1
|
Shetty S, Dash S, Kumar A, Vishwanath S, Kini SG, Brand A. Immunoinformatics design of a multi-epitope vaccine for Chlamydia trachomatis major outer membrane proteins. Sci Rep 2024; 14:29919. [PMID: 39623035 PMCID: PMC11612408 DOI: 10.1038/s41598-024-81736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Chlamydia trachomatis (CT) remains a significant infectious cause of blindness and sexually transmitted infections worldwide. The objective and novelty of this study lie in using different serovars of CT to design a broad-spectrum multi-epitope vaccine that might confer immunity against different CT infections. As the major outer membrane protein in CT has good immunodominance properties and high conservation and also determines the several serotypes of CT, it is selected as an antibody target in this study. T-cell and B-cell epitopes from serovars A, B, D, E, L1, and L2 were predicted and combined into a single construct by incorporating adjuvants and linkers to enhance immunogenicity and stability. Physicochemical characterization confirmed the constructed vaccine's anti-allergic, immunogenicity, and thermostable characteristics, followed by structural modeling to refine its 3D configuration. The 3D model structure of the vaccine was validated through the Ramachandran plot and ProSA z-score. Molecular docking studies of the vaccine demonstrated stable binding with toll-like receptor 3, along with molecular dynamics simulations and binding free energy calculations supporting the complex's stability. In silico cloning has indicated a high potential for expression in Escherichia coli. Lastly, immune simulations revealed robust activation of B cells, cytotoxic T cells, and antigen-presenting cells, alongside significant production of IgM, IgG antibodies, and balanced Th1/Th2 cytokine response, which is crucial for effective immunity. These results suggest the multi-epitope vaccine could effectively induce comprehensive immune responses against CT, highlighting the need for further in vivo validation to advance this promising candidate toward clinical use.
Collapse
Affiliation(s)
- Seema Shetty
- Department of Microbiology, Kasturba Medical College, Manipal,, Manipal Academy of Higher Education, Madhav Nagar, Manipal, Karnataka, 576104, India
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 GT, Maastricht, The Netherlands
| | - Swagatika Dash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Avinash Kumar
- Department of Medical Affairs, Curie Sciences Private Limited, Samastipur, Bihar, 848125, India
| | - Shashidhar Vishwanath
- Department of Microbiology, Kasturba Medical College, Manipal,, Manipal Academy of Higher Education, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Prasanna School of Public Health, Manipal Mc Gill Centre for Infectious Diseases, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Angela Brand
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 GT, Maastricht, The Netherlands
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
- United Nations University Maastricht Economics and Social Research Institute On Innovation and Technology (UNU-MERIT), 6211 AX, Maastricht, The Netherlands
| |
Collapse
|
2
|
Guo X, Pan X, Sun Q, Hu Y, Shi J. Design of a novel multiepitope vaccine against Chlamydia pneumoniae using the extracellular protein as a target. Sci Rep 2023; 13:15070. [PMID: 37700027 PMCID: PMC10497608 DOI: 10.1038/s41598-023-42222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Chlamydia pneumoniae (C. pneumoniae) infection in humans is universal and causes various respiratory infectious diseases, making a safe and effective preventive vaccine essential. In this study, a multi-epitope vaccine with CTLA-4 extracellular structure was constructed by an immunoinformatics approach. Since MOMP protein is the major extracellular protein in C. pneumoniae and has good immunogenicity and high conservation, we selected the MOMP protein of C. pneumoniae as the antigen target, predicted the T and B cell epitopes of the MOMP protein and then connected the CTLA-4 extracellular structure with the predicted dominant epitopes by various linkers to construct a multi-epitope vaccine. The biochemical characterization of the multi-epitope vaccine showed its immunogenicity and anti-allergic properties. The tertiary structure of this vaccine, along with molecular docking, molecular dynamics simulation, and principal component analysis, showed that the multi-epitope vaccine structure interacted with B7 (B7-1, B7-2) and toll-like receptors (TLR-2, TLR-4). Ultimately, the vaccine was cloned and effectively expressed in silico on an insect baculovirus expression vector (pFastBac1). These analyses showed that the designed vaccine could potentially target antigen-presenting cells and was immune to C. pneumoniae, which provided novel strategies for developing the vaccine.
Collapse
Affiliation(s)
- Xiaomei Guo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Xiaohong Pan
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Qiangming Sun
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China.
| | - Yunzhang Hu
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
- Kunming Medical University, Kunming, Yunnan, China.
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Super-Resolution Fluorescence Microscopy Reveals Clustering Behaviour of Chlamydia pneumoniae's Major Outer Membrane Protein. BIOLOGY 2020; 9:biology9100344. [PMID: 33092039 PMCID: PMC7589890 DOI: 10.3390/biology9100344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Chlamydia pneumoniae is a Gram-negative bacterium responsible for a number of human respiratory diseases and linked to some chronic inflammatory diseases. The major outer membrane protein (MOMP) of Chlamydia is a conserved immunologically dominant protein located in the outer membrane, which, together with its surface exposure and abundance, has led to MOMP being the main focus for vaccine and antimicrobial studies in recent decades. MOMP has a major role in the chlamydial outer membrane complex through the formation of intermolecular disulphide bonds, although the exact interactions formed are currently unknown. Here, it is proposed that due to the large number of cysteines available for disulphide bonding, interactions occur between cysteine-rich pockets as opposed to individual residues. Such pockets were identified using a MOMP homology model with a supporting low-resolution (~4 Å) crystal structure. The localisation of MOMP in the E. coli membrane was assessed using direct stochastic optical reconstruction microscopy (dSTORM), which showed a decrease in membrane clustering with cysteine-rich regions containing two mutations. These results indicate that disulphide bond formation was not disrupted by single mutants located in the cysteine-dense regions and was instead compensated by neighbouring cysteines within the pocket in support of this cysteine-rich pocket hypothesis.
Collapse
|
4
|
Hepler RW, Nahas DD, Lucas B, Kaufhold R, Flynn JA, Galli JD, Swoyer R, Wagner JM, Espeseth AS, Joyce JG, Cook JC, Durr E. Spectroscopic analysis of chlamydial major outer membrane protein in support of structure elucidation. Protein Sci 2019; 27:1923-1941. [PMID: 30144190 PMCID: PMC6201732 DOI: 10.1002/pro.3501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022]
Abstract
Chlamydial major outer membrane protein (MOMP) is the major protein constituent of the bacterial pathogen Chlamydia trachomatis. Chlamydia trachomatis Serovars D–K are the leading cause of genital tract infections which can lead to infertility or ectopic pregnancies. A vaccine against Chlamydia is highly desirable but currently not available. MOMP accounts for ~ 60% of the chlamydial protein mass and is considered to be one of the lead vaccine candidates against C. trachomatis. We report on the spectroscopic analysis of C. trachomatis native MOMP Serovars D, E, F, and J as well as C. muridarum MOMP by size exclusion chromatography multi angle light scattering (SEC MALS), circular dichroism (CD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR). MOMP was purified from the native bacterium grown in either adherent HeLa cells or in different suspension cell lines. Our results confirm that MOMP forms homo‐trimers in detergent micelles. The secondary structure composition of C. trachomatis MOMP was conserved across serovars, but different from composition of C. muridarum MOMP with a 13% (CD) to 18% (ATR‐FTIR) reduction in β‐sheet conformation for C. trachomatis MOMP. When Serovar E MOMP was isolated from suspension cell lines the α‐helix content increased by 7% (CD) to 13% (ATIR‐FTIR). Maintenance of a native‐like tertiary and quaternary structure in subunit vaccines is important for the generation of protective antibodies. This biophysical characterization of MOMP presented here serves, in the absence of functional assays, as a method for monitoring the structural integrity of MOMP.
Collapse
Affiliation(s)
- Robert W Hepler
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Debbie D Nahas
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Bob Lucas
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Robin Kaufhold
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Jessica A Flynn
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Jennifer D Galli
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Ryan Swoyer
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - James M Wagner
- Vaccine Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Amy S Espeseth
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Joseph G Joyce
- Vaccine Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - James C Cook
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Eberhard Durr
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
5
|
Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33-50. [PMID: 30663449 DOI: 10.1080/1040841x.2018.1538933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.
Collapse
Affiliation(s)
- Signe Christensen
- a Division of Chemistry and Structural Biology , Institute for Molecular Bioscience, University of Queensland , St. Lucia , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Róisín M McMahon
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Jennifer L Martin
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Wilhelmina M Huston
- c School of Life Sciences , University of Technology Sydney , Ultimo , NSW , Australia
| |
Collapse
|