1
|
Franco-Obregón A. Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure. Bioengineering (Basel) 2023; 10:1176. [PMID: 37892906 PMCID: PMC10604793 DOI: 10.3390/bioengineering10101176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Mitohormesis is a process whereby mitochondrial stress responses, mediated by reactive oxygen species (ROS), act cumulatively to either instill survival adaptations (low ROS levels) or to produce cell damage (high ROS levels). The mitohormetic nature of extremely low-frequency electromagnetic field (ELF-EMF) exposure thus makes it susceptible to extraneous influences that also impinge on mitochondrial ROS production and contribute to the collective response. Consequently, magnetic stimulation paradigms are prone to experimental variability depending on diverse circumstances. The failure, or inability, to control for these factors has contributed to the existing discrepancies between published reports and in the interpretations made from the results generated therein. Confounding environmental factors include ambient magnetic fields, temperature, the mechanical environment, and the conventional use of aminoglycoside antibiotics. Biological factors include cell type and seeding density as well as the developmental, inflammatory, or senescence statuses of cells that depend on the prior handling of the experimental sample. Technological aspects include magnetic field directionality, uniformity, amplitude, and duration of exposure. All these factors will exhibit manifestations at the level of ROS production that will culminate as a unified cellular response in conjunction with magnetic exposure. Fortunately, many of these factors are under the control of the experimenter. This review will focus on delineating areas requiring technical and biological harmonization to assist in the designing of therapeutic strategies with more clearly defined and better predicted outcomes and to improve the mechanistic interpretation of the generated data, rather than on precise applications. This review will also explore the underlying mechanistic similarities between magnetic field exposure and other forms of biophysical stimuli, such as mechanical stimuli, that mutually induce elevations in intracellular calcium and ROS as a prerequisite for biological outcome. These forms of biophysical stimuli commonly invoke the activity of transient receptor potential cation channel classes, such as TRPC1.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; ; Tel.: +65-6777-8427 or +65-6601-6143
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
2
|
Ma T, Ding Q, Liu C, Wu H. Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis. Stem Cell Res Ther 2023; 14:133. [PMID: 37194107 DOI: 10.1186/s13287-023-03303-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Electromagnetic fields (EMF) are increasing in popularity as a safe and non-invasive therapy. On the one hand, it is widely acknowledged that EMF can regulate the proliferation and differentiation of stem cells, promoting the undifferentiated cells capable of osteogenesis, angiogenesis, and chondroblast differentiation to achieve bone repair purpose. On the other hand, EMF can inhibit tumor stem cells proliferation and promote apoptosis to suppress tumor growth. As an essential second messenger, intracellular calcium plays a role in regulating cell cycle, such as proliferation, differentiation and apoptosis. There is increasing evidence that the modulation of intracellular calcium ion by EMF leads to differential outcomes in different stem cells. This review summarizes the regulation of channels, transporters, and ion pumps by EMF-induced calcium oscillations. It furtherly discusses the role of molecules and pathways activated by EMF-dependent calcium oscillations in promoting bone and cartilage repair and inhibiting tumor stem cells growth.
Collapse
Affiliation(s)
- Tian Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qing Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chaoxu Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hua Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Bertagna F, Lewis R, Silva SRP, McFadden J, Jeevaratnam K. Effects of electromagnetic fields on neuronal ion channels: a systematic review. Ann N Y Acad Sci 2021; 1499:82-103. [PMID: 33945157 DOI: 10.1111/nyas.14597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Many aspects of chemistry and biology are mediated by electromagnetic field (EMF) interactions. The central nervous system (CNS) is particularly sensitive to EMF stimuli. Studies have explored the direct effect of different EMFs on the electrical properties of neurons in the last two decades, particularly focusing on the role of voltage-gated ion channels (VGCs). This work aims to systematically review published evidence in the last two decades detailing the effects of EMFs on neuronal ion channels as per the PRISM guidelines. Following a predetermined exclusion and inclusion criteria, 22 papers were included after searches on three online databases. Changes in calcium homeostasis, attributable to the voltage-gated calcium channels, were found to be the most commonly reported result of EMF exposure. EMF effects on the neuronal landscape appear to be diverse and greatly dependent on parameters, such as the field's frequency, exposure time, and intrinsic properties of the irradiated tissue, such as the expression of VGCs. Here, we systematically clarify how neuronal ion channels are particularly affected and differentially modulated by EMFs at multiple levels, such as gating dynamics, ion conductance, concentration in the membrane, and gene and protein expression. Ion channels represent a major transducer for EMF-related effects on the CNS.
Collapse
Affiliation(s)
- Federico Bertagna
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Rebecca Lewis
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - S Ravi P Silva
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,Advanced Technology Institute, University of Surrey, Guildford, Surrey, UK
| | - Johnjoe McFadden
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Kamalan Jeevaratnam
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
4
|
Rodrigues Sousa E, Zoni E, Karkampouna S, La Manna F, Gray PC, De Menna M, Kruithof-de Julio M. A Multidisciplinary Review of the Roles of Cripto in the Scientific Literature Through a Bibliometric Analysis of its Biological Roles. Cancers (Basel) 2020; 12:cancers12061480. [PMID: 32517087 PMCID: PMC7352664 DOI: 10.3390/cancers12061480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-β ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-β and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Eugenio Zoni
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sofia Karkampouna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Federico La Manna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta De Menna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Marianna Kruithof-de Julio
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Kavand H, van Lintel H, Renaud P. Efficacy of pulsed electromagnetic fields and electromagnetic fields tuned to the ion cyclotron resonance frequency of Ca 2+ on chondrogenic differentiation. J Tissue Eng Regen Med 2019; 13:799-811. [PMID: 30793837 DOI: 10.1002/term.2829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Previous studies provide strong evidence for the therapeutic effect of electromagnetic fields (EMFs) on different tissues including cartilage. Diverse exposure parameters applied in scientific reports and the unknown interacting mechanism of EMF with biological systems make EMF studies challenging. In 1985, Liboff proposed that when magnetic fields are tuned to the cyclotron resonance frequencies of critical ions, the motion of ions through cell membranes is enhanced, and thus biological effects appear. Such exposure system consists of a weak alternating magnetic field (B1 ) in the presence of a static magnetic field (B0 ) and depends on the relationship between the magnitudes of B0 and B1 and the angular frequency Ω. The purpose of the present study is to determine the chondrogenic potential of EMF with regards to pulsed EMF (PEMF) and the ion cyclotron resonance (ICR) theory. We used different stimulating systems to generate EMFs in which cells are either stimulated with ubiquitous PEMF parameters, frequently reported, or parameters tuned to satisfy the ICR for Ca2+ (including negative and positive control groups). Chondrogenesis was analysed after 3 weeks of treatment. Cell stimulation under the ICR condition showed positive results in the context of glycosaminoglycans and type II collagen synthesis. In contrast, the other electromagnetically stimulated groups showed no changes compared with the control groups. Furthermore, gene expression assays revealed an increase in the expression of chondrogenic markers (COL2A1, SOX9, and ACAN) in the ICR group. These results suggest that the Ca2+ ICR condition can be an effective factor in inducing chondrogenesis.
Collapse
Affiliation(s)
- Hanie Kavand
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald van Lintel
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Renaud
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Non-Ionizing Radiation for Cardiac Human Amniotic Mesenchymal Stromal Cell Commitment: A Physical Strategy in Regenerative Medicine. Int J Mol Sci 2018; 19:ijms19082324. [PMID: 30096780 PMCID: PMC6121454 DOI: 10.3390/ijms19082324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 01/08/2023] Open
Abstract
Cell therapy is an innovative strategy for tissue repair, since adult stem cells could have limited regenerative ability as in the case of myocardial damage. This leads to a local contractile dysfunction due to scar formation. For these reasons, refining strategy approaches for “in vitro” stem cell commitment, preparatory to the “in vivo” stem cell differentiation, is imperative. In this work, we isolated and characterized at molecular and cellular level, human Amniotic Mesenchymal Stromal Cells (hAMSCs) and exposed them to a physical Extremely Low Frequency Electromagnetic Field (ELF-EMF) stimulus and to a chemical Nitric Oxide treatment. Physically exposed cells showed a decrease of cell proliferation and no change in metabolic activity, cell vitality and apoptotic rate. An increase in the mRNA expression of cardiac and angiogenic differentiation markers, confirmed at the translational level, was also highlighted in exposed cells. Our data, for the first time, provide evidence that physical ELF-EMF stimulus (7 Hz, 2.5 µT), similarly to the chemical treatment, is able to trigger hAMSC cardiac commitment. More importantly, we also observed that only the physical stimulus is able to induce both types of commitments contemporarily (cardiac and angiogenic), suggesting its potential use to obtain a better regenerative response in cell-therapy protocols.
Collapse
|
7
|
Madjid Ansari A, Majidzadeh-A K, Darvishi B, Sanati H, Farahmand L, Norouzian D. Extremely low frequency magnetic field enhances glucose oxidase expression in Pichia pastoris GS115. Enzyme Microb Technol 2017; 98:67-75. [DOI: 10.1016/j.enzmictec.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/31/2016] [Accepted: 12/31/2016] [Indexed: 01/26/2023]
|
8
|
Cheng X, Rajjoub K, Shashurin A, Yan D, Sherman JH, Bian K, Murad F, Keidar M. Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field. Bioelectromagnetics 2016; 38:53-62. [DOI: 10.1002/bem.22014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoqian Cheng
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
| | - Kenan Rajjoub
- Columbian College of Arts and SciencesThe George Washington UniversityWashingtonDistrict of Columbia
| | | | - Dayun Yan
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
| | - Jonathan H. Sherman
- Department of Neurological SurgeryThe George Washington UniversityWashingtonDistrict of Columbia
| | - Ka Bian
- Department of Biochemistry and Molecular MedicineThe George Washington UniversityWashingtonDistrict of Columbia
| | - Ferid Murad
- Department of Biochemistry and Molecular MedicineThe George Washington UniversityWashingtonDistrict of Columbia
| | - Michael Keidar
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
- Department of Neurological SurgeryThe George Washington UniversityWashingtonDistrict of Columbia
| |
Collapse
|
9
|
D’Emilia E, Ledda M, Foletti A, Lisi A, Giuliani L, Grimaldi S, Liboff AR. Weak-field H3O+ion cyclotron resonance alters water refractive index. Electromagn Biol Med 2016; 36:55-62. [DOI: 10.1080/15368378.2016.1181082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Ledda M, D'Emilia E, Giuliani L, Marchese R, Foletti A, Grimaldi S, Lisi A. Nonpulsed Sinusoidal Electromagnetic Fields as a Noninvasive Strategy in Bone Repair: The Effect on Human Mesenchymal Stem Cell Osteogenic Differentiation. Tissue Eng Part C Methods 2015; 21:207-17. [DOI: 10.1089/ten.tec.2014.0216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Enrico D'Emilia
- Dipartimento Insediamenti produttivi ed Interazione con l'Ambiente (INAIL-DIPIA), Rome, Italy
| | - Livio Giuliani
- Dipartimento Insediamenti produttivi ed Interazione con l'Ambiente (INAIL-DIPIA), Rome, Italy
- INAIL Florence, Rome, Italy
| | | | - Alberto Foletti
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
11
|
An evaluation of genotoxicity in human neuronal-type cells subjected to oxidative stress under an extremely low frequency pulsed magnetic field. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 775-776:31-7. [DOI: 10.1016/j.mrgentox.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 12/28/2022]
|
12
|
Di Bonaventura G, Pompilio A, Crocetta V, De Nicola S, Barbaro F, Giuliani L, D'Emilia E, Fiscarelli E, Bellomo RG, Saggini R. Exposure to extremely low-frequency magnetic field affects biofilm formation by cystic fibrosis pathogens. Future Microbiol 2014; 9:1303-17. [DOI: 10.2217/fmb.14.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SUMMARY Aims: To evaluate the in vitro effects of extremely low-frequency magnetic field (ELF-MF) on growth and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia strains from cystic fibrosis patients. Materials & methods: The motion of selected ions (Fe, Ca, Cu, Zn, Mg, K, Na) was stimulated by the ion resonance effect, then influence on growth and biofilm formation/viability was assessed by spectrophotometry or viability count. Results: Generally, exposure to ELF-MF significantly increased bacterial growth and affected both biofilm formation and viability, although with differences with regard to ions and species considered. Conclusion: Exposure to ELF-MF represents a possible new approach for treatment of biofilm-associated cystic fibrosis lung infections.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Experimental & Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Ageing, G. d'Annunzio University Foundation, Chieti, Italy
| | - Arianna Pompilio
- Department of Experimental & Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Ageing, G. d'Annunzio University Foundation, Chieti, Italy
| | - Valentina Crocetta
- Department of Experimental & Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Ageing, G. d'Annunzio University Foundation, Chieti, Italy
| | - Serena De Nicola
- Department of Experimental & Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Ageing, G. d'Annunzio University Foundation, Chieti, Italy
| | - Filippo Barbaro
- Prometeo S.r.l., Padova, Italy
- Department of Neuroscience & Imaging, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Livio Giuliani
- INAIL, Workers Compensation Authority, Research Center of Monteporzio Catone, Rome, Italy
| | - Enrico D'Emilia
- INAIL, Workers Compensation Authority, Research Center of Monteporzio Catone, Rome, Italy
| | | | - Rosa Grazia Bellomo
- Department of Medicine & Ageing Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Raoul Saggini
- Department of Neuroscience & Imaging, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
13
|
Muehsam D, Ventura C. Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med 2014; 3:40-55. [PMID: 24808981 PMCID: PMC4010966 DOI: 10.7453/gahmj.2014.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- David Muehsam
- Visual Institute of Developmental Sciences, Bologna, Italy (Dr Muehsam)
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems, Visual Institute of Developmental Sciences, Bologna; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna (Dr Ventura), Italy
| |
Collapse
|
14
|
Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci 2014; 15:5366-87. [PMID: 24681584 PMCID: PMC4013569 DOI: 10.3390/ijms15045366] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/17/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Selene Tognarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| |
Collapse
|