins implicated in human diseases, such as apolipoprotein-E, β-amyloid or insulin, has been demonstrated. On the other hand, the fact that this animal is diurnal has provided important contribution in the field of circadian biology. Concerning age-related diseases, this rodent could be a good model of multimorbidity since it naturally develops cognitive decline, neurodegenerative histopathological hallmarks, visual degeneration, type II diabetes, endocrinological and metabolic dysfunctions, neoplasias and kidneys alterations. In this review we have collected and summarized the studies performed on the Octodon degus through the years that support its use as a model for biomedical research, with a special focus on ageing.
Collapse
|
10
|
Baradaran R, Khoshdel‐Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Sadr‐Nabavi A, Peyvandi Karizbodagh M, Kheradmand H, Haghir H. Developmental regulation and lateralisation of the α7 and α4 subunits of nicotinic acetylcholine receptors in developing rat hippocampus. Int J Dev Neurosci 2020; 80:303-318. [DOI: 10.1002/jdn.10026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Raheleh Baradaran
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hoda Khoshdel‐Sarkarizi
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG) Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Javad Hami
- Department of Anatomical Sciences School of Medicine Birjand University of Medical Sciences Birjand Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Ariane Sadr‐Nabavi
- Department of Medical Genetics School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetic Research Center (MGRC) School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hamed Kheradmand
- Hazrat Rasoul Hospital Tehran University of Medical Sciences Tehran Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetic Research Center (MGRC) School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
11
|
Nagano A. Development of a control task for clarifying the neural mechanisms underlying tool-use behavior in rats ( Rattus norvegicus). MethodsX 2019; 6:2845-2854. [PMID: 31871918 PMCID: PMC6911953 DOI: 10.1016/j.mex.2019.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 11/25/2022] Open
Abstract
Hook-choice training without tool-use-specific factors can be performed as a control task. Prior tool-use training improved rats’ performance in experimental tests. Control task for rodents allows investigation of the neural mechanisms of tool-use.
Many studies on non-human animals have attempted to investigate the neural mechanisms underlying tool-use behavior. However, previous studies showed considerable non-tool-use-specific differences between tool-use and control tasks. The purpose of the present study was to develop a control training task for studies that investigate the neural mechanisms behind tool-use in rodents. Eight rats were subjected to control tasks which excluded tool-use-specific factors and consisted of training for hook-pulling and hook-choice tasks, as well as tool-choice tests which included tool-use specific factors and were similar to those in a previous study on rats. With the exception of one rat, the results of the hook-choice training showed that the previous study and the present study had similar difficulty levels. In the tool-choice tests of the present study, rats did not choose the functional tools over the non-functional tools when there was no contradiction between their appearance and functionality, which contrasted with the previous study on which this study was based on. These results suggest that the training task that excludes tool-use-specific factors can be appropriately utilized as a control task for studies investigating the neural mechanisms behind tool-use in animals and, potentially, in humans. Hook-choice training without tool-use-specific factors can be performed as a control task. Prior tool-use training improved rats’ performance in experimental tests. Control task for rodents allows investigation of the neural mechanisms of tool-use.
Collapse
Affiliation(s)
- Akane Nagano
- Organization for Research Initiatives and Development, Faculty of Psychology, Doshisha University, Japan
| |
Collapse
|
12
|
Nagano A. Rats' (Rattus norvegicus) tool manipulation ability exceeds simple patterned behavior. PLoS One 2019; 14:e0226569. [PMID: 31841554 PMCID: PMC6913977 DOI: 10.1371/journal.pone.0226569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022] Open
Abstract
Many studies have attempted to shed light on the ability of non-human animals to understand physical causality by investigating their tool-use behavior. This study aimed to develop a tool-manipulation task for rodents in which the subjects could not manipulate the tool in the direction of the reward by simple patterned behavior. Eight rats had to use a rake-shaped tool to obtain a food reward placed beyond their reach. During the training, the rats never moved the rakes laterally to obtain the reward. However, in the positional discrimination test, the rake was placed at the center of the experimental apparatus, and the reward was positioned on either the left or right side of the rake. Interestingly, this test indicated that some rats were able to manipulate the rake toward the reward without relying on a patterned behavior acquired during the training. These results suggested that rats have the primitive ability to understand causal relationships in the physical environment. The findings indicate that rats can potentially serve as an animal model to investigate the mechanisms of evolution and development of the understanding of physical causality in humans.
Collapse
Affiliation(s)
- Akane Nagano
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan
- Faculty of Psychology, Doshisha University, Kyotanabe, Japan
- * E-mail:
| |
Collapse
|
13
|
Training memory without aversion: Appetitive hole-board spatial learning increases adult hippocampal neurogenesis. Neurobiol Learn Mem 2018; 151:35-42. [DOI: 10.1016/j.nlm.2018.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 11/19/2022]
|
14
|
Rivera DS, Lindsay CB, Codocedo JF, Carreño LE, Cabrera D, Arrese MA, Vio CP, Bozinovic F, Inestrosa NC. Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus. Mol Neurobiol 2018; 55:9169-9187. [DOI: 10.1007/s12035-018-0969-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022]
|
15
|
Tool manipulation by rats (Rattus norvegicus) according to the position of food. Sci Rep 2017; 7:5960. [PMID: 28729626 PMCID: PMC5519611 DOI: 10.1038/s41598-017-06308-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/12/2017] [Indexed: 12/03/2022] Open
Abstract
Tool-use behaviour has been observed in nonhuman animals in the wild and in experimental settings. In the present study, we investigated whether rats (Rattus norvegicus) could manipulate a tool according to the position of food to obtain the food in an experimental setting. Eight rats were trained to use a rake-shaped tool to obtain food beyond their reach using a step-by-step protocol in the initial training period. Following training, the rake was placed at the centre of the experimental apparatus, and food was placed on either the left or right side of the rake. Rats learned to manipulate the rake to obtain food in situations in which they could not obtain the food just by pulling the rake perpendicularly to themselves. Our findings thus indicate that the rat is a potential animal model to investigate the behavioural and neural mechanisms of tool-use behaviour.
Collapse
|
16
|
Voluntary Running Exercise-Mediated Enhanced Neurogenesis Does Not Obliterate Retrograde Spatial Memory. J Neurosci 2017; 36:8112-22. [PMID: 27488632 DOI: 10.1523/jneurosci.0766-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Running exercise (RE) improves cognition, formation of anterograde memories, and mood, alongside enhancing hippocampal neurogenesis. A previous investigation in a mouse model showed that RE-induced increased neurogenesis erases retrograde memory (Akers et al., 2014). However, it is unknown whether RE-induced forgetting is common to all species. We ascertained whether voluntary RE-induced enhanced neurogenesis interferes with the recall of spatial memory in rats. Young rats assigned to either sedentary (SED) or running exercise (RE) groups were first subjected to eight learning sessions in a water maze. A probe test (PT) conducted 24 h after the final training session confirmed that animals in either group had a similar ability for the recall of short-term memory. Following this, rats in the RE group were housed in larger cages fitted with running wheels, whereas rats in the SED group remained in standard cages. Animals in the RE group ran an average of 78 km in 4 weeks. A second PT performed 4 weeks after the first PT revealed comparable ability for memory recall between animals in the RE and SED groups, which was evidenced through multiple measures of memory retrieval function. The RE group displayed a 1.5- to 2.1-fold higher hippocampal neurogenesis than SED rats. Additionally, both moderate and brisk RE did not interfere with the recall of memory, although increasing amounts of RE proportionally enhanced neurogenesis. In conclusion, RE does not impair memory recall ability in a rat model despite substantially increasing neurogenesis. SIGNIFICANCE STATEMENT Running exercise (RE) improves new memory formation along with an increased neurogenesis in the hippocampus. In view of a recent study showing that RE-mediated increased hippocampal neurogenesis promotes forgetfulness in a mouse model, we ascertained whether a similar adverse phenomenon exists in a rat model. Memory recall ability examined 4 weeks after learning confirmed that animals that had run a mean of 78 km and displayed a 1.5- to 2.1-fold increase in hippocampal neurogenesis demonstrated similar proficiency for memory recall as animals that had remained sedentary. Furthermore, both moderate and brisk RE did not interfere with memory recall, although increasing amounts of RE proportionally enhanced neurogenesis, implying that RE has no adverse effects on memory recall.
Collapse
|
17
|
Bertapelle C, Polese G, Di Cosmo A. Enriched Environment Increases PCNA and PARP1 Levels in Octopus vulgaris Central Nervous System: First Evidence of Adult Neurogenesis in Lophotrochozoa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:347-359. [PMID: 28251828 DOI: 10.1002/jez.b.22735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/09/2022]
Abstract
Organisms showing a complex and centralized nervous system, such as teleosts, amphibians, reptiles, birds and mammals, and among invertebrates, crustaceans and insects, can adjust their behavior according to the environmental challenges. Proliferation, differentiation, migration, and axonal and dendritic development of newborn neurons take place in brain areas where structural plasticity, involved in learning, memory, and sensory stimuli integration, occurs. Octopus vulgaris has a complex and centralized nervous system, located between the eyes, with a hierarchical organization. It is considered the most "intelligent" invertebrate for its advanced cognitive capabilities, as learning and memory, and its sophisticated behaviors. The experimental data obtained by immunohistochemistry and western blot assay using proliferating cell nuclear antigen and poli (ADP-ribose) polymerase 1 as marker of cell proliferation and synaptogenesis, respectively, reviled cell proliferation in areas of brain involved in learning, memory, and sensory stimuli integration. Furthermore, we showed how enriched environmental conditions affect adult neurogenesis.
Collapse
Affiliation(s)
- Carla Bertapelle
- Department of Biology, University of Napoli Federico II, Naples, NA, Italy
| | - Gianluca Polese
- Department of Biology, University of Napoli Federico II, Naples, NA, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Napoli Federico II, Naples, NA, Italy
| |
Collapse
|
18
|
Zhou Z, Liu T, Sun X, Mu X, Zhu G, Xiao T, Zhao M, Zhao C. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy. Behav Brain Res 2017; 322:83-91. [DOI: 10.1016/j.bbr.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 12/16/2022]
|
19
|
Rivera DS, Lindsay C, Codocedo JF, Morel I, Pinto C, Cisternas P, Bozinovic F, Inestrosa N. Andrographolide recovers cognitive impairment in a natural model of Alzheimer's disease (Octodon degus). Neurobiol Aging 2016; 46:204-20. [DOI: 10.1016/j.neurobiolaging.2016.06.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/05/2016] [Accepted: 06/25/2016] [Indexed: 12/22/2022]
|
20
|
Tool-use by rats (Rattus norvegicus): tool-choice based on tool features. Anim Cogn 2016; 20:199-213. [PMID: 27679521 DOI: 10.1007/s10071-016-1039-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
Abstract
In the present study, we investigated whether rats (Rattus norvegicus) could be trained to use tools in an experimental setting. In Experiment 1, we investigated whether rats became able to choose appropriate hook-shaped tools to obtain food based on the spatial arrangements of the tool and food, similar to tests conducted in non-human primates and birds. With training, the rats were able to choose the appropriate hooks. In Experiments 2 and 3, we conducted transfer tests with novel tools. The rats had to choose between a functional and non-functional rake-shaped tool in these experiments. In Experiment 2, the tools differed from those of Experiment 1 in terms of shape, color, and texture. In Experiment 3, there was a contradiction between the appearance and the functionality of these tools. The rats could obtain the food with a functional rake with a transparent blade but could not obtain food with a non-functional rake with an opaque soft blade. All rats chose the functional over the non-functional rakes in Experiment 2, but none of the rats chose the functional rake in Experiment 3. Thus, the rats were able to choose the functional rakes only when there was no contradiction between the appearance and functionality of the tools. These results suggest that rats understand the spatial and physical relationships between the tool, food, and self when there was no such contradiction.
Collapse
|
21
|
Transcranial magnetic stimulation and aging: Effects on spatial learning and memory after sleep deprivation in Octodon degus. Neurobiol Learn Mem 2015; 125:274-81. [DOI: 10.1016/j.nlm.2015.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
|
22
|
Amrein I. Adult hippocampal neurogenesis in natural populations of mammals. Cold Spring Harb Perspect Biol 2015; 7:7/5/a021295. [PMID: 25934014 DOI: 10.1101/cshperspect.a021295] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection.
Collapse
Affiliation(s)
- Irmgard Amrein
- Institute of Anatomy, University of Zürich-Irchel, CH-8057 Zürich, Switzerland
| |
Collapse
|
23
|
Memantine prevents reference and working memory impairment caused by sleep deprivation in both young and aged Octodon degus. Neuropharmacology 2014; 85:206-14. [PMID: 24878242 DOI: 10.1016/j.neuropharm.2014.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
Abstract
Memory loss is one of the key features of cognitive impairment in either aging, Mild Cognitive Impairment (MCI) or dementia. Pharmacological treatments for memory loss are today focused on addressing symptomatology. One of these approved compounds is memantine, a partial NMDA receptor antagonist that has proved its beneficial effects in cognition. The Octodon degus (O. degus) has been recently proposed as a potential model relevant for neurodegenerative diseases. However, there are no previous studies investigating the effect of pharmacological treatments for age-related cognitive impairment in this rodent. In this work we aimed to evaluate the effect of memantine on sleep deprivation (SD)-induced memory impairment in young and old O. degus. Young and old animals were trained in different behavioral paradigms validated for memory evaluation, and randomly assigned to a control (CTL, n=14) or an SD (n=14) condition, and treated with vehicle or memantine (10-mg/Kg i.p.) before the SD started. We demonstrate that SD impairs memory in both young and old animals, although the effect in the old group was significantly more severe (P<0.05). Memantine pretreatment was able to prevent the cognitive impairment caused by SD in both age groups, while it had no negative effect on CTL animals. The positive effect of memantine in counteracting the negative effect of SD on the retrieval process even in the aged O. degus further supports the translational potential of both the challenge and the species, and will enable a better understanding of the behavioral features of memantine effects, especially related with reference and working memories.
Collapse
|
24
|
Hami J, Kheradmand H, Haghir H. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study. Cell Mol Neurobiol 2014; 34:215-26. [PMID: 24287499 PMCID: PMC11488963 DOI: 10.1007/s10571-013-0005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Hami J, Kheradmand H, Haghir H. Sex differences and laterality of insulin receptor distribution in developing rat hippocampus: an immunohistochemical study. J Mol Neurosci 2014; 54:100-8. [PMID: 24573599 DOI: 10.1007/s12031-014-0255-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
Abstract
This study aimed to compare the regional distribution of insulin receptor in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14) between male/female and right/left hippocampi. We found that the number of insulin receptor (InsR)-immunoreactive-positive (InsR+) cells in CA1 continued to increase until P7 and remained unchanged thereafter. A marked increase in distribution of InsR+ cells in CA3 from P0 to P14 was observed, although there was a significant decline in the number of InsR+ cells in dentate gyrus (DG) at the same time. No differences between the right/left and male/female hippocampi were detected at P0 (P > 0.05). Seven-day-old female rats showed a higher number of labeled cells in the left than in the right hippocampus. Moreover, the differences between the number of InsR+ cells in area CA1 and CA3 were statistically significant between males and females (P < 0.05). At P14, the number of InsR+ cells was significantly higher in CA1 and DG of males, especially in the right one (P < 0.05). These results indicate the existence of a differential distribution pattern of InsR between the left/right and male/female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left/right asymmetry in the hippocampus.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | | |
Collapse
|