1
|
Hawkins NA, DeKeyser JM, Kearney JA, George AL. Novel mouse model of alternating hemiplegia of childhood exhibits prominent motor and seizure phenotypes. Neurobiol Dis 2024; 203:106751. [PMID: 39603281 PMCID: PMC11808630 DOI: 10.1016/j.nbd.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pathogenic variants in ATP1A3 encoding the neuronal Na/K-ATPase cause a spectrum of neurodevelopmental disorders including alternating hemiplegia of childhood (AHC). Three recurrent ATP1A3 variants are associated with approximately half of known AHC cases and mouse models of two of these variants (p.D801N, p.E815K) replicated key features of the human disorder, which include paroxysmal hemiplegia, dystonia and seizures. Epilepsy occurs in 40-50 % of individuals affected with AHC, but detailed investigations of seizure phenotypes were limited in the previously reported mouse models. Using gene editing, we generated a novel AHC mouse expressing the third most recurrent ATP1A3 variant (p.G947R) to model neurological phenotypes of the disorder. Heterozygous Atp1a3-G947R (Atp1a3G947R) mice on a pure C57BL/6J background were born at a significantly lower frequency than wildtype (WT) littermates, but in vitro fertilization or outcrossing to a different strain (C3HeB/FeJ) generated offspring at near-Mendelian genotype ratios, suggesting a defect in reproductive fitness rather than embryonic lethality. Heterozygous mutant mice were noticeably smaller and exhibited premature lethality, hyperactivity, anxiety-like behaviors, severe motor dysfunction including low grip strength, impaired coordination with abnormal gait and balance, reduced REM sleep, and cooling-induced hemiplegia and dystonia. We also observed a prominent seizure phenotype with lower thresholds to chemically (flurothyl, kainic acid) and electrically induced seizures, post-handling seizures, sudden death following seizures, and abnormal EEG activity. Together, our findings support face validity of a novel AHC mouse model with quantifiable traits including co-morbid epilepsy that will be useful as an in vivo platform for investigating pathophysiology and testing new therapeutic strategies for this rare neurodevelopmental disorder.
Collapse
Affiliation(s)
- Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Alexander JM, Vazquez-Ramirez L, Lin C, Antonoudiou P, Maguire J, Wagner F, Jacob MH. Inhibition of GSK3α,β rescues cognitive phenotypes in a preclinical mouse model of CTNNB1 syndrome. EMBO Mol Med 2024; 16:2109-2131. [PMID: 39103699 PMCID: PMC11393422 DOI: 10.1038/s44321-024-00110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
CTNNB1 syndrome is a rare monogenetic disorder caused by CTNNB1 de novo pathogenic heterozygous loss-of-function variants that result in cognitive and motor disabilities. Treatment is currently lacking; our study addresses this critical need. CTNNB1 encodes β-catenin which is essential for normal brain function via its dual roles in cadherin-based synaptic adhesion complexes and canonical Wnt signal transduction. We have generated a Ctnnb1 germline heterozygous mouse line that displays cognitive and motor deficits, resembling key features of CTNNB1 syndrome in humans. Compared with wild-type littermates, Ctnnb1 heterozygous mice also exhibit decreases in brain β-catenin, β-catenin association with N-cadherin, Wnt target gene expression, and Na/K ATPases, key regulators of changes in ion gradients during high activity. Consistently, hippocampal neuron functional properties and excitability are altered. Most important, we identify a highly selective inhibitor of glycogen synthase kinase (GSK)3α,β that significantly normalizes the phenotypes to closely meet wild-type littermate levels. Our data provide new insights into brain molecular and functional changes, and the first evidence for an efficacious treatment with therapeutic potential for individuals with CTNNB1 syndrome.
Collapse
Affiliation(s)
- Jonathan M Alexander
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Leeanne Vazquez-Ramirez
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Crystal Lin
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Pantelis Antonoudiou
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Jamie Maguire
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Florence Wagner
- The Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA, 02142, USA
- Photys Therapeutics, Waltham, MA, USA
| | - Michele H Jacob
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA.
| |
Collapse
|
3
|
Liu YB, Arystarkhova E, Sacino AN, Szabari MV, Lutz CM, Terrey M, Morsci NS, Jakobs TC, Lykke-Hartmann K, Brashear A, Napoli E, Sweadner KJ. Phenotype Distinctions in Mice Deficient in the Neuron-Specific α3 Subunit of Na,K-ATPase: Atp1a3 tm1Ling/+ and Atp1a3 +/D801Y. eNeuro 2024; 11:ENEURO.0101-24.2024. [PMID: 39111836 PMCID: PMC11360364 DOI: 10.1523/eneuro.0101-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024] Open
Abstract
ATP1A3 is a Na,K-ATPase gene expressed specifically in neurons in the brain. Human mutations are dominant and produce an unusually wide spectrum of neurological phenotypes, most notably rapid-onset dystonia parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). Here we compared heterozygotes of two mouse lines, a line with little or no expression (Atp1a3tm1Ling/+) and a knock-in expressing p.Asp801Tyr (D801Y, Atp1a3 +/D801Y). Both mouse lines had normal lifespans, but Atp1a3 +/D801Y had mild perinatal mortality contrasting with D801N mice (Atp1a3 +/D801N), which had high mortality. The phenotypes of Atp1a3tm1Ling/+ and Atp1a3 +/D801Y were different, and testing of each strain was tailored to its symptom range. Atp1a3tm1Ling/+ mice displayed little at baseline, but repeated ethanol intoxication produced hyperkinetic motor abnormalities not seen in littermate controls. Atp1a3 +/D801Y mice displayed robust phenotypes: hyperactivity, diminished posture consistent with hypotonia, and deficiencies in beam walk and wire hang tests. Symptoms also included qualitative motor abnormalities that are not well quantified by conventional tests. Paradoxically, Atp1a3 +/D801Y showed sustained better performance than wild type on the accelerating rotarod. Atp1a3 +/D801Y mice were overactive in forced swimming and afterward had intense shivering, transient dystonic postures, and delayed recovery. Remarkably, Atp1a3 +/D801Y mice were refractory to ketamine anesthesia, which elicited hyperactivity and dyskinesia even at higher dose. Neither mouse line exhibited fixed dystonia (typical of RDP patients), spontaneous paroxysmal weakness (typical of AHC patients), or seizures but had consistent, measurable neurological abnormalities. A gradient of variation supports the importance of studying multiple Atp1a3 mutations in animal models to understand the roles of this gene in human disease.
Collapse
Affiliation(s)
- Yi Bessie Liu
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| | - Amanda N Sacino
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Margit V Szabari
- Department Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | | | | | - Tatjana C Jakobs
- Harvard Medical School, Boston, Massachusetts 02115
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114
| | | | - Allison Brashear
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Elenora Napoli
- Department of Neurology, University of California Davis School of Medicine, Sacramento, California 95817
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
4
|
Ruan DD, Zou J, Liao LS, Ji MD, Wang RL, Zhang JH, Zhang L, Gao MZ, Chen Q, Yu HP, Wei W, Li YF, Li H, Lin F, Luo JW, Lin XF. In vitro study of ATP1A3 p.Ala275Pro mutant causing alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism. Front Neurosci 2024; 18:1415576. [PMID: 39145297 PMCID: PMC11322359 DOI: 10.3389/fnins.2024.1415576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction We previously reported that ATP1A3 c.823G>C (p.Ala275Pro) mutant causes varying phenotypes of alternative hemiplegia of childhood and rapid-onset dystonia-parkinsonism in the same family. This study aims to investigate the function of ATP1A3 c.823G>C (p.Ala275Pro) mutant at the cellular and zebrafish models. Methods ATP1A3 wild-type and mutant Hela cell lines were constructed, and ATP1A3 mRNA expression, ATP1A3 protein expression and localization, and Na+-K+-ATPase activity in each group of cells were detected. Additionally, we also constructed zebrafish models with ATP1A3 wild-type overexpression (WT) and p.Ala275Pro mutant overexpression (MUT). Subsequently, we detected the mRNA expression of dopamine signaling pathway-associated genes, Parkinson's disease-associated genes, and apoptosisassociated genes in each group of zebrafish, and observed the growth, development, and movement behavior of zebrafish. Results Cells carrying the p.Ala275Pro mutation exhibited lower levels of ATP1A3 mRNA, reduced ATP1A3 protein expression, and decreased Na+-K+-ATPase activity compared to wild-type cells. Immunofluorescence analysis revealed that ATP1A3 was primarily localized in the cytoplasm, but there was no significant difference in ATP1A3 protein localization before and after the mutation. In the zebrafish model, both WT and MUT groups showed lower brain and body length, dopamine neuron fluorescence intensity, escape ability, swimming distance, and average swimming speed compared to the control group. Moreover, overexpression of both wild-type and mutant ATP1A3 led to abnormal mRNA expression of genes associated with the dopamine signaling pathway and Parkinson's disease in zebrafish, and significantly upregulated transcription levels of bad and caspase-3 in the apoptosis signaling pathway, while reducing the transcriptional level of bcl-2 and the bcl-2/bax ratio. Conclusion This study reveals that the p.Ala275Pro mutant decreases ATP1A3 protein expression and Na+/K+-ATPase activity. Abnormal expression of either wild-type or mutant ATP1A3 genes impairs growth, development, and movement behavior in zebrafish.
Collapse
Affiliation(s)
- Dan-dan Ruan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jing Zou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li-sheng Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Ming-dong Ji
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ruo-li Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-hui Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Mei-zhu Gao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-ping Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wen Wei
- Department of Rehabilitation Medicine, Ganzhou Municipal Hospital, Ganzhou, China
| | - Yun-fei Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, China
| | - Hong Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Fan Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-wei Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xin-fu Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Pediatrics Department, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
5
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
6
|
Nott E, Behl KE, Brambilla I, Green TE, Lucente M, Vavassori R, Watson A, Dalla Bernardina B, Hildebrand MS. Rare. The importance of research, analysis, reporting and education in 'solving' the genetic epilepsies: A perspective from the European patient advocacy group for EpiCARE. Eur J Med Genet 2023; 66:104680. [PMID: 36623768 DOI: 10.1016/j.ejmg.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/14/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023]
Affiliation(s)
- E Nott
- European Patient Advocacy Group (ePAG) EpiCARE, France; Hope for Hypothalamic Hamartomas and Hope for Hypothalamic Hamartomas-UK, UK.
| | - K E Behl
- Alternating Hemiplegia of Childhood UK (AHCUK) and Alternating Hemiplegia of Childhood Federation of Europe (AHCFE), UK
| | - I Brambilla
- European Patient Advocacy Group (ePAG) EpiCARE, France; Dravet Italia Onlus; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - T E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| | - M Lucente
- European Patient Advocacy Group (ePAG) EpiCARE, France; Associazione Italiana GLUT1 Onlus, Italy
| | - R Vavassori
- European Patient Advocacy Group (ePAG) EpiCARE, France; International Alternating Hemiplegia of Childhood Research Consortium (IAHCRC), USA; Alternating Hemiplegia of Childhood 18+ (AHC18+ e.V.) Association, Germany
| | - A Watson
- European Patient Advocacy Group (ePAG) EpiCARE, France; Ring20 Research and Support UK, UK
| | - B Dalla Bernardina
- Dravet Italia Onlus; Research Center for Pediatric Epilepsies Verona, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Italy
| | - M S Hildebrand
- Hope for Hypothalamic Hamartomas and Hope for Hypothalamic Hamartomas-UK, UK; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| |
Collapse
|
7
|
Pavone P, Pappalardo XG, Ruggieri M, Falsaperla R, Parano E. Alternating hemiplegia of childhood: a distinct clinical entity and ATP1A3-related disorders: A narrative review. Medicine (Baltimore) 2022; 101:e29413. [PMID: 35945798 PMCID: PMC9351909 DOI: 10.1097/md.0000000000029413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/05/2023] Open
Abstract
Alternating Hemiplegia of Childhood (AHC) is a rare disorder with onset in the first 18 months of life characterized by stereotyped paroxysmal manifestations of tonic and dystonic attacks, nystagmus with other oculomotor abnormalities, respiratory and autonomic dysfunctions. AHC is often associated with epileptic seizures and developmental delay. Hemiplegic paroxysm is the most remarkable symptom, although AHC includes a large series of clinical manifestations that interfere with the disease course. No cure is available and the treatment involves many specialists and therapies. Flunarizine is the most commonly used drug for reducing the frequency and intensity of paroxysmal events. Mutations in ATP1A2, particularly in ATP1A3, are the main genes responsible for AHC. Some disorders caused by ATP1A3 variants have been defined as ATP1A3-related disorders, including rapid-onset dystonia-parkinsonism, cerebellar ataxia, pes cavus, optic atrophy, sensorineural hearing loss, early infant epileptic encephalopathy, child rapid-onset ataxia, and relapsing encephalopathy with cerebellar ataxia. Recently, the term ATP1A3 syndrome has been identified as a fever-induced paroxysmal weakness and encephalopathy, slowly progressive cerebellar ataxia, childhood-onset schizophrenia/autistic spectrum disorder, paroxysmal dyskinesia, cerebral palsy/spastic paraparesis, dystonia, dysmorphism, encephalopathy, MRI abnormalities without hemiplegia, and congenital hydrocephalus. Herewith, we discussed about historical annotations of AHC, symptoms, signs and associated morbidities, diagnosis and differential diagnosis, treatment, prognosis, and genetics. We also reported on the ATP1A3-related disorders and ATP1A3 syndrome, as 2 recently established and expanded genetic clinical entities.
Collapse
Affiliation(s)
- Piero Pavone
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University Hospital AOU “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Catania, Italy, AOU “Policlinico PO San Marco, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU “Policlinico”, PO “San Marco”, University of Catania, Catania, Italy
| | - Enrico Parano
- Unit of Catania, National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Catania, Italy
| |
Collapse
|
8
|
Start Me Up: How Can Surrounding Gangliosides Affect Sodium-Potassium ATPase Activity and Steer towards Pathological Ion Imbalance in Neurons? Biomedicines 2022; 10:biomedicines10071518. [PMID: 35884824 PMCID: PMC9313118 DOI: 10.3390/biomedicines10071518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Gangliosides, amphiphilic glycosphingolipids, tend to associate laterally with other membrane constituents and undergo extensive interactions with membrane proteins in cis or trans configurations. Studies of human diseases resulting from mutations in the ganglioside biosynthesis pathway and research on transgenic mice with the same mutations implicate gangliosides in the pathogenesis of epilepsy. Gangliosides are reported to affect the activity of the Na+/K+-ATPase, the ubiquitously expressed plasma membrane pump responsible for the stabilization of the resting membrane potential by hyperpolarization, firing up the action potential and ion homeostasis. Impaired Na+/K+-ATPase activity has also been hypothesized to cause seizures by several mechanisms. In this review we present different epileptic phenotypes that are caused by impaired activity of Na+/K+-ATPase or changed membrane ganglioside composition. We further discuss how gangliosides may influence Na+/K+-ATPase activity by acting as lipid sorting machinery providing the optimal stage for Na+/K+-ATPase function. By establishing a distinct lipid environment, together with other membrane lipids, gangliosides possibly modulate Na+/K+-ATPase activity and aid in “starting up” and “turning off” this vital pump. Therefore, structural changes of neuronal membranes caused by altered ganglioside composition can be a contributing factor leading to aberrant Na+/K+-ATPase activity and ion imbalance priming neurons for pathological firing.
Collapse
|
9
|
Ng HWY, Ogbeta JA, Clapcote SJ. Genetically altered animal models for ATP1A3-related disorders. Dis Model Mech 2021; 14:272403. [PMID: 34612482 PMCID: PMC8503543 DOI: 10.1242/dmm.048938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the past 20 years, particularly with the advent of exome sequencing technologies, autosomal dominant and de novo mutations in the gene encoding the neurone-specific α3 subunit of the Na+,K+-ATPase (NKA α3) pump, ATP1A3, have been identified as the cause of a phenotypic continuum of rare neurological disorders. These allelic disorders of ATP1A3 include (in approximate order of severity/disability and onset in childhood development): polymicrogyria; alternating hemiplegia of childhood; cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss syndrome; relapsing encephalopathy with cerebellar ataxia; and rapid-onset dystonia-parkinsonism. Some patients present intermediate, atypical or combined phenotypes. As these disorders are currently difficult to treat, there is an unmet need for more effective therapies. The molecular mechanisms through which mutations in ATP1A3 result in a broad range of neurological symptoms are poorly understood. However, in vivo comparative studies using genetically altered model organisms can provide insight into the biological consequences of the disease-causing mutations in NKA α3. Herein, we review the existing mouse, zebrafish, Drosophila and Caenorhabditis elegans models used to study ATP1A3-related disorders, and discuss their potential contribution towards the understanding of disease mechanisms and development of novel therapeutics.
Collapse
Affiliation(s)
- Hannah W Y Ng
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jennifer A Ogbeta
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.,European Network for Research on Alternating Hemiplegia (ENRAH), 1120 Vienna, Austria
| |
Collapse
|
10
|
Moya-Mendez ME, Ogbonna C, Ezekian JE, Rosamilia MB, Prange L, de la Uz C, Kim JJ, Howard T, Garcia J, Nussbaum R, Truty R, Callis TE, Funk E, Heyes M, Dear GDL, Carboni MP, Idriss SF, Mikati MA, Landstrom AP. ATP1A3-Encoded Sodium-Potassium ATPase Subunit Alpha 3 D801N Variant Is Associated With Shortened QT Interval and Predisposition to Ventricular Fibrillation Preceded by Bradycardia. J Am Heart Assoc 2021; 10:e019887. [PMID: 34459253 PMCID: PMC8649289 DOI: 10.1161/jaha.120.019887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Pathogenic variation in the ATP1A3‐encoded sodium‐potassium ATPase, ATP1A3, is responsible for alternating hemiplegia of childhood (AHC). Although these patients experience a high rate of sudden unexpected death in epilepsy, the pathophysiologic basis for this risk remains unknown. The objective was to determine the role of ATP1A3 genetic variants on cardiac outcomes as determined by QT and corrected QT (QTc) measurements. Methods and Results We analyzed 12‐lead ECG recordings from 62 patients (male subjects=31, female subjects=31) referred for AHC evaluation. Patients were grouped according to AHC presentation (typical versus atypical), ATP1A3 variant status (positive versus negative), and ATP1A3 variant (D801N versus other variants). Manual remeasurements of QT intervals and QTc calculations were performed by 2 pediatric electrophysiologists. QTc measurements were significantly shorter in patients with positive ATP1A3 variant status (P<0.001) than in patients with genotype‐negative status, and significantly shorter in patients with the ATP1A3‐D801N variant than patients with other variants (P<0.001). The mean QTc for ATP1A3‐D801N was 344.9 milliseconds, which varied little with age, and remained <370 milliseconds throughout adulthood. ATP1A3 genotype status was significantly associated with shortened QTc by multivariant regression analysis. Two patients with the ATP1A3‐D801N variant experienced ventricular fibrillation, resulting in death in 1 patient. Rare variants in ATP1A3 were identified in a large cohort of genotype‐negative patients referred for arrhythmia and sudden unexplained death. Conclusions Patients with AHC who carry the ATP1A3‐D801N variant have significantly shorter QTc intervals and an increased likelihood of experiencing bradycardia associated with life‐threatening arrhythmias. ATP1A3 variants may represent an independent cause of sudden unexplained death. Patients with AHC should be evaluated to identify risk of sudden death.
Collapse
Affiliation(s)
- Mary E Moya-Mendez
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Chiagoziem Ogbonna
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Jordan E Ezekian
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Michael B Rosamilia
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Lyndsey Prange
- Department of Pediatrics Division of Neurology Duke University School of Medicine Durham NC
| | - Caridad de la Uz
- Department of Pediatrics Division of Cardiology Johns Hopkins School of Medicine Baltimore MD
| | - Jeffrey J Kim
- Department of Pediatrics Section of Cardiology Baylor College of Medicine Houston TX
| | - Taylor Howard
- Department of Pediatrics Section of Cardiology Baylor College of Medicine Houston TX
| | | | | | | | | | - Emily Funk
- Duke University School of NursingAssistant Clinical ProfessorDuke University Durham NC
| | - Matthew Heyes
- Duke University School of NursingAssistant Clinical ProfessorDuke University Durham NC
| | - Guy de Lisle Dear
- Department of Anesthesia Duke University School of Medicine Durham NC
| | - Michael P Carboni
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Salim F Idriss
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Mohamad A Mikati
- Department of Pediatrics Division of Neurology Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
11
|
Stępień A, Maślanko K, Krawczyk M, Rekowski W, Kostera-Pruszczyk A. Gross Motor Function Disorders in Patients with Alternating Hemiplegia of Childhood. JOURNAL OF MOTHER AND CHILD 2020; 24:24-32. [PMID: 33074178 PMCID: PMC8518102 DOI: 10.34763/jmotherandchild.2020241.1935.000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Alternating hemiplegia of Childhood (AHC) is a rare disease manifested by transient episodes of hemiplegia and other neurological disorders. Delayed motor development has been reported in patients with AHC, but detailed features of the motor impairment have not been described so far. Aim The aim of the study was to evaluate gross motor function between attacks in a group of Polish patients with AHC. Materials and methods The interictal gross motor function was assessed using the Gross Motor Function AHC scale, which consisted of 41 motor tasks. The study group consisted of 10 patients with AHC older than 2 years of age. The control group consisted of 30 age- and gender-matched subjects. The results achieved in each of the 41 tasks by the study subjects were compared to the results obtained with controls using the non-parametric Mann-Whitney U-test. In tasks 38-41, mean times were compared between the study subjects and controls. Results The study revealed gross motor function impairment in patients with AHC. The greatest differences compared to controls concerned such skills as standing on toes, walking on toes, walking on heels, as well as running and hopping on one leg and on alternate legs. Significant impairment of the motor function of the upper limbs was also found. Conclusions The study confirmed motor function impairment between attacks in patients with AHC. The study findings may indicate the need to introduce individualised physiotherapy management of patients with AHC.
Collapse
Affiliation(s)
- Agnieszka Stępień
- Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Maciej Krawczyk
- Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | - Witold Rekowski
- Psychosocial Foundation of Health and Rehabilitation, Department of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | |
Collapse
|
12
|
Jasien JM, Bonner M, D'alli R, Prange L, Mclean M, Sachdev M, Uchitel J, Ricano J, Smith B, Mikati MA. Cognitive, adaptive, and behavioral profiles and management of alternating hemiplegia of childhood. Dev Med Child Neurol 2019; 61:547-554. [PMID: 30362107 DOI: 10.1111/dmcn.14077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2018] [Indexed: 11/28/2022]
Abstract
AIM To determine the neuropsychological abnormalities that occur in alternating hemiplegia of childhood (AHC) and report on our experience in managing them. METHOD Patients underwent evaluations according to our standardized AHC pathway. Data were entered into our prospective AHC database and then analyzed. RESULTS Of the cohort of 25 consecutive patients (ages 15mo-42y), eight had initial chief complaints about cognition, 14 language, five attention, and 11 behavior. As compared to population norms means, neuropsychological and behavioral assessment tools (including Child Behavior Checklist, Vineland Adaptive Behavior Scales, Peabody Picture Vocabulary, and Wechsler Intelligence Quotient tests) showed significant impairments in multiple domains: cognition, expressive and receptive language, executive function/attention, and behavior (p<0.05 in all comparisons). Evaluations generated management recommendations in all patients. Twenty had neuropsychiatric diagnoses: 10 attention-deficit/hyperactivity disorder (ADHD), seven disruptive behavior, and three anxiety disorder. Eight out of nine patients with ADHD who were prescribed medications responded to pharmacotherapy. INTERPRETATION Patients with AHC have developmental difficulties related to impairments in multiple neuropsychological domains. This supports the hypothesis that the underlying AHC pathophysiology involves diffuse neuronal dysfunction. Testing generated recommendations to help manage these difficulties. Patients with AHC also have a range of neuropsychiatric diagnoses, the most common being ADHD which responds to pharmacotherapy. WHAT THIS PAPER ADDS Patients with alternating hemiplegia of childhood (AHC) have developmental difficulties with underlying neuropsychological impairments. The findings in this study are consistent with an underlying AHC pathophysiology which involves diffuse neuronal, probably largely GABAergic, dysfunction. Patients with AHC have a range of neuropsychiatric diagnoses, the most common being attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Joan M Jasien
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Melanie Bonner
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Richard D'alli
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Lyndsey Prange
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Melissa Mclean
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | | | - Julie Uchitel
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Jennifer Ricano
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Brian Smith
- Department of Pediatrics, Division of Quantitative Medicine, Duke University Medical Center, Durham, NC, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA.,Duke Institute for Brain Sciences and Duke Department of Neurobiology, Durham, NC, USA
| |
Collapse
|
13
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
14
|
Helseth AR, Hunanyan AS, Adil S, Linabarger M, Sachdev M, Abdelnour E, Arehart E, Szabo M, Richardson J, Wetsel WC, Hochgeschwender U, Mikati MA. Novel E815K knock-in mouse model of alternating hemiplegia of childhood. Neurobiol Dis 2018; 119:100-112. [PMID: 30071271 DOI: 10.1016/j.nbd.2018.07.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/05/2018] [Accepted: 07/28/2018] [Indexed: 01/30/2023] Open
Abstract
De novo mutations causing dysfunction of the ATP1A3 gene, which encodes the α3 subunit of Na+/K+-ATPase pump expressed in neurons, result in alternating hemiplegia of childhood (AHC). AHC manifests as paroxysmal episodes of hemiplegia, dystonia, behavioral abnormalities, and seizures. The first aim of this study was to characterize a novel knock-in mouse model (Atp1a3E815K+/-, Matoub, Matb+/-) containing the E815K mutation of the Atp1a3 gene recognized as causing the most severe and second most common phenotype of AHC with increased morbidity and mortality as compared to other mutations. The second aim was to investigate the effects of flunarizine, currently the most effective drug used in AHC, to further validate our model and to help address a question with significant clinical implications that has not been addressed in prior studies. Specifically, many E815K patients have clinical decompensation and catastrophic regression after discontinuing flunarizine therapy; however, it is not known whether this is congruent with the natural course of the disease and is a result of withdrawal from an acute beneficial effect, withdrawal from a long-term protective effect or from a detrimental effect of prior flunarizine exposure. Our behavioral and neurophysiological testing demonstrated that Matb+/- mice express a phenotype that bears a strong resemblance to the E815K phenotype in AHC. In addition, these mice developed spontaneous seizures with high incidence of mortality and required fewer electrical stimulations to reach the kindled state as compared to wild-type littermates. Matb+/- mice treated acutely with flunarizine had reduction in hemiplegic attacks as compared with vehicle-treated mice. After withdrawal of flunarizine, Matb+/- mice that had received flunarizine did neither better nor worse, on behavioral tests, than those who had received vehicle. We conclude that: 1) Our mouse model containing the E815K mutation manifests clinical and neurophysiological features of the most severe form of AHC, 2) Flunarizine demonstrated acute anti-hemiplegic effects but not long-term beneficial or detrimental behavioral effects after it was stopped, and 3) The Matb+/- mouse model can be used to investigate the underlying pathophysiology of ATP1A3 dysfunction and the efficacy of potential treatments for AHC.
Collapse
Affiliation(s)
- Ashley R Helseth
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Arsen S Hunanyan
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Syed Adil
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Molly Linabarger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Monisha Sachdev
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elie Abdelnour
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eric Arehart
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Marlee Szabo
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jordan Richardson
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William C Wetsel
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ute Hochgeschwender
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mohamad A Mikati
- Department of Pediatrics, Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Kirshenbaum GS, Idris NF, Dachtler J, Roder JC, Clapcote SJ. Deficits in social behavioral tests in a mouse model of alternating hemiplegia of childhood. J Neurogenet 2017; 30:42-9. [PMID: 27276195 PMCID: PMC4917910 DOI: 10.1080/01677063.2016.1182525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Social behavioral deficits have been observed in patients diagnosed with alternating hemiplegia of childhood (AHC), rapid-onset dystonia-parkinsonism and CAPOS syndrome, in which specific missense mutations in ATP1A3, encoding the Na+, K+-ATPase α3 subunit, have been identified. To test the hypothesis that social behavioral deficits represent part of the phenotype of Na+, K+-ATPase α3 mutations, we assessed the social behavior of the Myshkin mouse model of AHC, which has an I810N mutation identical to that found in an AHC patient with co-morbid autism. Myshkin mice displayed deficits in three tests of social behavior: nest building, pup retrieval and the three-chamber social approach test. Chronic treatment with the mood stabilizer lithium enhanced nest building in wild-type but not Myshkin mice. In light of previous studies revealing a broad profile of neurobehavioral deficits in the Myshkin model – consistent with the complex clinical profile of AHC – our results suggest that Na+, K+-ATPase α3 dysfunction has a deleterious, but nonspecific, effect on social behavior. By better defining the behavioral profile of Myshkin mice, we identify additional ATP1A3-related symptoms for which the Myshkin model could be used as a tool to advance understanding of the underlying neural mechanisms and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Greer S Kirshenbaum
- a Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital , University Avenue , Toronto , Canada ;,b Institute of Medical Science, University of Toronto , Toronto , Canada
| | - Nagi F Idris
- c School of Biomedical Sciences , University of Leeds , Leeds , UK
| | - James Dachtler
- c School of Biomedical Sciences , University of Leeds , Leeds , UK
| | - John C Roder
- a Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital , University Avenue , Toronto , Canada ;,b Institute of Medical Science, University of Toronto , Toronto , Canada
| | | |
Collapse
|
16
|
Sugimoto H, Ikeda K, Kawakami K. Atp1a3-
deficient heterozygous mice show lower rank in the hierarchy and altered social behavior. GENES BRAIN AND BEHAVIOR 2017; 17:e12435. [DOI: 10.1111/gbb.12435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- H. Sugimoto
- Division of Biology, Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
| | - K. Ikeda
- Division of Biology, Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
- Department of Physiology; International University of Health and Welfare, School of Medicine; Chiba Japan
| | - K. Kawakami
- Division of Biology, Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
| |
Collapse
|
17
|
Hainque E, Caillet S, Leroy S, Flamand-Roze C, Adanyeguh I, Charbonnier-Beaupel F, Retail M, Le Toullec B, Atencio M, Rivaud-Péchoux S, Brochard V, Habarou F, Ottolenghi C, Cormier F, Méneret A, Ruiz M, Doulazmi M, Roubergue A, Corvol JC, Vidailhet M, Mochel F, Roze E. A randomized, controlled, double-blind, crossover trial of triheptanoin in alternating hemiplegia of childhood. Orphanet J Rare Dis 2017; 12:160. [PMID: 28969699 PMCID: PMC5625655 DOI: 10.1186/s13023-017-0713-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Based on the hypothesis of a brain energy deficit, we investigated the safety and efficacy of triheptanoin on paroxysmal episodes in patients with alternating hemiplegia of childhood due to ATP1A3 mutations. METHODS We conducted a randomized, double-blind, placebo-controlled crossover study of triheptanoin, at a target dose corresponding to 30% of daily calorie intake, in ten patients with alternating hemiplegia of childhood due to ATP1A3 mutations. Each treatment period consisted of a 12-week fixed-dose phase, separated by a 4-week washout period. The primary outcome was the total number of paroxysmal events. Secondary outcomes included the number of paroxysmal motor-epileptic events; a composite score taking into account the number, severity and duration of paroxysmal events; interictal neurological manifestations; the clinical global impression-improvement scale (CGI-I); and safety parameters. The paired non-parametric Wilcoxon test was used to analyze treatment effects. RESULTS In an intention-to-treat analysis, triheptanoin failed to reduce the total number of paroxysmal events (p = 0.646), including motor-epileptic events (p = 0.585), or the composite score (p = 0.059). CGI-I score did not differ between triheptanoin and placebo periods. Triheptanoin was well tolerated. CONCLUSIONS Triheptanoin does not prevent paroxysmal events in Alternating hemiplegia of childhood. We show the feasibility of a randomized placebo-controlled trial in this setting. TRIAL REGISTRATION The study has been registered with clinicaltrials.gov ( NCT002408354 ) the 03/24/2015.
Collapse
Affiliation(s)
- Elodie Hainque
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France. .,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France. .,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - Samantha Caillet
- Service de Diététique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | | | - Constance Flamand-Roze
- Centre Hospitalier Sud-Francilien, Université Paris Sud, Corbeil-Essonnes, Service de Neurologie et Unité Neurovasculaire, Corbeil-Essonnes, France.,IFPPC, centre CAMKeys, Paris, France
| | - Isaac Adanyeguh
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France
| | | | - Maryvonne Retail
- INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Benjamin Le Toullec
- INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Mariana Atencio
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France
| | - Sophie Rivaud-Péchoux
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France
| | - Vanessa Brochard
- INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Florence Habarou
- Service de Biochimie Métabolomique et protéomique, Hôpital Necker et Université Paris Descartes, AP-HP, Paris, France
| | - Chris Ottolenghi
- Service de Biochimie Métabolomique et protéomique, Hôpital Necker et Université Paris Descartes, AP-HP, Paris, France
| | - Florence Cormier
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Aurélie Méneret
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Marta Ruiz
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Paris 06, CNRS UMR8256, Institut de Biologie Paris Seine, Adaptation Biologique et vieillissement, Paris, France
| | - Anne Roubergue
- Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jean-Christophe Corvol
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marie Vidailhet
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Fanny Mochel
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Génétique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Roze
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
18
|
Isaksen TJ, Kros L, Vedovato N, Holm TH, Vitenzon A, Gadsby DC, Khodakhah K, Lykke-Hartmann K. Hypothermia-induced dystonia and abnormal cerebellar activity in a mouse model with a single disease-mutation in the sodium-potassium pump. PLoS Genet 2017; 13:e1006763. [PMID: 28472154 PMCID: PMC5436892 DOI: 10.1371/journal.pgen.1006763] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/18/2017] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Mutations in the neuron-specific α3 isoform of the Na+/K+-ATPase are found in patients suffering from Rapid onset Dystonia Parkinsonism and Alternating Hemiplegia of Childhood, two closely related movement disorders. We show that mice harboring a heterozygous hot spot disease mutation, D801Y (α3+/D801Y), suffer abrupt hypothermia-induced dystonia identified by electromyographic recordings. Single-neuron in vivo recordings in awake α3+/D801Y mice revealed irregular firing of Purkinje cells and their synaptic targets, the deep cerebellar nuclei neurons, which was further exacerbated during dystonia and evolved into abnormal high-frequency burst-like firing. Biophysically, we show that the D-to-Y mutation abolished pump-mediated Na+/K+ exchange, but allowed the pumps to bind Na+ and become phosphorylated. These findings implicate aberrant cerebellar activity in α3 isoform-related dystonia and add to the functional understanding of the scarce and severe mutations in the α3 isoform Na+/K+-ATPase. The neurological spectrum associated with mutations in the ATP1A3 gene, encoding the α3 isoform of the Na+/K+-ATPase, is complex and still poorly understood. To elucidate the disease-specific pathophysiology, we examined a mouse model harboring the mutation D801Y, which was originally found in a patient with Rapid onset Dystonia Parkinsonism, but recently, also in a patient with Alternating Hemiplegia of Childhood. We found that this model exhibited motor deficits and developed dystonia when exposed to a drop in body temperature. Cerebellar in vivo recordings in awake mice revealed irregular firing of Purkinje cells and their synaptic targets, the deep cerebellar nuclei neurons, which was further exacerbated and evolved into abnormal high-frequency burst firing during dystonia. The development of specific neurological features within the ATP1A3 mutation spectrum, such as dystonia, are thought to reflect the functional consequences of each mutation, thus to investigate the consequence of the D801Y mutations we characterized mutated D-to-Y Na+/K+-ATPases expressed in Xenopus oocytes. These in vitro studies showed that the D-to-Y mutation abolishes pump-mediated Na+/K+ exchange, but still allows the pumps to bind Na+ and become phosphorylated, trapping them in conformations that instead support proton influx.
Collapse
Affiliation(s)
- Toke Jost Isaksen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Lieke Kros
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natascia Vedovato
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, New York, United States of America
| | - Thomas Hellesøe Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Ariel Vitenzon
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David C. Gadsby
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, New York, United States of America
| | - Kamran Khodakhah
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
19
|
Taguchi YH. Principal component analysis based unsupervised feature extraction applied to publicly available gene expression profiles provides new insights into the mechanisms of action of histone deacetylase inhibitors. NEUROEPIGENETICS 2016; 8:1-18. [DOI: 10.1016/j.nepig.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Lawson SK, Gray AC, Woehrle NS. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice. Behav Brain Res 2016; 314:52-64. [DOI: 10.1016/j.bbr.2016.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 01/19/2023]
|
21
|
Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na +,K +-ATPase: Structural and functional perspectives and rescue of compromised function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1807-1828. [PMID: 27577505 DOI: 10.1016/j.bbabio.2016.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Na+,K+-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na+,K+-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na+,K+-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na+,K+-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na+ and K+ binding. In several cases the compromised function can be traced to disturbance of the Na+ specific binding site III. Recently, a secondary mutation was found to rescue the defective Na+ binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.
Collapse
Affiliation(s)
- Rikke Holm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Anja P Einholm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
22
|
Holm TH, Isaksen TJ, Glerup S, Heuck A, Bøttger P, Füchtbauer EM, Nedergaard S, Nyengaard JR, Andreasen M, Nissen P, Lykke-Hartmann K. Cognitive deficits caused by a disease-mutation in the α3 Na(+)/K(+)-ATPase isoform. Sci Rep 2016; 6:31972. [PMID: 27549929 PMCID: PMC4994072 DOI: 10.1038/srep31972] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022] Open
Abstract
The Na+/K+-ATPases maintain Na+ and K+ electrochemical gradients across the plasma membrane, a prerequisite for electrical excitability and secondary transport in neurons. Autosomal dominant mutations in the human ATP1A3 gene encoding the neuron-specific Na+/K+-ATPase α3 isoform cause different neurological diseases, including rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC) with overlapping symptoms, including hemiplegia, dystonia, ataxia, hyperactivity, epileptic seizures, and cognitive deficits. Position D801 in the α3 isoform is a mutational hotspot, with the D801N, D801E and D801V mutations causing AHC and the D801Y mutation causing RDP or mild AHC. Despite intensive research, mechanisms underlying these disorders remain largely unknown. To study the genotype-to-phenotype relationship, a heterozygous knock-in mouse harboring the D801Y mutation (α3+/D801Y) was generated. The α3+/D801Y mice displayed hyperactivity, increased sensitivity to chemically induced epileptic seizures and cognitive deficits. Interestingly, no change in the excitability of CA1 pyramidal neurons in the α3+/D801Y mice was observed. The cognitive deficits were rescued by administration of the benzodiazepine, clonazepam, a GABA positive allosteric modulator. Our findings reveal the functional significance of the Na+/K+-ATPase α3 isoform in the control of spatial learning and memory and suggest a link to GABA transmission.
Collapse
Affiliation(s)
- Thomas Hellesøe Holm
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Toke Jost Isaksen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Simon Glerup
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Anders Heuck
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Pernille Bøttger
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | | | - Steen Nedergaard
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus University, DK-8000 Aarhus, Denmark
| | - Mogens Andreasen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus, Denmark.,Danish Research Institute for Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership of Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics and Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Holm TH, Lykke-Hartmann K. Insights into the Pathology of the α3 Na(+)/K(+)-ATPase Ion Pump in Neurological Disorders; Lessons from Animal Models. Front Physiol 2016; 7:209. [PMID: 27378932 PMCID: PMC4906016 DOI: 10.3389/fphys.2016.00209] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/22/2016] [Indexed: 01/08/2023] Open
Abstract
The transmembrane Na(+)-/K(+) ATPase is located at the plasma membrane of all mammalian cells. The Na(+)-/K(+) ATPase utilizes energy from ATP hydrolysis to extrude three Na(+) cations and import two K(+) cations into the cell. The minimum constellation for an active Na(+)-/K(+) ATPase is one alpha (α) and one beta (β) subunit. Mammals express four α isoforms (α1-4), encoded by the ATP1A1-4 genes, respectively. The α1 isoform is ubiquitously expressed in the adult central nervous system (CNS) whereas α2 primarily is expressed in astrocytes and α3 in neurons. Na(+) and K(+) are the principal ions involved in action potential propagation during neuronal depolarization. The α1 and α3 Na(+)-/K(+) ATPases are therefore prime candidates for restoring neuronal membrane potential after depolarization and for maintaining neuronal excitability. The α3 isoform has approximately four-fold lower Na(+) affinity compared to α1 and is specifically required for rapid restoration of large transient increases in [Na(+)]i. Conditions associated with α3 deficiency are therefore likely aggravated by suprathreshold neuronal activity. The α3 isoform been suggested to support re-uptake of neurotransmitters. These processes are required for normal brain activity, and in fact autosomal dominant de novo mutations in ATP1A3 encoding the α3 isoform has been found to cause the three neurological diseases Rapid Onset Dystonia Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS). All three diseases cause acute onset of neurological symptoms, but the predominant neurological manifestations differ with particularly early onset of hemiplegic/dystonic episodes and mental decline in AHC, ataxic encephalopathy and impairment of vision and hearing in CAPOS syndrome and late onset of dystonia/parkinsonism in RDP. Several mouse models have been generated to study the in vivo consequences of Atp1a3 modulation. The different mice show varying degrees of hyperactivity, gait problems, and learning disability as well as stress-induced seizures. With the advent of several Atp1a3-gene or chemically modified animal models that closely phenocopy many aspects of the human disorders, we will be able to reach a much better understanding of the etiology of RDP, AHC, and CAPOS syndrome.
Collapse
Affiliation(s)
- Thomas H. Holm
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
24
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
25
|
Sharma AN, Fries GR, Galvez JF, Valvassori SS, Soares JC, Carvalho AF, Quevedo J. Modeling mania in preclinical settings: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:22-34. [PMID: 26545487 PMCID: PMC4728043 DOI: 10.1016/j.pnpbp.2015.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
Abstract
The current pathophysiological understanding of mechanisms leading to onset and progression of bipolar manic episodes remains limited. At the same time, available animal models for mania have limited face, construct, and predictive validities. Additionally, these models fail to encompass recent pathophysiological frameworks of bipolar disorder (BD), e.g. neuroprogression. Therefore, there is a need to search for novel preclinical models for mania that could comprehensively address these limitations. Herein we review the history, validity, and caveats of currently available animal models for mania. We also review new genetic models for mania, namely knockout mice for genes involved in neurotransmission, synapse formation, and intracellular signaling pathways. Furthermore, we review recent trends in preclinical models for mania that may aid in the comprehension of mechanisms underlying the neuroprogressive and recurring nature of BD. In conclusion, the validity of animal models for mania remains limited. Nevertheless, novel (e.g. genetic) animal models as well as adaptation of existing paradigms hold promise.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Gabriel R Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Juan F Galvez
- Department of Psychiatry, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Joao Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
26
|
Stern WM, Desikan M, Hoad D, Jaffer F, Strigaro G, Sander JW, Rothwell JC, Sisodiya SM. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study. PLoS One 2016; 11:e0151667. [PMID: 26999520 PMCID: PMC4801356 DOI: 10.1371/journal.pone.0151667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity.
Collapse
Affiliation(s)
- William M. Stern
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - Mahalekshmi Desikan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Damon Hoad
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Fatima Jaffer
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Gionata Strigaro
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Josemir W. Sander
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - John C. Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Sanjay M. Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
McGirr A, Lipina TV, Mun HS, Georgiou J, Al-Amri AH, Ng E, Zhai D, Elliott C, Cameron RT, Mullins JGL, Liu F, Baillie GS, Clapcote SJ, Roder JC. Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. Neuropsychopharmacology 2016; 41:1080-92. [PMID: 26272049 PMCID: PMC4748432 DOI: 10.1038/npp.2015.240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/07/2023]
Abstract
Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modeling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4B(Y358C) mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioral assays, PDE4B(Y358C) mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4B(Y358C) mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 h, was decreased at 7 days in PDE4B(Y358C) mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signaling by PDE4B in a very late phase of consolidation. No effect of the PDE4B(Y358C) mutation was observed in the prepulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory.
Collapse
Affiliation(s)
- Alexander McGirr
- Department of Psychiatry, University of
British Columbia, Vancouver, British Columbia,
Canada,Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Psychiatry, University of British
Columbia, Vancouver, British Columbia,
Canada
V6T 2A1, E-mail:
| | - Tatiana V Lipina
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada
| | - Ho-Suk Mun
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Medical Genetics,
University of Toronto, Toronto, Ontario,
Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada
| | - Ahmed H Al-Amri
- School of Biomedical Sciences, University
of Leeds, Leeds, UK,National Genetic Centre, Royal
Hospital, Muscat, Oman
| | - Enoch Ng
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Institute of Medical Science, University
of Toronto, Toronto, Ontario,
Canada
| | - Dongxu Zhai
- Department of Neuroscience, Centre for
Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Christina Elliott
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Ryan T Cameron
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Jonathan GL Mullins
- Institute of Life Science, College of
Medicine, Swansea University, Swansea, UK
| | - Fang Liu
- Department of Neuroscience, Centre for
Addiction and Mental Health, Toronto, Ontario,
Canada
| | - George S Baillie
- Institute of Cardiovascular and Medical
Sciences, College of Medical, Veterinary and Life Sciences, University of
Glasgow, Glasgow, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University
of Leeds, Leeds, UK,School of Biomedical Sciences, University of Leeds,
Leeds
LS2 9JT, UK, Tel: +44 (0)113 3433041,
E-mail:
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario,
Canada,Department of Physiology, University of
Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Dard R, Mignot C, Durr A, Lesca G, Sanlaville D, Roze E, Mochel F. Relapsing encephalopathy with cerebellar ataxia related to an ATP1A3 mutation. Dev Med Child Neurol 2015; 57:1183-6. [PMID: 26400718 DOI: 10.1111/dmcn.12927] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2015] [Indexed: 11/30/2022]
Abstract
ATP1A3, the gene encoding the α3-subunit of the Na(+) /K(+) -ATPase pump, has been involved in four clinical neurological entities: (1) alternating hemiplegia of childhood (AHC); (2) rapid-onset dystonia parkinsonism (RDP); (3) CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss) syndrome; and (4) early infantile epileptic encephalopathy. Here, we report on a 34-year-old female presenting with a new ATP1A3-related entity involving a relapsing encephalopathy characterized by recurrent episodes of cerebellar ataxia and altered consciousness during febrile illnesses. The term RECA is suggested - relapsing encephalopathy with cerebellar ataxia. The phenotype of this patient, resembling mitochondrial oxidative phosphorylation defects, emphasizes the possible role of brain energy deficiency in patients with ATP1A3 mutations. Rather than multiple overlapping syndromes, ATP1A3-related disorders might be seen as a phenotypic continuum.
Collapse
Affiliation(s)
- Rodolphe Dard
- Department of Genetics, AP-HP, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Cyril Mignot
- Department of Genetics, AP-HP, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexandra Durr
- Department of Genetics, AP-HP, La Pitié-Salpêtrière University Hospital, Paris, France.,Inserm, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC University Paris, Paris, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Damien Sanlaville
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Emmanuel Roze
- Inserm, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC University Paris, Paris, France.,Department of Neurology, AP-HP, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Fanny Mochel
- Department of Genetics, AP-HP, La Pitié-Salpêtrière University Hospital, Paris, France.,Inserm, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC University Paris, Paris, France.,Bioclinic and Genetic Unit of Neurometabolic Diseases, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
29
|
Kirshenbaum GS, Dachtler J, Roder JC, Clapcote SJ. Characterization of cognitive deficits in mice with an alternating hemiplegia-linked mutation. Behav Neurosci 2015; 129:822-31. [PMID: 26501181 PMCID: PMC4655871 DOI: 10.1037/bne0000097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 11/21/2022]
Abstract
Cognitive impairment is a prominent feature in a range of different movement disorders. Children with Alternating Hemiplegia of Childhood are prone to developmental delay, with deficits in cognitive functioning becoming progressively more evident as they grow older. Heterozygous mutations of the ATP1A3 gene, encoding the Na+,K+-ATPase α3 subunit, have been identified as the primary cause of Alternating Hemiplegia. Heterozygous Myshkin mice have an amino acid change (I810N) in Na+,K+-ATPase α3 that is also found in Alternating Hemiplegia. To investigate whether Myshkin mice exhibit learning and memory deficits resembling the cognitive impairments of patients with Alternating Hemiplegia, we subjected them to a range of behavioral tests that interrogate various cognitive domains. Myshkin mice showed impairments in spatial memory, spatial habituation, locomotor habituation, object recognition, social recognition, and trace fear conditioning, as well as in the visible platform version of the Morris water maze. Increasing the duration of training ameliorated the deficit in social recognition but not in spatial habituation. The deficits of Myshkin mice in all of the learning and memory tests used are consistent with the cognitive impairment of the vast majority of AHC patients. These mice could thus help advance our understanding of the underlying neural mechanisms influencing cognitive impairment in patients with ATP1A3-related disorders.
Collapse
Affiliation(s)
| | | | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital
| | | |
Collapse
|
30
|
Kirshenbaum GS, Dachtler J, Roder JC, Clapcote SJ. Transgenic rescue of phenotypic deficits in a mouse model of alternating hemiplegia of childhood. Neurogenetics 2015; 17:57-63. [PMID: 26463346 PMCID: PMC4701769 DOI: 10.1007/s10048-015-0461-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/16/2015] [Indexed: 11/13/2022]
Abstract
Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 are the primary cause of alternating hemiplegia of childhood (AHC). Most ATP1A3 mutations in AHC lie within a cluster in or near transmembrane α-helix TM6, including I810N that is also found in the Myshkin mouse model of AHC. These mutations all substantially reduce Na+,K+-ATPase α3 activity. Herein, we show that Myshkin mice carrying a wild-type Atp1a3 transgene that confers a 16 % increase in brain-specific total Na+,K+-ATPase activity show significant phenotypic improvements compared with non-transgenic Myshkin mice. Interventions to increase the activity of wild-type Na+,K+-ATPase α3 in AHC patients should be investigated further.
Collapse
Affiliation(s)
- Greer S Kirshenbaum
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University Avenue, Toronto, ON, M5G 1X5, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - James Dachtler
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, LS2 9JT, UK
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University Avenue, Toronto, ON, M5G 1X5, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Steven J Clapcote
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
31
|
Jaffer F, Avbersek A, Vavassori R, Fons C, Campistol J, Stagnaro M, De Grandis E, Veneselli E, Rosewich H, Gianotta M, Zucca C, Ragona F, Granata T, Nardocci N, Mikati M, Helseth AR, Boelman C, Minassian BA, Johns S, Garry SI, Scheffer IE, Gourfinkel-An I, Carrilho I, Aylett SE, Parton M, Hanna MG, Houlden H, Neville B, Kurian MA, Novy J, Sander JW, Lambiase PD, Behr ER, Schyns T, Arzimanoglou A, Cross JH, Kaski JP, Sisodiya SM. Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype. Brain 2015; 138:2859-74. [PMID: 26297560 PMCID: PMC4671482 DOI: 10.1093/brain/awv243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/30/2015] [Indexed: 12/29/2022] Open
Abstract
Alternating hemiplegia of childhood is a rare disorder caused by de novo mutations in the ATP1A3 gene, expressed in neurons and cardiomyocytes. As affected individuals may survive into adulthood, we use the term 'alternating hemiplegia'. The disorder is characterized by early-onset, recurrent, often alternating, hemiplegic episodes; seizures and non-paroxysmal neurological features also occur. Dysautonomia may occur during hemiplegia or in isolation. Premature mortality can occur in this patient group and is not fully explained. Preventable cardiorespiratory arrest from underlying cardiac dysrhythmia may be a cause. We analysed ECG recordings of 52 patients with alternating hemiplegia from nine countries: all had whole-exome, whole-genome, or direct Sanger sequencing of ATP1A3. Data on autonomic dysfunction, cardiac symptoms, medication, and family history of cardiac disease or sudden death were collected. All had 12-lead electrocardiogram recordings available for cardiac axis, cardiac interval, repolarization pattern, and J-point analysis. Where available, historical and prolonged single-lead electrocardiogram recordings during electrocardiogram-videotelemetry were analysed. Half the cohort (26/52) had resting 12-lead electrocardiogram abnormalities: 25/26 had repolarization (T wave) abnormalities. These abnormalities were significantly more common in people with alternating hemiplegia than in an age-matched disease control group of 52 people with epilepsy. The average corrected QT interval was significantly shorter in people with alternating hemiplegia than in the disease control group. J wave or J-point changes were seen in six people with alternating hemiplegia. Over half the affected cohort (28/52) had intraventricular conduction delay, or incomplete right bundle branch block, a much higher proportion than in the normal population or disease control cohort (P = 0.0164). Abnormalities in alternating hemiplegia were more common in those ≥16 years old, compared with those <16 (P = 0.0095), even with a specific mutation (p.D801N; P = 0.045). Dynamic, beat-to-beat or electrocardiogram-to-electrocardiogram, changes were noted, suggesting the prevalence of abnormalities was underestimated. Electrocardiogram changes occurred independently of seizures or plegic episodes. Electrocardiogram abnormalities are common in alternating hemiplegia, have characteristics reflecting those of inherited cardiac channelopathies and most likely amount to impaired repolarization reserve. The dynamic electrocardiogram and neurological features point to periodic systemic decompensation in ATP1A3-expressing organs. Cardiac dysfunction may account for some of the unexplained premature mortality of alternating hemiplegia. Systematic cardiac investigation is warranted in alternating hemiplegia of childhood, as cardiac arrhythmic morbidity and mortality are potentially preventable.
Collapse
Affiliation(s)
- Fatima Jaffer
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Andreja Avbersek
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Rosaria Vavassori
- 5 A.I.S.EA Onlus, Via Sernovella, 37 - Verderio Superiore, 23878 Lecco, Italy
| | - Carmen Fons
- 6 Paediatric Neurology Department, Hospital Sant Joan de Déu, P° de Sant Joan de Déu, 2 08950 Esplugues de Llobregat, Barcelona University, Barcelona, Spain
| | - Jaume Campistol
- 6 Paediatric Neurology Department, Hospital Sant Joan de Déu, P° de Sant Joan de Déu, 2 08950 Esplugues de Llobregat, Barcelona University, Barcelona, Spain
| | - Michela Stagnaro
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Elisa De Grandis
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Edvige Veneselli
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Hendrik Rosewich
- 8 University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Georg August University, Robert Koch Strasse 40, 37099 Göttingen, Germany
| | - Melania Gianotta
- 9 Child Neurology Unit IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 3, 40139 Bologna, Italy
| | - Claudio Zucca
- 10 Clinical Neurophysiology Unit, IRCCS "E. Medea", Via Don L. Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Francesca Ragona
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Tiziana Granata
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Nardo Nardocci
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Mohamed Mikati
- 12 Division of Paediatric Neurology, Duke University, T0913J Children Health Centre, Duke University Medical Centre, Durham, USA
| | - Ashley R Helseth
- 12 Division of Paediatric Neurology, Duke University, T0913J Children Health Centre, Duke University Medical Centre, Durham, USA
| | - Cyrus Boelman
- 13 Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, Ontario, Canada, M5G 1X8
| | - Berge A Minassian
- 13 Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, Ontario, Canada, M5G 1X8
| | - Sophia Johns
- 14 Inherited Cardiovascular Diseases Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, and Institute of Cardiovascular Science, University College London, London, WC1N 3JH, UK
| | - Sarah I Garry
- 15 Florey Institute of Neurosciences and Mental Health, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Ingrid E Scheffer
- 15 Florey Institute of Neurosciences and Mental Health, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Isabelle Gourfinkel-An
- 16 Centre de reference epilepsies rares et Sclérose tubéreuse de Bourneville (site Parisien adolescents-adultes), Hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital 75651 Paris cedex 13, France
| | - Ines Carrilho
- 17 Neuropediatric Department Centro Hospitalar do Porto, Rua da Boavista, 8274050-111, Porto, Portugal
| | - Sarah E Aylett
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Matthew Parton
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Michael G Hanna
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Brian Neville
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Manju A Kurian
- 19 Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health and Department of Neurology, Great Ormond Street Hospital, London, London, WC1N 3JH, UK
| | - Jan Novy
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Josemir W Sander
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Pier D Lambiase
- 20 Department of Cardiac Electrophysiology, The Heart Hospital, Institute of Cardiovascular Science, University College London, 16-18 Westmoreland St, London W1G 8PH, UK
| | - Elijah R Behr
- 21 Cardiac and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Tsveta Schyns
- 22 European Network for Research on Alternating Hemiplegia, ENRAH, Brussels, Belgium
| | - Alexis Arzimanoglou
- 23 Epilepsy, Sleep and Paediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), and DYCOG team, Lyon Neuroscience Research Centre (CRNL), INSERM U1028; CNRS UMR 5292, Lyon, France
| | - J Helen Cross
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK 24 Young Epilepsy, St. Piers Lane, Lingfield, Surrey RH7 6PW, UK
| | - Juan P Kaski
- 14 Inherited Cardiovascular Diseases Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, and Institute of Cardiovascular Science, University College London, London, WC1N 3JH, UK
| | - Sanjay M Sisodiya
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| |
Collapse
|
32
|
Fremont R, Tewari A, Khodakhah K. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of Rapid Onset Dystonia-Parkinsonism. Neurobiol Dis 2015; 82:200-212. [PMID: 26093171 DOI: 10.1016/j.nbd.2015.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
Loss-of-function mutations in the α3 isoform of the sodium pump are responsible for Rapid Onset Dystonia-Parkinsonism (RDP). A pharmacologic model of RDP replicates the most salient features of RDP, and implicates both the cerebellum and basal ganglia in the disorder; dystonia is associated with aberrant cerebellar output, and the parkinsonism-like features are attributable to the basal ganglia. The pharmacologic agent used to generate the model, ouabain, is selective for sodium pumps. However, close to the infusion sites in vivo it likely affects all sodium pump isoforms. Therefore, it remains to be established whether selective loss of α3-containing sodium pumps replicates the pharmacologic model. Moreover, while the pharmacologic model suggested that aberrant firing of Purkinje cells was the main cause of abnormal cerebellar output, it did not allow the scrutiny of this hypothesis. To address these questions RNA interference using small hairpin RNAs (shRNAs) delivered via adeno-associated viruses (AAV) was used to specifically knockdown α3-containing sodium pumps in different regions of the adult mouse brain. Knockdown of the α3-containing sodium pumps mimicked both the behavioral and electrophysiological changes seen in the pharmacologic model of RDP, recapitulating key aspects of the human disorder. Further, we found that knockdown of the α3 isoform altered the intrinsic pacemaking of Purkinje cells, but not the neurons of the deep cerebellar nuclei. Therefore, acute knockdown of proteins associated with inherited dystonias may be a good strategy for developing phenotypic genetic mouse models where traditional transgenic models have failed to produce symptomatic mice.
Collapse
Affiliation(s)
- Rachel Fremont
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ambika Tewari
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kamran Khodakhah
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
33
|
A functional correlate of severity in alternating hemiplegia of childhood. Neurobiol Dis 2015; 77:88-93. [PMID: 25681536 DOI: 10.1016/j.nbd.2015.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Mutations in ATP1A3, the gene that encodes the α3 subunit of the Na(+)/K(+) ATPase, are the primary cause of alternating hemiplegia of childhood (AHC). Correlations between different mutations and AHC severity were recently reported, with E815K identified in severe and D801N and G947R in milder cases. This study aims to explore the molecular pathological mechanisms in AHC and to identify functional correlates for mutations associated with different levels of disease severity. METHODS Human wild type ATP1A3, and E815K, D801N and G947R mutants were expressed in Xenopus laevis oocytes and Na(+)/K(+) ATPase function measured. Structural homology models of the human α3 subunit containing AHC mutations were created. RESULTS The AHC mutations examined all showed similar levels of reduction in forward cycling. Wild type forward cycling was reduced by coexpression with any mutant, indicating dominant negative interactions. Proton transport was measured and found to be selectively impaired only in E815K. Homology modeling showed that D801 and G947 lie within or near known cation binding sites while E815 is more distal. Despite its effect on proton transport, E815K was also distant from the proposed proton transport route. INTERPRETATION Loss of forward cycling and dominant negativity are common and likely necessary pathomechanisms for AHC. In addition, loss of proton transport correlated with severity of AHC. D801N and G947R are likely to directly disrupt normal Na(+)/K(+) binding while E815K may disrupt forward cycling and proton transport via allosteric mechanisms yet to be elucidated.
Collapse
|
34
|
Hunanyan AS, Fainberg NA, Linabarger M, Arehart E, Leonard AS, Adil SM, Helseth AR, Swearingen AK, Forbes SL, Rodriguiz RM, Rhodes T, Yao X, Kibbi N, Hochman DW, Wetsel WC, Hochgeschwender U, Mikati MA. Knock-in mouse model of alternating hemiplegia of childhood: behavioral and electrophysiologic characterization. Epilepsia 2014; 56:82-93. [PMID: 25523819 DOI: 10.1111/epi.12878] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Mutations in the ATP1α3 subunit of the neuronal Na+/K+-ATPase are thought to be responsible for seizures, hemiplegias, and other symptoms of alternating hemiplegia of childhood (AHC). However, the mechanisms through which ATP1A3 mutations mediate their pathophysiologic consequences are not yet understood. The following hypotheses were investigated: (1) Our novel knock-in mouse carrying the most common heterozygous mutation causing AHC (D801N) will exhibit the manifestations of the human condition and display predisposition to seizures; and (2) the underlying pathophysiology in this mouse model involves increased excitability in response to electrical stimulation of Schaffer collaterals and abnormal predisposition to spreading depression (SD). METHODS We generated the D801N mutant mouse (Mashlool, Mashl+/-) and compared mutant and wild-type (WT) littermates. Behavioral tests, amygdala kindling, flurothyl-induced seizure threshold, spontaneous recurrent seizures (SRS), and other paroxysmal activities were compared between groups. In vitro electrophysiologic slice experiments on hippocampus were performed to assess predisposition to hyperexcitability and SD. RESULTS Mutant mice manifested a distinctive phenotype similar to that of humans with AHC. They had abnormal impulsivity, memory, gait, motor coordination, tremor, motor control, endogenous nociceptive response, paroxysmal hemiplegias, diplegias, dystonias, and SRS, as well as predisposition to kindling, to flurothyl-induced seizures, and to sudden unexpected death. Hippocampal slices of mutants, in contrast to WT animals, showed hyperexcitable responses to 1 Hz pulse-trains of electrical stimuli delivered to the Schaffer collaterals and had significantly longer duration of K+-induced SD responses. SIGNIFICANCE Our model reproduces the major characteristics of human AHC, and indicates that ATP1α3 dysfunction results in abnormal short-term plasticity with increased excitability (potential mechanism for seizures) and a predisposition to more severe SD responses (potential mechanism for hemiplegias). This model of the human condition should help in understanding the molecular pathways underlying these phenotypes and may lead to identification of novel therapeutic strategies of ATP1α3 related disorders and seizures.
Collapse
Affiliation(s)
- Arsen S Hunanyan
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, U.S.A
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci 2014; 34:11723-32. [PMID: 25164667 DOI: 10.1523/jneurosci.1409-14.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loss-of-function mutations in the α3 isoform of the Na(+)/K(+) ATPase (sodium pump) are responsible for rapid-onset dystonia parkinsonism (DYT12). Recently, a pharmacological model of DYT12 was generated implicating both the cerebellum and basal ganglia in the disorder. Notably, partially blocking sodium pumps in the cerebellum was necessary and sufficient for induction of dystonia. Thus, a key question that remains is how partially blocking sodium pumps in the cerebellum induces dystonia. In vivo recordings from dystonic mice revealed abnormal high-frequency bursting activity in neurons of the deep cerebellar nuclei (DCN), which comprise the bulk of cerebellar output. In the same mice, Purkinje cells, which provide strong inhibitory drive to DCN cells, also fired in a similarly erratic manner. In vitro studies demonstrated that Purkinje cells are highly sensitive to sodium pump dysfunction that alters the intrinsic pacemaking of these neurons, resulting in erratic burst firing similar to that identified in vivo. This abnormal firing abates when sodium pump function is restored and dystonia caused by partial block of sodium pumps can be similarly alleviated. These findings suggest that persistent high-frequency burst firing of cerebellar neurons caused by sodium pump dysfunction underlies dystonia in this model of DYT12.
Collapse
|
36
|
Sugimoto H, Ikeda K, Kawakami K. Heterozygous mice deficient in Atp1a3 exhibit motor deficits by chronic restraint stress. Behav Brain Res 2014; 272:100-10. [DOI: 10.1016/j.bbr.2014.06.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
|
37
|
Weigand KM, Messchaert M, Swarts HG, Russel FG, Koenderink JB. Alternating Hemiplegia of Childhood mutations have a differential effect on Na+,K+-ATPase activity and ouabain binding. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1010-6. [DOI: 10.1016/j.bbadis.2014.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/26/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
38
|
Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB, Jóhannesson SH, Mikati MA, Neville B, Nicole S, Ozelius LJ, Poulsen H, Schyns T, Sweadner KJ, van den Maagdenberg A, Vilsen B. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 2014; 13:503-14. [PMID: 24739246 DOI: 10.1016/s1474-4422(14)70011-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the α3 subunit of Na(+)/K(+)-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in-vitro and animal model systems, and the role of Na(+)/K(+)-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases.
Collapse
Affiliation(s)
- Erin L Heinzen
- Center for Human Genome Variation, Duke University, School of Medicine, Durham, NC, USA; Department of Medicine, Section of Medical Genetics, Duke University, School of Medicine, Durham, NC, USA.
| | - Alexis Arzimanoglou
- Epilepsy, Sleep and Pediatric Neurophysiology Department, HFME, University Hospitals of Lyon, France; Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique, UMR 5292, INSERM U1028, Lyon, France
| | - Allison Brashear
- Department of Neurology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | - Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica S Cuore, Rome, Italy
| | - David B Goldstein
- Center for Human Genome Variation, Duke University, School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, School of Medicine, Durham, NC, USA
| | | | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University, School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University, School of Medicine, Durham, NC, USA
| | - Brian Neville
- Institute of Child Health, University College London, London, UK
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U975, Centre de Recherche de l'Institut du Cerveau et de la Moelle, Paris, France; Centre National de la Recherche Scientifique, UMR7225, Paris, France; Université Pierre et Marie Curie Paris VI, UMRS975, Paris, France
| | - Laurie J Ozelius
- Department of Genetics and Genomic Sciences and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanne Poulsen
- Danish Research Institute for Translational Neuroscience, Nordic-EMBL Partnership of Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
| | - Tsveta Schyns
- European Network for Research on Alternating Hemiplegia (ENRAH), Brussels, Belgium
| | | | - Arn van den Maagdenberg
- Department of Human Genetics and Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
39
|
Ulate-Campos A, Fons C, Campistol J, Martorell L, Cancho-Candela R, Eiris J, López-Laso E, Pineda M, Sans A, Velázquez R. [Alternating hemiplegia of childhood: ATP1A3 gene analysis in 16 patients]. Med Clin (Barc) 2014; 143:25-8. [PMID: 24768197 DOI: 10.1016/j.medcli.2014.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Alternating hemiplegia in childhood (AHC) is a disease characterized by recurrent episodes of hemiplegia, tonic or dystonic crisis and abnormal ocular movements. Recently, mutations in the ATP1A3 gene have been identified as the causal mechanism of AHC. The objective is to describe a series of 16 patients with clinical and genetic diagnosis of AHC. PATIENTS AND METHOD It is a descriptive, retrospective, multicenter study of 16 patients with clinical diagnosis of AHC in whom mutations in ATP1A3 were identified. RESULTS Six heterozygous, de novo mutations were found in the ATP1A3 gene. The most frequent mutation was G2401A in 8 patients (50%) followed by G2443A in 3 patients (18.75%), G2893A in 2 patients (12.50%) and C2781G, G2893C and C2411T in one patient, respectively (6.25% each). CONCLUSIONS In the studied population with AHC, de novo mutations were detected in 100% of patients. The most frequent mutations were D801N y la E815K, as reported in other series.
Collapse
Affiliation(s)
- Adriana Ulate-Campos
- Servicio de Neurología Pediátrica, Hospital Universitario Sant Joan de Déu, Barcelona, España.
| | - Carmen Fons
- Servicio de Neurología Pediátrica, Hospital Universitario Sant Joan de Déu, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, España
| | - Jaume Campistol
- Servicio de Neurología Pediátrica, Hospital Universitario Sant Joan de Déu, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, España
| | - Loreto Martorell
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, España; Servicio de Genética Molecular, Hospital Universitario Sant Joan de Déu, Barcelona, España
| | - Ramón Cancho-Candela
- Unidad de Neurología Pediátrica, Servicio de Pediatría, Hospital Universitario Río Hortega, Valladolid, España
| | - Jesús Eiris
- Servicio de Neurología Pediátrica, Departamento de Pediatría, Hospital Clínico Universitario, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, España
| | - Eduardo López-Laso
- Unidad de Neurología Pediátrica, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | | | - Anna Sans
- Servicio de Neurología Pediátrica, Hospital Universitario Sant Joan de Déu, Barcelona, España
| | - Ramón Velázquez
- Servicio de Neurología Infantil, Hospital Infantil Universitario La Paz, Madrid, España
| |
Collapse
|
40
|
Kaneko M, Desai BS, Cook B. Ionic leakage underlies a gain-of-function effect of dominant disease mutations affecting diverse P-type ATPases. Nat Genet 2013; 46:144-51. [DOI: 10.1038/ng.2850] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022]
|
41
|
Abstract
The Na(+)/K(+) ATPase (NKA) is an essential membrane protein underlying the membrane potential in excitable cells. Transmembrane ion transport is performed by the catalytic α subunits (α1-4). The predominant subunits in neurons are α1 and α3, which have different affinities for Na(+) and K(+), impacting on transport kinetics. The exchange rate of Na(+)/K(+) markedly influences the activity of the neurons expressing them. We have investigated the distribution and function of the main isoforms of the α subunit expressed in the mouse spinal cord. NKAα1 immunoreactivity (IR) displayed restricted labeling, mainly confined to large ventral horn neurons and ependymal cells. NKAα3 IR was more widespread in the spinal cord, again being observed in large ventral horn neurons, but also in smaller interneurons throughout the dorsal and ventral horns. Within the ventral horn, the α1 and α3 isoforms were mutually exclusive, with the α3 isoform in smaller neurons displaying markers of γ-motoneurons and α1 in α-motoneurons. The α3 isoform was also observed within muscle spindle afferent neurons in dorsal root ganglia with a higher proportion at cervical versus lumbar regions. We confirmed the differential expression of α subunits in motoneurons electrophysiologically in neonatal slices of mouse spinal cord. γ-Motoneurons were excited by bath application of low concentrations of ouabain that selectively inhibit NKAα3 while α-motoneurons were insensitive to these low concentrations. The selective expression of NKAα3 in γ-motoneurons and muscle spindle afferents, which may affect excitability of these neurons, has implications in motor control and disease states associated with NKAα3 dysfunction.
Collapse
|