1
|
Ouchene R, Zaatout N, Suzuki MT. An Overview on Nocardiopsis Species Originating From North African Biotopes as a Promising Source of Bioactive Compounds and In Silico Genome Mining Analysis of Three Sequenced Genomes. J Basic Microbiol 2024; 64:e2400046. [PMID: 38934516 DOI: 10.1002/jobm.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Actinobacteria are renowned for their prolific production of diverse bioactive secondary metabolites. In recent years, there has been an increasing focus on exploring "rare" genera within this phylum for biodiscovery purposes, notably the Nocardiopsis genus, which will be the subject of the present study. Recognizing the absence of articles describing the research process of finding bioactive molecules from the genus Nocardiopsis in North African environments. We, therefore, present a historical overview of the discoveries of bioactive molecules of the genus Nocardiopsis originating from the region, highlighting their biological activities and associated reported molecules, providing a snapshot of the current state of the field, and offering insights into future opportunities and challenges for drug discovery. Additionally, we present a genome mining analysis of three genomes deposited in public databases that have been reported to be bioactive. A total of 36 biosynthetic gene clusters (BGCs) were identified, including those known to encode bioactive molecules. Notably, a substantial portion of the BGCs showed little to no similarity to those previously described, suggesting the possibility that the analyzed strains could be potential producers of new compounds. Further research on these genomes is essential to fully uncovering their biotechnological potential. Moving forward, we discuss the experimental designs adopted in the reported studies, as well as new avenues to guide the exploration of the Nocardiopsis genus in North Africa.
Collapse
Affiliation(s)
- Rima Ouchene
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| | - Nawel Zaatout
- Faculty of Natural and Life Sciences, University of Batna, Batna, Algeria
| | - Marcelino T Suzuki
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Sangeetha M, Sivarajan A, Radhakrishnan M, Siddharthan N, Balagurunathan R. Biosequestration of carbon dioxide using carbonic anhydrase from novel Streptomyces kunmingensis. Arch Microbiol 2022; 204:270. [PMID: 35441896 DOI: 10.1007/s00203-022-02887-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
The increase in the atmospheric concentrations of carbon dioxide due to anthropogenic interventions has led to several undesirable consequences, notably global warming and related changes. Avoidance of and/or removal of carbon dioxide will result in the reduction of global warming. Biosequestration of carbon by using carbonic anhydrase (CA) as biocatalyst is one of most effective approaches. In the present study, actinobacterial cultures isolated from bamboo (Bambusa vulgaris) rhizosphere were screened for the production of carbonic anhydrase enzyme. The strain BS19 which showed promising CA production was selected as the potential strain. Strain BS19 was identified as Streptomyces kunmingensis based on the phenotypic and molecular characteristics. In submerged fermentation, strain BS19 produced 214.21 IU/ml of CA enzyme. The molecular mass of the CA was determined as 45 ± 2 kDa. The production of CA was found to be optimal at pH 7.0 and at temperature of 28 °C. The full length periplasmic CA gene was successfully amplified from S. kunmingensis BS19. Biomimetic sequestration of carbon was detected and quantified through CaCO3 precipitation method. Further, the CA of BS 19 was successfully used to mineralize CO2 present in motorbike exhaust, which has a similar composition to that of flue gas. The well-defined rhombohedral calcite crystals formed in the mineral carbonation reaction was observed through SEM analysis. The findings of this study clearly indicated that Streptomyces kunmingensis BS19 isolated from bamboo rhizosphere is a promising candidate for the production of carbonic anhydrase which deserves the potential for CO2 sequestration.
Collapse
Affiliation(s)
- Murthy Sangeetha
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | - Anbalmani Sivarajan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | - Manikkam Radhakrishnan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Nagarajan Siddharthan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | - Ramasamy Balagurunathan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India.
| |
Collapse
|
3
|
Basik AA, Sanglier JJ, Yeo CT, Sudesh K. Microbial Degradation of Rubber: Actinobacteria. Polymers (Basel) 2021; 13:polym13121989. [PMID: 34204568 PMCID: PMC8235351 DOI: 10.3390/polym13121989] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/25/2023] Open
Abstract
Rubber is an essential part of our daily lives with thousands of rubber-based products being made and used. Natural rubber undergoes chemical processes and structural modifications, while synthetic rubber, mainly synthetized from petroleum by-products are difficult to degrade safely and sustainably. The most prominent group of biological rubber degraders are Actinobacteria. Rubber degrading Actinobacteria contain rubber degrading genes or rubber oxygenase known as latex clearing protein (lcp). Rubber is a polymer consisting of isoprene, each containing one double bond. The degradation of rubber first takes place when lcp enzyme cleaves the isoprene double bond, breaking them down into the sole carbon and energy source to be utilized by the bacteria. Actinobacteria grow in diverse environments, and lcp gene containing strains have been detected from various sources including soil, water, human, animal, and plant samples. This review entails the occurrence, physiology, biochemistry, and molecular characteristics of Actinobacteria with respect to its rubber degrading ability, and discusses possible technological applications based on the activity of Actinobacteria for treating rubber waste in a more environmentally responsible manner.
Collapse
Affiliation(s)
- Ann Anni Basik
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Jean-Jacques Sanglier
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Chia Tiong Yeo
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: ; Tel.: +60-4-6534367; Fax: +60-4-6565125
| |
Collapse
|
4
|
Rathore DS, Sheikh MA, Gohel SD, Singh SP. Genetic and Phenotypic Heterogeneity of the Nocardiopsis alba Strains of Seawater. Curr Microbiol 2021; 78:1377-1387. [PMID: 33646381 DOI: 10.1007/s00284-021-02420-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
This study deals with the genetic and phenotypic heterogeneity of the marine Nocardiopsis alba strains isolated during pre-monsoon, monsoon and post-monsoon seasons. The isolates were characterized for their morphological and biochemical attributes, growth media preferences, antibiotic susceptibility and extracellular enzyme secretion. Nocardiopsis alba strains were assessed against 12 different antibiotics, and the responses were expressed in terms of the multiple antibiotic resistance (MAR) number. The majority of the strains produced multiple extracellular enzymes: proteases, amylases and lipases. Further, the strains were characterized on the basis of 16S rRNA gene sequencing and the majority were identified as Nocardiopsis alba along with few strains of Streptomyces lopnurensis, Nocardiopsis synnemataformans and Nocardiopsis dassonvillei. Neighbor-joining (NJ) phylogenetic tree suggested variation among the genetically similar Nocardiopsis alba species. The study establishes significant heterogeneity with respect to genetic and phenotypic characteristics of the strains of Nocardiopsis alba. Phylogenetic tree and phenogram-based comparison reflect the heterogeneity in terms of different clustering patterns of the strains. Further, the whole genome sequence data available in the literature also confirm the observed heterogeneity. Nocardiopsis alba strains displayed a relatively regressive pattern of dependence on the environmental factors based on the canonical correspondence analysis plot. The study represents cultivation, characterization, phylogenetic analysis and enzymatic potential of the Nocardiopsis alba species of seawater origin.
Collapse
Affiliation(s)
- Dalip Singh Rathore
- Department of Biosciences, UGC Centre for Advanced Studies (CAS), Saurashtra University, Rajkot, Gujarat, India
| | - Mahejbin A Sheikh
- Department of Biosciences, UGC Centre for Advanced Studies (CAS), Saurashtra University, Rajkot, Gujarat, India
| | - Sangeeta D Gohel
- Department of Biosciences, UGC Centre for Advanced Studies (CAS), Saurashtra University, Rajkot, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, UGC Centre for Advanced Studies (CAS), Saurashtra University, Rajkot, Gujarat, India.
| |
Collapse
|
5
|
Shivaiah KK, Upton B, Nikolau BJ. Kinetic, Structural, and Mutational Analysis of Acyl-CoA Carboxylase From Thermobifida fusca YX. Front Mol Biosci 2021; 7:615614. [PMID: 33511159 PMCID: PMC7835884 DOI: 10.3389/fmolb.2020.615614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Acyl-CoA carboxylases (AcCCase) are biotin-dependent enzymes that are capable of carboxylating more than one short chain acyl-CoA substrate. We have conducted structural and kinetic analyses of such an AcCCase from Thermobifida fusca YX, which exhibits promiscuity in carboxylating acetyl-CoA, propionyl-CoA, and butyryl-CoA. The enzyme consists of two catalytic subunits (TfAcCCA and TfAcCCB) and a non-catalytic subunit, TfAcCCE, and is organized in quaternary structure with a A6B6E6 stoichiometry. Moreover, this holoenzyme structure appears to be primarily assembled from two A3 and a B6E6 subcomplexes. The role of the TfAcCCE subunit is to facilitate the assembly of the holoenzyme complex, and thereby activate catalysis. Based on prior studies of an AcCCase from Streptomyces coelicolor, we explored whether a conserved Asp residue in the TfAcCCB subunit may have a role in determining the substrate selectivity of these types of enzymes. Mutating this D427 residue resulted in alterations in the substrate specificity of the TfAcCCase, increasing proficiency for carboxylating acetyl-CoA, while decreasing carboxylation proficiency with propionyl-CoA and butyryl-CoA. Collectively these results suggest that residue D427 of AcCCB subunits is an important, but not sole determinant of the substrate specificity of AcCCase enzymes.
Collapse
Affiliation(s)
- Kiran-Kumar Shivaiah
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States.,Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Bryon Upton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States.,Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Basil J Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States.,Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Sunish KS, Biji M, Rosamma P, Sudheer NS, Sreedharan K, Mohandas A, Singh ISB. Marine actinomycetes Nocardiopsis alba MCCB 110 has immunomodulatory property in the tiger shrimp Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2020; 102:125-132. [PMID: 32302772 DOI: 10.1016/j.fsi.2020.03.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Shrimp farming constitutes an important source of revenue and employment in many developing countries. However, the shrimp industry has always been plagued with infectious diseases having varied aetiologies. Dominated by non - specific immune mechanism, preventive health care strategy is the most appropriate approach to protect the crop. The present study evaluated the efficacy of an actinomycete, Nocardiopsis alba MCCB 110 in eliciting non - specific immune mechanism in Penaeus monodon having Vibrio harveyi as the challenge organism. Haemocyte count, total protein, phenoloxidase, reactive oxygen intermediates, acid and alkaline phosphatase as well as the gene expression of proPO, peroxinectin, transglutaminase, alpha 2-macroglobulin, astakine, crustin, and penaeidin-3 were evaluated. The results demonstrated that the phenoloxidase, respiratory burst, total protein, acid and alkaline phosphatases were higher in the haemolymph of shrimps fed with Nocardiopsis alba MCCB 110 incorporated feed before and after challenge with Vibrio harveyi, compared to those of placebo fed animals. Up-regulation of six immune genes (alpha 2 macroglobulin, penaeidin -3, transglutaminase, proPO, crustin and peroxinectin) during the post-challenge were recorded. Survival of shrimp among the Nocardiopsis alba administered ones was 83% while it was 50% in placebo fed group. The elevated levels of nonspecific immune gene transcripts and concurrent increase in non specific immunity besides the higher survival rate in the Nocardiopsis alba administered group demonstrated the immunomodulatory property of the marine actinomycete Nocardiopsis alba MCCB 110 in the tiger shrimp Penaeus monodon, and on administering it through diet shrimp could be protected from vibriosis especially of V. harveyi.
Collapse
Affiliation(s)
- K S Sunish
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016, India
| | - Mathew Biji
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, 920CSB, MC719, Chicago, USA
| | - Philip Rosamma
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Science and Technology, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016, India
| | - N S Sudheer
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016, India
| | - K Sreedharan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016, India
| | - A Mohandas
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016, India.
| |
Collapse
|
7
|
Asem MD, Salam N, Idris H, Zhang XT, Bull AT, Li WJ, Goodfellow M. Nocardiopsis deserti sp. nov., isolated from a high altitude Atacama Desert soil. Int J Syst Evol Microbiol 2020; 70:3210-3218. [DOI: 10.1099/ijsem.0.004158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The taxonomic status of a
Nocardiopsis
strain, designated H13T, isolated from a high altitude Atacama Desert soil, was established by using a polyphasic approach. The strain was found to have chemotaxonomic, cultural and morphological characteristics consistent with its classification within the genus
Nocardiopsis
and formed a well-supported clade in the
Nocardiopsis
phylogenomic tree together with the type strains of
Nocardiopsis alborubida
,
Nocardiopsis dassonvillei
and Nocardiopsis synnematoformans. Strain H13T was distinguished from its closest relatives by low average nucleotide identity (93.2–94.9 %) and in silico DNA–DNA hybridization (52.5–62.4 %) values calculated from draft genome assemblies and by a range of phenotypic properties. On the basis of these results, it is proposed that the isolate be assigned to the genus
Nocardiopsis
as Nocardiopsis deserti sp. nov. with isolate H13T (=CGMCC 4.7585T=KCTC 49249T) as the type strain.
Collapse
Affiliation(s)
- Mipeshwaree Devi Asem
- Department of Biochemistry, Manipur University, Canchipur, 795003, India
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Hamidah Idris
- Biology Department, Sultan Idris Education University, 35900, Malaysia
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NEI 7RU, UK
| | - Xiao-Tong Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Alan T. Bull
- School of Biosciences, University of Kent, Canterbury, Kent CT2 1NJ, UK
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NEI 7RU, UK
| |
Collapse
|
8
|
Zhang XT, Salam N, Xiao M, Asem MD, Li WJ. Genome analysis reveals that Nocardiopsis baichengensis Li et al. 2006 is a later heterotypic synonym of Nocardiopsis halophila Al-Tai and Ruan 1994. Int J Syst Evol Microbiol 2020; 70:89-92. [DOI: 10.1099/ijsem.0.003721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiao-Tong Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Mipeshwaree Devi Asem
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, PR China
| |
Collapse
|
9
|
An Isotopic Ratio Outlier Analysis Approach for Global Metabolomics of Biosynthetically Talented Actinomycetes. Metabolites 2019; 9:metabo9090181. [PMID: 31510039 PMCID: PMC6780544 DOI: 10.3390/metabo9090181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Actinomycetes are powerhouses of natural product biosynthesis. Full realization of this biosynthetic potential requires approaches for recognizing novel metabolites and determining mediators of metabolite production. Herein, we develop an isotopic ratio outlier analysis (IROA) ultra-high performance liquid chromatography-mass spectrometry (UHPLC/MS) global metabolomics strategy for actinomycetes that facilitates recognition of novel metabolites and evaluation of production mediators. We demonstrate this approach by determining impacts of the iron chelator 2,2′-bipyridyl on the Nocardiopsis dassonvillei metabolome. Experimental and control cultures produced metabolites with isotopic carbon signatures that were distinct from corresponding “standard” culture metabolites, which were used as internal standards for LC/MS. This provided an isotopic MS peak pair for each metabolite, which revealed the number of carbon atoms and relative concentrations of metabolites and distinguished biosynthetic products from artifacts. Principal component analysis (PCA) and random forest (RF) differentiated bipyridyl-treated samples from controls. RF mean decrease accuracy (MDA) values supported perturbation of metabolites from multiple amino acid pathways and novel natural products. Evaluation of bipyridyl impacts on the nocazine/XR334 diketopiperazine (DKP) pathway revealed upregulation of amino acid precursors and downregulation of late stage intermediates and products. These results establish IROA as a tool in the actinomycete natural product chemistry arsenal and support broad metabolic consequences of bipyridyl.
Collapse
|
10
|
Andreani NA, Carraro L, Zhang L, Vos M, Cardazzo B. Transposon mutagenesis in Pseudomonas fluorescens reveals genes involved in blue pigment production and antioxidant protection. Food Microbiol 2019; 82:497-503. [PMID: 31027811 DOI: 10.1016/j.fm.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Abstract
Pseudomonas fluorescens Ps_77 is a blue-pigmenting strain able to cause food product discoloration, causing relevant economic losses especially in the dairy industry. Unlike non-pigmenting P. fluorescens, blue pigmenting strains previously were shown to carry a genomic region that includes homologs of trpABCDF genes, pointing at a possible role of the tryptophan biosynthetic pathway in production of the pigment. Here, we employ random mutagenesis to first identify the genes involved in blue-pigment production in P. fluorescens Ps_77 and second to investigate the biological function of the blue pigment. Genetic analyses based on the mapping of the random insertions allowed the identification of eight genes involved in pigment production, including the second copy of trpB (trpB_1) gene. Phenotypic characterization of Ps_77 white mutants demonstrated that the blue pigment increases oxidative-stress resistance. Indeed, while Ps_77 was growing at a normal rate in presence of 5 mM of H2O2, white mutants were completely inhibited. The antioxidative protection is not available for non-producing bacteria in co-culture with Ps_77.
Collapse
Affiliation(s)
- Nadia Andrea Andreani
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, Legnaro, 35020, Padova, Italy; European Centre for Environment and Human Health University of Exeter ESI Building, Penryn Campus, TR109FE, Penryn, UK
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, Legnaro, 35020, Padova, Italy
| | - Lihong Zhang
- European Centre for Environment and Human Health University of Exeter ESI Building, Penryn Campus, TR109FE, Penryn, UK
| | - Michiel Vos
- European Centre for Environment and Human Health University of Exeter ESI Building, Penryn Campus, TR109FE, Penryn, UK
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, Legnaro, 35020, Padova, Italy.
| |
Collapse
|
11
|
The osnR gene of Corynebacterium glutamicum plays a negative regulatory role in oxidative stress responses. ACTA ACUST UNITED AC 2019; 46:241-248. [DOI: 10.1007/s10295-018-02126-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
Abstract
Among the Corynebacterium glutamicum ORFs that have been implicated in stress responses, we chose ORF cg3230, designated osnR, and analyzed it further. Unlike the osnR-deleted strain (ΔosnR), the osnR-overexpressing strain (P180-osnR) developed growth defects and increased sensitivity to various oxidants including H2O2. Transcription in the P180-osnR strain of genes such as sodA (superoxide dismutase), ftn (ferritin biosynthesis), and ahpD (alkyl hydroperoxide reductase; cg2674), which are involved in the detoxification of reactive oxygen species, was only 40% that of the wild type. However, transcription of katA, encoding H2O2-detoxifying catalase, was unchanged in this strain. Genes such as trxB (thioredoxin reductase) and mtr (mycothiol disulfide reductase), which play roles in redox homeostasis, also showed decreased transcription in the strain. 2D-PAGE analysis indicated that genes involved in redox reactions were considerably affected by osnR overexpression. The NADPH/NADP+ ratio of the P180-osnR strain (1.35) was higher than that of the wild-type stain (0.78). Collectively, the phenotypes of the ΔosnR and P180-osnR strains suggest a global regulatory role as well as a negative role for the gene in stress responses, particularly in katA-independent oxidative stress responses.
Collapse
|
12
|
Adlin Jenifer JSC, Michaelbabu M, Eswaramoorthy Thirumalaikumar CL, Jeraldin Nisha SR, Uma G, Citarasu T. Antimicrobial potential of haloalkaliphilic Nocardiopsis sp. AJ1 isolated from solar salterns in India. J Basic Microbiol 2019; 59:288-301. [PMID: 30604885 DOI: 10.1002/jobm.201800252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/24/2018] [Accepted: 11/30/2018] [Indexed: 11/10/2022]
Abstract
Antagonistic haloalkaliphilic Nocardiopsis sp. AJ1 (GenBank JX575136.1), isolated and identified from the saline soil of Kovalam solar salterns was able to produce antimicrobial secondary metabolites and effectively suppressed several bacterial and fungal pathogens. The metabolite extracted from ethyl acetate precipitation suppressed the bacterial and fungal pathogens to the range between 2.14 and 20.14 mm and also controlled the shrimp killer virus WSSV by 83% than the control and significantly (p < 0.05) differed. GC-MS analysis revealed that, the ethyl acetate precipitation contains pyrrolo (1,2-A(pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-) and actinomycin C2. Non ribosomal peptide synthetase (NRPS) was amplified by PCR with the amplicon size of 750-800 bp length and further predicted the secondary structure by Iterative Threading Assembly Refinement (I-TASSER) bioinformatics approach. I-TASSER prediction helped to find out the secondary, 3-D structure, and ligand binding sites. The top ten modelling concluded that, the NRPS gene is closely similar to surfactin synthesizing gene, surfactin A synthetase C (SRFA-C). The findings revealed that, the active compounds from the secondary metabolites effectively suppressed the pathogenic bacteria, fungi, and virus and useful to develop antimicrobials.
Collapse
Affiliation(s)
| | - Mariavincent Michaelbabu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, India
| | | | - Selva Raj Jeraldin Nisha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, India
| | - Ganapathi Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, India
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, India
| |
Collapse
|
13
|
Cornell CR, Marasini D, Fakhr MK. Molecular Characterization of Plasmids Harbored by Actinomycetes Isolated From the Great Salt Plains of Oklahoma Using PFGE and Next Generation Whole Genome Sequencing. Front Microbiol 2018; 9:2282. [PMID: 30356833 PMCID: PMC6190872 DOI: 10.3389/fmicb.2018.02282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022] Open
Abstract
One of the unique features of actinomycetes, especially the genus Streptomyces, is the presence of linear plasmids. These range in size from 12 to 600 kb, and are often termed mega-plasmids. While many of the genes involved in secondary metabolite production reside in clusters on the chromosome, several studies have identified biosynthetic clusters on large linear plasmids that produce important secondary metabolites, including antibiotics. In this study, Pulse Field Gel Electrophoresis (PFGE) was used to screen 176 actinomycete isolates for the presence of plasmids; these bacterial strains were previously isolated from the Great Salt Plains of Oklahoma. Seventy-eight of the 176 actinomycete isolates (44%) contained plasmids. Several strains contained more than one plasmid, accounting for a total of 109 plasmids. Ten isolates showed extrachromosomal DNA larger than 200 kb, thus falling into the category of mega-plasmids. A subset of plasmids from 55 isolates was treated with S1 nuclease to determine topology; all plasmids examined appeared to be linear and ranged from ~55 to 400 kb. Eleven isolates were chosen for Whole Genome Next Generation Sequencing. From the 11 sequenced isolates, seven plasmids were partially assembled. While the majority of the genes identified on the plasmids coded for hypothetical proteins, others coded for general functions, stress response, and antibiotic and heavy metal resistance. Draft genome sequences of two mega-plasmid-bearing Streptomyces sp. strains, BF-3 and 4F, revealed the presence of genes involved in antibiotic production, antibiotic, and heavy metal resistance, osmoregulation, and stress response, which likely facilitate their survival in this extreme halophilic environment. To our knowledge, this is the first study to explore plasmids harbored by actinomycetes isolated from the Great Salt Plains of Oklahoma.
Collapse
Affiliation(s)
| | | | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
14
|
Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT, Winkler A, Wibberg D, Kalinowski J, Ziemert N. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics 2018; 19:426. [PMID: 29859036 PMCID: PMC5984834 DOI: 10.1186/s12864-018-4809-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/21/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome mining tools have enabled us to predict biosynthetic gene clusters that might encode compounds with valuable functions for industrial and medical applications. With the continuously increasing number of genomes sequenced, we are confronted with an overwhelming number of predicted clusters. In order to guide the effective prioritization of biosynthetic gene clusters towards finding the most promising compounds, knowledge about diversity, phylogenetic relationships and distribution patterns of biosynthetic gene clusters is necessary. RESULTS Here, we provide a comprehensive analysis of the model actinobacterial genus Amycolatopsis and its potential for the production of secondary metabolites. A phylogenetic characterization, together with a pan-genome analysis showed that within this highly diverse genus, four major lineages could be distinguished which differed in their potential to produce secondary metabolites. Furthermore, we were able to distinguish gene cluster families whose distribution correlated with phylogeny, indicating that vertical gene transfer plays a major role in the evolution of secondary metabolite gene clusters. Still, the vast majority of the diverse biosynthetic gene clusters were derived from clusters unique to the genus, and also unique in comparison to a database of known compounds. Our study on the locations of biosynthetic gene clusters in the genomes of Amycolatopsis' strains showed that clusters acquired by horizontal gene transfer tend to be incorporated into non-conserved regions of the genome thereby allowing us to distinguish core and hypervariable regions in Amycolatopsis genomes. CONCLUSIONS Using a comparative genomics approach, it was possible to determine the potential of the genus Amycolatopsis to produce a huge diversity of secondary metabolites. Furthermore, the analysis demonstrates that horizontal and vertical gene transfer play an important role in the acquisition and maintenance of valuable secondary metabolites. Our results cast light on the interconnections between secondary metabolite gene clusters and provide a way to prioritize biosynthetic pathways in the search and discovery of novel compounds.
Collapse
Affiliation(s)
- Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Mohammad Alanjary
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Helena Sales-Ortells
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Michael Goodfellow
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU UK
| | - Alan T. Bull
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Anika Winkler
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Daniel Wibberg
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Jörn Kalinowski
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Ibrahim AH, Desoukey SY, Fouad MA, Kamel MS, Gulder TAM, Abdelmohsen UR. Natural Product Potential of the Genus Nocardiopsis. Mar Drugs 2018; 16:md16050147. [PMID: 29710816 PMCID: PMC5983278 DOI: 10.3390/md16050147] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Actinomycetes are a relevant source of novel bioactive compounds. One of the pharmaceutically and biotechnologically important genera that attract natural products research is the genus Nocardiopsis, mainly for its ability to produce a wide variety of secondary metabolites accounting for its wide range of biological activities. This review covers the literature from January 2015 until February 2018 making a complete survey of all the compounds that were isolated from the genus Nocardiopsis, their biological activities, and natural sources, whenever applicable.
Collapse
Affiliation(s)
- Alyaa Hatem Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Mostafa A Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Minia 61111, Egypt.
| | - Tobias A M Gulder
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Biosystems Chemistry, Technical University of Munich, Lichtenbergstraβe 4, 85748 Garching, Germany.
| | | |
Collapse
|
16
|
Han J, Gao QX, Zhang YG, Li L, Mohamad OAA, Rao MPN, Xiao M, Hozzein WN, Alkhalifah DHM, Tao Y, Li WJ. Transcriptomic and Ectoine Analysis of Halotolerant Nocardiopsis gilva YIM 90087 T Under Salt Stress. Front Microbiol 2018; 9:618. [PMID: 29651284 PMCID: PMC5884947 DOI: 10.3389/fmicb.2018.00618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/16/2018] [Indexed: 11/25/2022] Open
Abstract
The genus Nocardiopsis is an unique actinobacterial group that widely distributed in hypersaline environments. In this study, we investigated the growth conditions, transcriptome analysis, production and accumulation of ectoine by Nocardiopsis gilva YIM 90087T under salt stress. The colony color of N. gilva YIM 90087T changed from yellow to white under salt stress conditions. Accumulation of ectoine and hydroxyectoine in cells was an efficient way to regulate osmotic pressure. The ectoine synthesis was studied by transferring the related genes (ectA, ectB, and ectC) to Escherichia coli. Transcriptomic analysis showed that the pathways of ABC transporters (ko02010) and glycine, serine, and threonine metabolism (ko00260) played a vital role under salt stress environment. The ectABC from N. gilva YIM 90087T was activated under the salt stress. Addition of exogenous ectoine and hydroxyectoine were helpful to protect N. gilva YIM 90087T from salt stress.
Collapse
Affiliation(s)
- Jian Han
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quan-Xiu Gao
- Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong-Guang Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Osama A A Mohamad
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Institute for Post Graduate Environmental Studies, Environmental Science Department, Arish University, North Sinai, Egypt
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt.,Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dalal H M Alkhalifah
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yong Tao
- Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Yu J, Song Y, Ren Y, Qing Y, Liu W, Sun Z. Genome-level comparisons provide insight into the phylogeny and metabolic diversity of species within the genus Lactococcus. BMC Microbiol 2017; 17:213. [PMID: 29100523 PMCID: PMC5670709 DOI: 10.1186/s12866-017-1120-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The genomic diversity of different species within the genus Lactococcus and the relationships between genomic differentiation and environmental factors remain unclear. In this study, type isolates of ten Lactococcus species/subspecies were sequenced to assess their genomic characteristics, metabolic diversity, and phylogenetic relationships. RESULTS The total genome sizes varied between 1.99 (Lactococcus plantarum) and 2.46 megabases (Mb; L. lactis subsp. lactis), and the G + C content ranged from 34.81 (L. lactis subsp. hordniae) to 39.67% (L. raffinolactis) with an average value of 37.02%. Analysis of genome dynamics indicated that the genus Lactococcus has an open pan-genome, while the core genome size decreased with sequential addition at the genus and species group levels. A phylogenetic dendrogram based on the concatenated amino acid sequences of 643 core genes was largely consistent with the phylogenetic tree obtained by 16S ribosomal RNA (rRNA) genes, but it provided a more robust phylogenetic resolution than the 16S rRNA gene-based analysis. CONCLUSIONS Comparative genomics indicated that species in the genus Lactococcus had high degrees of diversity in genome size, gene content, and carbohydrate metabolism. This may be important for the specific adaptations that allow different Lactococcus species to survive in different environments. These results provide a quantitative basis for understanding the genomic and metabolic diversity within the genus Lactococcus, laying the foundation for future studies on taxonomy and functional genomics.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanting Qing
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
18
|
Xu H, Qin S, Lan Y, Liu M, Cao X, Qiao D, Cao Y, Cao Y. Comparative genomic analysis of Paenibacillus sp. SSG-1 and its closely related strains reveals the effect of glycometabolism on environmental adaptation. Sci Rep 2017; 7:5720. [PMID: 28720902 PMCID: PMC5516027 DOI: 10.1038/s41598-017-06160-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/08/2017] [Indexed: 11/21/2022] Open
Abstract
The extensive environmental adaptability of the genus Paenibacillus is related to the enormous diversity of its gene repertoires. Paenibacillus sp. SSG-1 has previously been reported, and its agar-degradation trait has attracted our attention. Here, the genome sequence of Paenibacillus sp. SSG-1, together with 76 previously sequenced strains, was comparatively studied. The results show that the pan-genome of Paenibacillus is open and indicate that the current taxonomy of this genus is incorrect. The incessant flux of gene repertoires resulting from the processes of gain and loss largely contributed to the difference in genomic content and genome size in Paenibacillus. Furthermore, a large number of genes gained are associated with carbohydrate transport and metabolism. It indicates that the evolution of glycometabolism is a key factor for the environmental adaptability of Paenibacillus species. Interestingly, through horizontal gene transfer, Paenibacillus sp. SSG-1 acquired an approximately 150 kb DNA fragment and shows an agar-degrading characteristic distinct from most other non-marine bacteria. This region may be transported in bacteria as a complete unit responsible for agar degradation. Taken together, these results provide insights into the evolutionary pattern of Paenibacillus and have implications for studies on the taxonomy and functional genomics of this genus.
Collapse
Affiliation(s)
- Hui Xu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Shishang Qin
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Yanhong Lan
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Mengjia Liu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Xiyue Cao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China
| | - Yu Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China.
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610065, P.R. China.
| |
Collapse
|
19
|
Hadj Rabia-Boukhalfa Y, Eveno Y, Karama S, Selama O, Lauga B, Duran R, Hacène H, Eparvier V. Isolation, purification and chemical characterization of a new angucyclinone compound produced by a new halotolerant Nocardiopsis sp. HR-4 strain. World J Microbiol Biotechnol 2017; 33:126. [DOI: 10.1007/s11274-017-2292-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/20/2017] [Indexed: 01/10/2023]
|
20
|
Zhi XY, Jiang Z, Yang LL, Huang Y. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach. Mol Phylogenet Evol 2017; 107:246-255. [DOI: 10.1016/j.ympev.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
|
21
|
Zhong Z, Zhang W, Song Y, Liu W, Xu H, Xi X, Menghe B, Zhang H, Sun Z. Comparative genomic analysis of the genus Enterococcus. Microbiol Res 2017; 196:95-105. [PMID: 28164795 DOI: 10.1016/j.micres.2016.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023]
Abstract
As important lactic acid bacteria, Enterococcus species are widely used in the production of fermented food. However, as some strains of Enterococcus are opportunistic pathogens, their safety has not been generally accepted. In recent years, a large number of new species have been described and classified within the genus Enterococcus, so a better understanding of the genetic relationships and evolution of Enterococcus species is needed. In this study, the genomes of 29 type strains of Enterococcus species were sequenced. In combination with eight complete genome sequences from the Genbank database, the whole genomes of 37 strains of Enterococcus were comparatively analyzed. The average length of Enterococcus genomes was 3.20Mb and the average GC content was 37.99%. The core- and pan- genomes were defined based on the genomes of the 37 strains of Enterococcus. The core-genome contained 605 genes, a large proportion of which were associated with carbohydrate metabolism, protein metabolism, DNA and RNA metabolism. The phylogenetic tree showed that habitat is very important in the evolution of Enterococcus. The genetic relationships were closer in strains that come from similar habitats. According to the topology of the time tree, we found that humans and mammals may be the original hosts of Enterococcus, and then species from humans and mammals made a host-shift to plants, birds, food and other environments. However, it was just an evolutionary scenario, and more data and efforts were needed to prove this postulation. The comparative genomic analysis provided a snapshot of the evolution and genetic diversity of the genus Enterococcus, which paves the way for follow-up studies on its taxonomy and functional genomics.
Collapse
Affiliation(s)
- Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Xiaoxia Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| |
Collapse
|
22
|
Akhwale JK, Göker M, Rohde M, Schumann P, Boga HI, Klenk HP. Nocardiopsis mwathae sp. nov., isolated from the haloalkaline Lake Elmenteita in the African Rift Valley. Antonie van Leeuwenhoek 2016; 109:421-30. [DOI: 10.1007/s10482-016-0647-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022]
|
23
|
Zhang Y, Li Y, Zhang Y, Wang Z, Zhao M, Su N, Zhang T, Chen L, Wei W, Luo J, Zhou Y, Xu Y, Xu P, Li W, Tao Y. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis. J Proteome Res 2015; 15:68-85. [DOI: 10.1021/acs.jproteome.5b00526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yao Zhang
- Institute
of Microbiology, Chinese Academy of Science, Beijing 100101, China
- State
Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant
Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanchang Li
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yongguang Zhang
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
| | - Zhiqiang Wang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry
of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Mingzhi Zhao
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Na Su
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Tao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Lingsheng Chen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, P. R. China
| | - Wei Wei
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Jing Luo
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Zhou
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Hebei
Province Key Lab of Research and Application on Microbial Diversity,
College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yongru Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, P. R. China
| | - Ping Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry
of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
- Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Wenjun Li
- State
Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant
Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China
- Key
Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, China
- Key
Laboratory of Microbial Diversity in Southwest China, Ministry of
Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yong Tao
- Institute
of Microbiology, Chinese Academy of Science, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Bennur T, Ravi Kumar A, Zinjarde S, Javdekar V. Nocardiopsis
species: a potential source of bioactive compounds. J Appl Microbiol 2015; 120:1-16. [DOI: 10.1111/jam.12950] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Affiliation(s)
- T. Bennur
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - A. Ravi Kumar
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - S.S. Zinjarde
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - V. Javdekar
- Department of Biotechnology; Abasaheb Garware College; Pune India
| |
Collapse
|
25
|
Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res 2015; 174:33-47. [PMID: 25946327 DOI: 10.1016/j.micres.2015.03.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022]
Abstract
Members of the genus Nocardiopsis are ecologically versatile and biotechnologically important. They produce a variety of bioactive compounds such as antimicrobial agents, anticancer substances, tumor inducers, toxins and immunomodulators. They also secrete novel extracellular enzymes such as amylases, chitinases, cellulases, β-glucanases, inulinases, xylanases and proteases. Nocardiopsis species are aerobic, Gram-positive, non-acid-fast, catalase-positive actinomycetes with nocardioform substrate mycelia and their aerial mycelia bear long chains of spores. Their DNA possesses high contents of guanine and cytosine. There is a marked variation in properties of the isolates obtained from different ecological niches and their products. An important feature of several species is their halophilic or halotolerant nature. They are associated with a variety of marine and terrestrial biological forms wherein they produce antibiotics and toxins that help their hosts in evading pathogens and predators. Two Nocardiopsis species, namely, N. dassonvillei and N. synnemataformans (among the thirty nine reported ones) are opportunistic human pathogens and cause mycetoma, suppurative infections and abscesses. Nocardiopsis species are present in some plants (as endophytes or surface microflora) and their rhizospheres. Here, they are reported to produce enzymes such as α-amylases and antifungal agents that are effective in warding-off plant pathogens. They are prevalent as free-living entities in terrestrial locales, indoor locations, marine ecosystems and hypersaline habitats on account of their salt-, alkali- and desiccation-resistant behavior. In such natural locations, Nocardiopsis species mainly help in recycling organic compounds. Survival under these diverse conditions is mediated by the production of extracellular enzymes, antibiotics, surfactants, and the accumulation of compatible solutes. The accommodative genomic features of Nocardiopsis species support their existence under the diverse conditions where they prevail.
Collapse
Affiliation(s)
- Tahsin Bennur
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| | - Vaishali Javdekar
- Department of Biotechnology, Abasaheb Garware College, Pune 411004, India.
| |
Collapse
|
26
|
Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species as potential sources of diverse and novel extracellular enzymes. Appl Microbiol Biotechnol 2014; 98:9173-85. [PMID: 25269602 DOI: 10.1007/s00253-014-6111-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 01/10/2023]
Abstract
Members of the genus Nocardiopsis are generally encountered in locations that are inherently extreme. They are present in frozen soils, desert sand, compost, saline or hypersaline habitats (marine systems, salterns and soils) and alkaline places (slag dumps, lake soils and sediments). In order to survive under these severe conditions, they produce novel and diverse enzymes that allow them to utilize the available nutrients and to thrive. The members of this genus are multifaceted and release an assortment of extracellular hydrolytic enzymes. They produce enzymes that are cold-adapted (α-amylases), thermotolerant (α-amylases and xylanases), thermoalkalotolerant (cellulases, β-1,3-glucanases), alkali-tolerant thermostable (inulinases), acid-stable (keratinase) and alkalophilic (serine proteases). Some of the enzymes derived from Nocardiopsis species act on insoluble polymers such as glucans (pachyman and curdlan), keratin (feathers and prion proteins) and polyhydroxyalkanoates. Extreme tolerance exhibited by proteases has been attributed to the presence of some amino acids (Asn and Pro) in loop structures, relocation of multiple salt bridges to outer regions of the protein or the presence of a distinct polyproline II helix. The range of novel enzymes is projected to increase in the forthcoming years, as new isolates are being continually reported, and the development of processes involving such enzymes is envisaged in the future.
Collapse
Affiliation(s)
- Tahsin Bennur
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, 411007, India
| | | | | | | |
Collapse
|
27
|
New structures and composition of cell wall teichoic acids from Nocardiopsis synnemataformans, Nocardiopsis halotolerans, Nocardiopsis composta and Nocardiopsis metallicus: a chemotaxonomic value. Antonie van Leeuwenhoek 2014; 106:1105-17. [PMID: 25231460 DOI: 10.1007/s10482-014-0280-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
The structures of the cell wall teichoic acids (TA) from some species of the genus Nocardiopsis were established by chemical and NMR spectroscopic methods. The cell walls of Nocardiopsis synnemataformans VKM Ac-2518(T) and Nocardiopsis halotolerans VKM Ac-2519(T) both contain two TA with unique structures-poly(polyol phosphate-glycosylpolyol phosphate)-belonging to the type IV TA. In both organisms, the minor TA have identical structures: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-4 of the amino sugar. This structure is found for the first time. The major TA of N. halotolerans has a hitherto unknown structure: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate), the N-acetyl-β-galactosamine being acetalated with pyruvic acid at positions 4 and 6. The major TA of N. synnemataformans is a poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-3 of the amino sugar. The cell walls of Nocardiopsis composta VKM Ac-2520 and N. composta VKM Ac-2521(T) contain only one TA, namely 1,3-poly(glycerol phosphate) partially substituted with N-acetyl-α-glucosamine. The cell wall of Nocardiopsis metallicus VKM Ac-2522(T) contains two TA. The major TA is 1,5-poly(ribitol phosphate), each ribitol unit carrying a pyruvate ketal group at positions 2 and 4. The structure of the minor TA is the same as that of N. composta. The results presented correlate well with the phylogenetic grouping of strains and confirm the species and strain specific features of cell wall TA in members of the genus Nocardiopsis.
Collapse
|
28
|
Analysis of the biosynthesis of antibacterial cyclic dipeptides in Nocardiopsis alba. Arch Microbiol 2014; 196:765-74. [PMID: 25048158 DOI: 10.1007/s00203-014-1015-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/10/2014] [Accepted: 07/11/2014] [Indexed: 01/14/2023]
Abstract
Nocardiopsis alba is frequently isolated from environment and has recently been suggested as a casual symbiotic actinobacterium of diverse invertebrates. Using activity-guided fractionation, we purified two antibacterial cyclic dipeptides, cyclo(ΔPhe-ΔLeu) (albonoursin) and cyclo(ΔmTyr-ΔLeu), from a culture of Nocardiopsis alba ATCC BAA-2165. Analysis of N. alba genome revealed genetic information similar to albonoursin biosynthetic gene cluster, albABC. An albABC gene deletion mutant of N. alba was generated. Liquid chromatography-mass spectrometry analysis showed that the mutant could not produce the cyclic dipeptides. Cyclic dipeptide production in the mutant was restored by genetic complementation with the albABC cloned in a native plasmid of Nocardiopsis. β-Glucuronidase reporter assays with a second mutant construct, in which albABC promoter is transcriptionally fused to the reporting gene gusA, indicated that albABC gene expression was subject to osmoregulation. The system presented will be used to study the metabolic and genetic control of cyclic dipeptide biosynthesis in Nocardiopsis.
Collapse
|
29
|
Draft Genome Sequence of Marine-Derived Actinomycete Nocardiopsis sp. Strain TP-A0876, a Producer of Polyketide Pyrones. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00665-14. [PMID: 25013138 PMCID: PMC4110758 DOI: 10.1128/genomea.00665-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report the draft genome sequence of Nocardiopsis sp. strain TP-A0876, isolated from marine sediment, which produces polyketide-derived pyrones called nocapyrones. The genome contains three polyketide synthase (PKS) gene clusters, one of which was proposed to be responsible for nocapyrone biosynthesis. This genome sequence will facilitate the study of the potential for secondary metabolism in Nocardiopsis strains.
Collapse
|
30
|
Gao XY, Zhi XY, Li HW, Klenk HP, Li WJ. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One 2014; 9:e101229. [PMID: 24977706 PMCID: PMC4076318 DOI: 10.1371/journal.pone.0101229] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.
Collapse
Affiliation(s)
- Xiao-Yang Gao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (X-YG); (W-JL)
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Hong-Wei Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- The First Hospital of Qujing City, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Hans-Peter Klenk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- * E-mail: (X-YG); (W-JL)
| |
Collapse
|