1
|
Tokuhara D, Hikita N. Cord Blood-Based Approach to Assess Candidate Vaccine Adjuvants Designed for Neonates and Infants. Vaccines (Basel) 2021; 9:vaccines9020095. [PMID: 33514054 PMCID: PMC7911524 DOI: 10.3390/vaccines9020095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Neonates and infants are particularly susceptible to infections, for which outcomes tend to be severe. Vaccination is a key strategy for preventing infectious diseases, but the protective immunity achieved through vaccination typically is weaker in infants than in healthy adults. One possible explanation for the poor acquisition of vaccine-induced immunity in infants is that their innate immune response, represented by toll-like receptors, is immature. The current system for developing pediatric vaccines relies on the confirmation of their safety and effectiveness in studies involving the use of mature animals or adult humans. However, creating vaccines for neonates and infants requires an understanding of their uniquely immature innate immunity. Here we review current knowledge regarding the innate immune system of neonates and infants and challenges in developing vaccine adjuvants for those children through analyses of cord blood.
Collapse
|
2
|
Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. MUCOSAL VACCINES 2020. [PMCID: PMC7149644 DOI: 10.1016/b978-0-12-811924-2.00002-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Kiyono H, Izuhara K. New trends in mucosal immunology and allergy. Allergol Int 2019; 68:1-3. [PMID: 30591151 DOI: 10.1016/j.alit.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 01/03/2023] Open
|
4
|
Tokuhara D. Challenges in developing mucosal vaccines and antibodies against infectious diarrhea in children. Pediatr Int 2018; 60:214-223. [PMID: 29290097 DOI: 10.1111/ped.13497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Infectious diarrhea in children can be life-threatening and imposes a large economic burden on healthcare systems, therefore more effective prophylactic and therapeutic drugs are needed urgently. Because most of the pathogens responsible for childhood diarrhea infect the gastrointestinal mucosa, providing protective immunity at the mucosal surface is an ideal way to control pathogen invasion and toxic activity. Mucosal (e.g. oral, nasal) vaccines are superior to systemic (subcutaneous or intramuscular) vaccination for conferring both mucosal and systemic pathogen-specific immune responses. Therefore, great efforts has been focused on the development of cost-effective mucosal vaccines for the past 50 years. Recent progress in plant genetic engineering has revolutionized the production of inexpensive and safe recombinant vaccine antigens. For example, rice plant biotechnology has facilitated the development of a cold-chain-free rice-based oral subunit vaccine against Vibrio cholerae. Furthermore, this technology has led to the creation of a rice-based oral antibody for prophylaxis and treatment of rotavirus gastroenteritis. This review summarizes current perspectives regarding the mucosal immune system and the development of mucosal vaccines and therapeutic antibodies, particularly rice-based products, and discusses future prospects regarding mucosal vaccines for children.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Abenoku, Osaka, Japan
| |
Collapse
|
5
|
Critical role of TSLP-responsive mucosal dendritic cells in the induction of nasal antigen-specific IgA response. Mucosal Immunol 2017; 10:901-911. [PMID: 27924821 DOI: 10.1038/mi.2016.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/09/2016] [Indexed: 02/04/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine involved in T helper 2 type immune responses. The primary target of TSLP is myeloid dendritic cells (DCs), however, little is known about the mechanism by which TSLP elicits respiratory IgA immune responses upon mucosal immunization. Here, we found that the levels of TSLP and TSLPR were upregulated in the mucosal DCs of mice nasally immunized with pneumococcal surface protein A (PspA) plus cholera toxin (CT) compared with those immunized with PspA alone. PspA-specific IgA responses, but not IgG Ab responses were significantly reduced in both serum and mucosal secretions of TSLPR knockout mice compared with wild-type mice after nasal immunization with PspA plus CT. Furthermore, CD11c+ mucosal DCs isolated from TSLPR knockout mice nasally immunized with PspA plus CT were less activated and exhibited markedly reduced expression of IgA-enhancing cytokines (e.g., APRIL, BAFF, and IL-6) compared with those from equivalently immunized wild-type mice. Finally, exogenous TSLP promoted production of IgAs in an in vitro DC-B cell co-culture system as exhibited by enhanced IL-6 production. These results suggest that TSLP-TSLPR signaling is pivotal in the induction of nasal respiratory immunity against pathogenic pneumococcal infection.
Collapse
|
6
|
Vo Ngoc DTL, Krist L, van Overveld FJ, Rijkers GT. The long and winding road to IgA deficiency: causes and consequences. Expert Rev Clin Immunol 2016; 13:371-382. [PMID: 27776452 DOI: 10.1080/1744666x.2017.1248410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The most common humoral immunodeficiency is IgA deficiency. One of the first papers addressing the cellular and molecular mechanisms underlying IgA deficiency indicated that immature IgA-positive B-lymphocytes are present in these patients. This suggests that the genetic background for IgA is still intact and that class switching can take place. At this moment, it cannot be ruled out that genetic as well as environmental factors are involved. Areas covered: A clinical presentation, the biological functions of IgA, and the management of IgA deficiency are reviewed. In some IgA deficient patients, a relationship with a loss-of-function mutation in the TACI (transmembrane activator and calcium-modulating cyclophilin ligand interaction) gene has been found. Many other genes also have been associated. Gut microbiota are an important environmental trigger for IgA synthesis. Expert commentary: Expression of IgA deficiency is due to both genetic and environmental factors and a role for gut microbiota cannot be excluded.
Collapse
Affiliation(s)
- D T Laura Vo Ngoc
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Lizette Krist
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Frans J van Overveld
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Ger T Rijkers
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| |
Collapse
|
7
|
de Geus ED, Degen WGJ, van Haarlem DA, Schrier C, Broere F, Vervelde L. Distribution patterns of mucosally applied particles and characterization of the antigen presenting cells. Avian Pathol 2015; 44:222-9. [PMID: 25746212 DOI: 10.1080/03079457.2015.1026797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mucosal application is the most common route of vaccination to prevent outbreaks of infectious diseases like Newcastle disease virus (NDV). To gain more knowledge about distribution and uptake of a vaccine after mucosal vaccination, we studied the distribution pattern of antigens after different mucosal routes of administration. Chickens were intranasally (i.n.), intratracheally (i.t.) or intraocularly (i.o.) inoculated with fluorescent beads and presence of beads in nasal-associated lymphoid tissue (NALT), Harderian gland (HG), conjunctiva-associated lymphoid tissue (CALT), trachea, lungs, air sacs, oesophagus and blood was characterized. The distribution patterns differed significantly between the three inoculation routes. After i.t. inoculation, the beads were mainly retrieved from trachea, NALT and lung. I.n. inoculation resulted in beads found mainly in NALT but detectable in all organs sampled. Finally, after i.o. inoculation, the beads were detected in NALT, CALT, HG and trachea. The highest number of beads was retrieved after i.n. inoculation. Development of novel vaccines requires a comprehensive knowledge of the mucosal immune system in birds in order to target vaccines appropriately and to provide efficient adjuvants. The NALT is likely important for the induction of mucosal immune responses. We therefore studied the phenotype of antigen-presenting cells isolated from NALT after i.n. inoculation with uncoated beads or with NDV-coated beads. Both types of beads were efficiently taken up and low numbers of bead+ cells were detected in all organs sampled. Inoculation with NDV-coated beads resulted in a preferential uptake by NALT antigen-presenting cells as indicated by high percentages of KUL01+-, MHC II+ and CD40+ bead+ cells.
Collapse
Affiliation(s)
- Eveline D de Geus
- a Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Hu Y, Wang C, Li Y, Zhao J, Chen C, Zhou Y, Tao Y, Guo M, Qin N, Ren T, Wen Z, Xu L. MiR-21 controls in situ expansion of CCR6⁺ regulatory T cells through PTEN/AKT pathway in breast cancer. Immunol Cell Biol 2015; 93:753-64. [PMID: 25735723 DOI: 10.1038/icb.2015.37] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
Our recent evidence showed that prior expansion of CCR6(+) Foxp3(+) regulatory T cells (Tregs) was important for their dominant enrichment in tumor tissue, which was closely related to poor prognosis of breast cancer patients. However, the underlying regulation mechanism of expansion of CCR6(+) Tregs in situ remains largely unknown. In this study, we reported that miR-21 was highly expressed in CCR6(+) Tregs in tumor tissues from a murine breast cancer model. And silencing of miR-21 could significantly reduce the proliferation of CCR6(+) Tregs in vitro. Adoptive cell-transfer assay further showed that silencing of miR-21 could alter the enrichment of CCR6(+) Tregs in the tumor mass and endow effectively antitumor effect of CD8(+) T cells using a murine breast cancer model. Mechanistic evidence showed that silencing of miR-21 enhanced the expression of its target phosphatase and tensin homolog deleted on chromosome ten (PTEN) and subsequently altered the activation of Akt pathway, which was ultimately responsible for reduced proliferation activity of CCR6(+) Tregs. Finally, we further revealed that miR-21 was also highly expressed on CCR6(+) Tregs in clinical breast cancer patients. Therefore, miR-21 can act as a fine tuner in the regulation of PTEN/Akt pathway transduction in the expansion of CCR6(+) Tregs in tumor sites and provided a novel insight into the development of therapeutic strategies for promoting T-cell immunity by regulating distinct subset of Tregs through targeting specific miRNAs.
Collapse
Affiliation(s)
- Yan Hu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Chunhong Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongju Li
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College, Guizhou, China
| | - Yijin Tao
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Nalin Qin
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenke Wen
- Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| |
Collapse
|
9
|
KIYONO H, AZEGAMI T. The mucosal immune system: From dentistry to vaccine development. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:423-39. [PMID: 26460320 PMCID: PMC4729857 DOI: 10.2183/pjab.91.423] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer's patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases.
Collapse
Affiliation(s)
- Hiroshi KIYONO
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: H. Kiyono, Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (e-mail: )
| | - Tatsuhiko AZEGAMI
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
10
|
Wark PAB, Murphy V, Mattes J. The interaction between mother and fetus and the development of allergic asthma. Expert Rev Respir Med 2014; 8:57-66. [PMID: 24409981 DOI: 10.1586/17476348.2014.848795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rising prevalence of asthma and atopic disease in industrialized countries in the last 50 years has raised important questions about how and why the disease develops in susceptible populations. Most asthma begins in childhood in association with allergic sensitization and the development of a TH2 phenotype. It is recognized that asthma arises in the context of a complex interaction between genetic factors and the evolving immune system of the infant and the environment to which it is exposed, which now includes its in utero exposure. Early life exposures that lead to allergen sensitization and airway damage, especially in the form of viral respiratory tract infections, may lead to disease induction that commence the process that leads in some to asthma. Asthma models and early life observations suggest that repeated exposure to allergens and viral infection perpetuate a state of chronic airway inflammation leading to a maladaptive innate immune response that fails to resolve, characterized by chronic airway inflammation, airway remodeling and airway hyperresponsiveness. This article will concentrate on the development of asthma in the context of early life and maternal influences, including the effect of asthma on both the fetus and the mother.
Collapse
Affiliation(s)
- Peter A B Wark
- Hunter Medical Research Institute and The University of Newcastle, Priority Research Centre for Asthma and Respiratory Diseases, Newcastle, New South Wales, Australia
| | | | | |
Collapse
|