1
|
Huang J, Xiong X, Zhang W, Chen X, Wei Y, Li H, Xie J, Wei Q, Zhou Q. Integrating miRNA and full-length transcriptome profiling to elucidate the mechanism of muscle growth in Muscovy ducks reveals key roles for miR-301a-3p/ANKRD1. BMC Genomics 2024; 25:340. [PMID: 38575872 PMCID: PMC10993543 DOI: 10.1186/s12864-024-10138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle. Muscovy ducks at four developmental stages, namely Embryonic Day 21 (E21), Embryonic Day 27 (E27), Hatching Day (D0), and Post-hatching Day 7 (D7), were used to isolate total RNA for analysis. RESULTS A total of 68,161 genes and 472 mature microRNAs were identified. In order to uncover deeper insights into the regulation of mRNA by miRNAs, we conducted an integration of the differentially expressed miRNAs (known as DEMs) with the differentially expressed genes (referred to as DEGs) across various developmental stages. This integration allowed us to make predictions regarding the interactions between miRNAs and mRNA. Through this analysis, we identified a total of 274 DEGs that may serve as potential targets for the 68 DEMs. In the predicted miRNA‒mRNA interaction networks, let-7b, miR-133a-3p, miR-301a-3p, and miR-338-3p were the hub miRNAs. In addition, multiple DEMs also showed predicted target relationships with the DEGs associated with skeletal system development. These identified DEGs and DEMs as well as their predicted interaction networks involved in the regulation of energy homeostasis and muscle development were most likely to play critical roles in facilitating the embryo-to-hatchling transition. A candidate miRNA, miR-301a-3p, exhibited increased expression during the differentiation of satellite cells and was downregulated in the breast muscle tissues of Muscovy ducks at E21 compared to E27. A dual-luciferase reporter assay suggested that the ANKRD1 gene, which encodes a transcription factor, is a direct target of miR-301a-3p. CONCLUSIONS miR-301a-3p suppressed the posttranscriptional activity of ANKRD1, which is an activator of satellite cell proliferation, as determined with gain- and loss-of-function experiments. miR-301a-3p functions as an inducer of myogenesis by targeting the ANKRD1 gene in Muscovy ducks. These results provide novel insights into the early developmental process of black Muscovy breast muscles and will improve understanding of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaolan Xiong
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Weihong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yue Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Quanyong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
2
|
Ismaeel A, Van Pelt DW, Hettinger ZR, Fu X, Richards CI, Butterfield TA, Petrocelli JJ, Vechetti IJ, Confides AL, Drummond MJ, Dupont-Versteegden EE. Extracellular vesicle distribution and localization in skeletal muscle at rest and following disuse atrophy. Skelet Muscle 2023; 13:6. [PMID: 36895061 PMCID: PMC9999658 DOI: 10.1186/s13395-023-00315-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Skeletal muscle (SkM) is a large, secretory organ that produces and releases myokines that can have autocrine, paracrine, and endocrine effects. Whether extracellular vesicles (EVs) also play a role in the SkM adaptive response and ability to communicate with other tissues is not well understood. The purpose of this study was to investigate EV biogenesis factors, marker expression, and localization across cell types in the skeletal muscle. We also aimed to investigate whether EV concentrations are altered by disuse atrophy. METHODS To identify the potential markers of SkM-derived EVs, EVs were isolated from rat serum using density gradient ultracentrifugation, followed by fluorescence correlation spectroscopy measurements or qPCR. Single-cell RNA sequencing (scRNA-seq) data from rat SkM were analyzed to assess the EV biogenesis factor expression, and cellular localization of tetraspanins was investigated by immunohistochemistry. Finally, to assess the effects of mechanical unloading on EV expression in vivo, EV concentrations were measured in the serum by nanoparticle tracking analysis in both a rat and human model of disuse. RESULTS In this study, we show that the widely used markers of SkM-derived EVs, α-sarcoglycan and miR-1, are undetectable in serum EVs. We also found that EV biogenesis factors, including the tetraspanins CD63, CD9, and CD81, are expressed by a variety of cell types in SkM. SkM sections showed very low detection of CD63, CD9, and CD81 in myofibers and instead accumulation within the interstitial space. Furthermore, although there were no differences in serum EV concentrations following hindlimb suspension in rats, serum EV concentrations were elevated in human subjects after bed rest. CONCLUSIONS Our findings provide insight into the distribution and localization of EVs in SkM and demonstrate the importance of methodological guidelines in SkM EV research.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Douglas W Van Pelt
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, USA
| | - Zachary R Hettinger
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, USA
| | - Xu Fu
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Jonathan J Petrocelli
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Ivan J Vechetti
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Amy L Confides
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, USA
| | - Micah J Drummond
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 210E, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
3
|
Li Q, Wang Y, Hu X, Zhang Y, Li H, Zhang Q, Cai W, Wang Z, Zhu B, Xu L, Gao X, Chen Y, Gao H, Li J, Zhang L. Transcriptional states and chromatin accessibility during bovine myoblasts proliferation and myogenic differentiation. Cell Prolif 2022; 55:e13219. [PMID: 35362202 PMCID: PMC9136495 DOI: 10.1111/cpr.13219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives Although major advances have been made in bovine epigenome study, the epigenetic basis for fetal skeletal muscle development still remains poorly understood. The aim is to recapitulated the time course of fetal skeletal muscle development in vitro, and explore the dynamic changes of chromatin accessibility and gene expression during bovine myoblasts proliferation and differentiation. Methods PDGFR‐ cells were isolated from bovine fetal skeletal muscle, then cultured and induced myogenic differentiation in vitro in a time‐course study (P, D0, D2,and D4). The assay for transposase‐accessible chromatin sequencing (ATAC‐seq) and RNA sequencing (RNA‐seq) were performed. Results Among the enriched transcriptional factors with high variability, we determined the effects of MAFF, ZNF384, and KLF6 in myogenesis using RNA interference (RNAi). In addition, we identified both stage‐specific genes and chromatin accessibility regions to reveal the sequential order of gene expression, transcriptional regulatory, and signal pathways involved in bovine skeletal muscle development. Further investigation integrating chromatin accessibility and transcriptome data was conducted to explore cis‐regulatory regions in line with gene expression. Moreover, we combined bovine GWAS results of growth traits with regulatory regions defined by chromatin accessibility, providing a suggestive means for a more precise annotation of genetic variants of bovine growth traits. Conclusion Overall, these findings provide valuable information for understanding the stepwise regulatory mechanisms in skeletal muscle development and conducting beef cattle genetic improvement programs.
Collapse
Affiliation(s)
- Qian Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yahui Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yapeng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongwei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wentao Cai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zezhao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xue Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lupei Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
4
|
Archacka K, Grabowska I, Mierzejewski B, Graffstein J, Górzyńska A, Krawczyk M, Różycka AM, Kalaszczyńska I, Muras G, Stremińska W, Jańczyk-Ilach K, Walczak P, Janowski M, Ciemerych MA, Brzoska E. Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Res Ther 2021; 12:448. [PMID: 34372911 PMCID: PMC8351116 DOI: 10.1186/s13287-021-02530-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. Methods In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. Results We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. Conclusions We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02530-3.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Joanna Graffstein
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Alicja Górzyńska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Krawczyk
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Anna M Różycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004, Warsaw, Poland.,Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Gabriela Muras
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Piotr Walczak
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Warszawska 30 St, 10-082, Olsztyn, Poland.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mirosław Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, 21201, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
5
|
Isesele PO, Mazurak VC. Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Front Physiol 2021; 12:682091. [PMID: 34149458 PMCID: PMC8209368 DOI: 10.3389/fphys.2021.682091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is composed of multinuclear cells called myofibres, which are formed by the fusion of myoblasts during development. The size of the muscle fiber and mass of skeletal muscle are altered in response to several pathological and physiological conditions. Skeletal muscle regeneration is primarily mediated by muscle stem cells called satellite cells (SCs). In response to injury, these SCs replenish myogenic progenitor cells to form new myofibers to repair damaged muscle. During myogenesis, activated SCs proliferate and differentiate to myoblast and then fuse with one another to form muscle fibers. A reduced number of SCs and an inability to undergo myogenesis may contribute to skeletal muscle disorders such as atrophy, cachexia, and sarcopenia. Myogenic regulatory factors (MRF) are transcription factors that regulate myogenesis and determines whether SCs will be in the quiescent, activated, committed, or differentiated state. Mitochondria oxidative phosphorylation and oxidative stress play a role in the determination of the fate of SCs. The potential activation and function of SCs are also affected by inflammation during skeletal muscle regeneration. Omega-3 polyunsaturated fatty acids (PUFAs) show promise to reduce inflammation, maintain muscle mass during aging, and increase the functional capacity of the muscle. The aim of this critical review is to highlight the role of omega-3 PUFAs on the myogenic differentiation of SCs and pathways affected during the differentiation process, including mitochondrial function and inflammation from the current body of literature.
Collapse
Affiliation(s)
- Peter O Isesele
- Division of Human Nutrition, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera C Mazurak
- Division of Human Nutrition, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Lyu Y, Kopcho S, Mohan M, Okeoma CM. Long-Term Low-Dose Delta-9-Tetrahydrocannbinol (THC) Administration to Simian Immunodeficiency Virus (SIV) Infected Rhesus Macaques Stimulates the Release of Bioactive Blood Extracellular Vesicles (EVs) that Induce Divergent Structural Adaptations and Signaling Cues. Cells 2020; 9:E2243. [PMID: 33036231 PMCID: PMC7599525 DOI: 10.3390/cells9102243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Blood extracellular vesicles (BEVs) carry bioactive cargo (proteins, genetic materials, lipids, licit, and illicit drugs) that regulate diverse functions in target cells. The cannabinoid drug delta-9-tetrahydrocannabinol (THC) is FDA approved for the treatment of anorexia and weight loss in people living with HIV. However, the effect of THC on BEV characteristics in the setting of HIV/SIV infection needs to be determined. Here, we used the SIV-infected rhesus macaque model of AIDS to evaluate the longitudinal effects of THC (THC/SIV) or vehicle (VEH/SIV) treatment in HIV/SIV infection on the properties of BEVs. While BEV concentrations increased longitudinally (pre-SIV (0), 30, and 150 days post-SIV infection (DPI)) in VEH/SIV macaques, the opposite trend was observed with THC/SIV macaques. SIV infection altered BEV membrane properties and cargo composition late in infection, since i) the electrostatic surface properties (zeta potential, ζ potential) showed that RM BEVs carried negative surface charge, but at 150 DPI, SIV infection significantly changed BEV ζ potential; ii) BEVs from the VEH/SIV group altered tetraspanin CD9 and CD81 levels compared to the THC/SIV group. Furthermore, VEH/SIV and THC/SIV BEVs mediated divergent changes in monocyte gene expression, morphometrics, signaling, and function. These include altered tetraspanin and integrin β1 expression; altered levels and distribution of polymerized actin, FAK/pY397 FAK, pERK1/2, cleaved caspase 3, proapoptotic Bid and truncated tBid; and altered adhesion of monocytes to collagen I. These data indicate that HIV/SIV infection and THC treatment result in the release of bioactive BEVs with potential to induce distinct structural adaptations and signaling cues to instruct divergent cellular responses to infection.
Collapse
Affiliation(s)
- Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| | - Mahesh Mohan
- Host Pathogen Interaction, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| |
Collapse
|
7
|
Etienne J, Joanne P, Catelain C, Riveron S, Bayer AC, Lafable J, Punzon I, Blot S, Agbulut O, Vilquin JT. Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:1047-1069. [PMID: 32157826 PMCID: PMC7432589 DOI: 10.1002/jcsm.12557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.
Collapse
Affiliation(s)
- Jessy Etienne
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Pierre Joanne
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Cyril Catelain
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Riveron
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alexandra Clarissa Bayer
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérémy Lafable
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Isabel Punzon
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Stéphane Blot
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Onnik Agbulut
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
8
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
10
|
Kim JH, Kim I, Seol YJ, Ko IK, Yoo JJ, Atala A, Lee SJ. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun 2020; 11:1025. [PMID: 32094341 PMCID: PMC7039897 DOI: 10.1038/s41467-020-14930-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/11/2020] [Indexed: 01/20/2023] Open
Abstract
A bioengineered skeletal muscle construct that mimics structural and functional characteristics of native skeletal muscle is a promising therapeutic option to treat extensive muscle defect injuries. We previously showed that bioprinted human skeletal muscle constructs were able to form multi-layered bundles with aligned myofibers. In this study, we investigate the effects of neural cell integration into the bioprinted skeletal muscle construct to accelerate functional muscle regeneration in vivo. Neural input into this bioprinted skeletal muscle construct shows the improvement of myofiber formation, long-term survival, and neuromuscular junction formation in vitro. More importantly, the bioprinted constructs with neural cell integration facilitate rapid innervation and mature into organized muscle tissue that restores normal muscle weight and function in a rodent model of muscle defect injury. These results suggest that the 3D bioprinted human neural-skeletal muscle constructs can be rapidly integrated with the host neural network, resulting in accelerated muscle function restoration. 3D bioprinting of skeletal muscle using primary human muscle progenitor cells results in correct muscle architecture, but functional restoration in rodent models is limited. Here the authors include human neural stem cells into bioprinted skeletal muscle and observe improved architecture and function in vivo.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ickhee Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Young-Joon Seol
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
11
|
Large-Volume Vascularized Muscle Grafts Engineered From Groin Adipose Tissue in Perfusion Bioreactor Culture. J Craniofac Surg 2020; 31:588-593. [PMID: 31977702 DOI: 10.1097/scs.0000000000006257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Muscle tissue engineering still remains a major challenge. An axial vascular pedicle and a perfusion bioreactor are necessary for the development and maintenance of a large-volume engineered muscle tissue to provide circulation within the construct. This study aimed to determine whether large-volume vascularized muscle-like constructs could be made from rat groin adipose tissue in a perfusion bioreactor. METHODS Epigastric adipofascial flaps based on the inferior superficial epigastric vessels were elevated bilaterally in male Lewis rats and connected to the bioreactor. The system was run using a cable pump and filled with myogenic differentiation medium in the perfusion bioreactor for 1, 3, 5, or 7 weeks. The resulting tissue constructs were characterized with respect to the morphology and muscle-related expression of genes and proteins. RESULTS The histological examination demonstrated intact muscle-like tissue fibers; myogenesis was verified by the expression of myosin, MADS box transcription enhancer factor 2 D, desmin-a disintegrin and metalloproteinase domain (ADAM) 12-and M-cadherin using reverse transcription-polymerase chain reaction. Western blot analysis for desmin, MyoD1, N-cadherin, and ADAM12 was performed to verify the myogenic phenotype of the extracted differentiated tissue and prove the formation of muscle-like constructs. CONCLUSIONS A large-volume vascularized muscle tissue could be engineered in a perfusion bioreactor. The resulting tissue had muscle-like histological features and expressed muscle-related genes and proteins, indicating that the trans-differentiation of adipose tissue into muscle tissue occurred.
Collapse
|
12
|
Jo SB, Erdenebileg U, Dashnyam K, Jin GZ, Cha JR, El-Fiqi A, Knowles JC, Patel KD, Lee HH, Lee JH, Kim HW. Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. J Tissue Eng 2020; 11:2041731419900424. [PMID: 32076499 PMCID: PMC7001895 DOI: 10.1177/2041731419900424] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
For skeletal muscle engineering, scaffolds that can stimulate myogenic differentiation of cells while possessing suitable mechanical properties (e.g. flexibility) are required. In particular, the elastic property of scaffolds is of importance which helps to resist and support the dynamic conditions of muscle tissue environment. Here, we developed highly flexible nanocomposite nanofibrous scaffolds made of polycarbonate diol and isosorbide-based polyurethane and hydrophilic nano-graphene oxide added at concentrations up to 8%. The nano-graphene oxide incorporation increased the hydrophilicity, elasticity, and stress relaxation capacity of the polyurethane-derived nanofibrous scaffolds. When cultured with C2C12 cells, the polyurethane-nano-graphene oxide nanofibers enhanced the initial adhesion and spreading of cells and further the proliferation. Furthermore, the polyurethane-nano-graphene oxide scaffolds significantly up-regulated the myogenic mRNA levels and myosin heavy chain expression. Of note, the cells on the flexible polyurethane-nano-graphene oxide nanofibrous scaffolds could be mechanically stretched to experience dynamic tensional force. Under the dynamic force condition, the cells expressed significantly higher myogenic differentiation markers at both gene and protein levels and exhibited more aligned myotubular formation. The currently developed polyurethane-nano-graphene oxide nanofibrous scaffolds, due to their nanofibrous morphology and high mechanical flexibility, along with the stimulating capacity for myogenic differentiation, are considered to be a potential matrix for future skeletal muscle engineering.
Collapse
Affiliation(s)
- Seung Bin Jo
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Uyanga Erdenebileg
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and
BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and
BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and
BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Jae-Ryung Cha
- Department of Nanobiomedical Science and
BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science and
BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Division of Biomaterials and Tissue
Engineering, Eastman Dental Institute, University College London, London, UK
- The Discoveries Centre for Regenerative
and Precision Medicine, Eastman Dental Institute, University College London, London,
UK
| | - Kapil Dev Patel
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and
BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and
BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and
BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
13
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
14
|
Abstract
Modern stem cell research has mainly focused on protein expression and transcriptional networks. However, transmembrane voltage gradients generated by ion channels and transporters have demonstrated to be powerful regulators of cellular processes. These physiological cues exert influence on cell behaviors ranging from differentiation and proliferation to migration and polarity. Bioelectric signaling is a fundamental element of living systems and an untapped reservoir for new discoveries. Dissecting these mechanisms will allow for novel methods of controlling cell fate and open up new opportunities in biomedicine. This review focuses on the role of ion channels and the resting membrane potential in the proliferation and differentiation of skeletal muscle progenitor cells. In addition, findings relevant to this topic are presented and potential implications for tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Colin Fennelly
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
15
|
Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake. Meat Sci 2018; 137:265-274. [DOI: 10.1016/j.meatsci.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022]
|
16
|
Li EW, McKee-Muir OC, Gilbert PM. Cellular Biomechanics in Skeletal Muscle Regeneration. Curr Top Dev Biol 2018; 126:125-176. [DOI: 10.1016/bs.ctdb.2017.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Choo HJ, Canner JP, Vest KE, Thompson Z, Pavlath GK. A tale of two niches: differential functions for VCAM-1 in satellite cells under basal and injured conditions. Am J Physiol Cell Physiol 2017; 313:C392-C404. [PMID: 28701357 DOI: 10.1152/ajpcell.00119.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022]
Abstract
Cell-cell adhesion molecules play key roles in maintaining quiescence or promoting activation of various stem cells in their niche. Muscle stem cells called satellite cells (SC) are critical for skeletal muscle regeneration after injury, but little is known about the role of adhesion molecules in regulating the behavior of these stem cells. Vascular cell adhesion molecule-1 (VCAM-1) is a cell-cell adhesion protein expressed on quiescent and activated SC whose function is unknown in this context. We deleted Vcam1 from SC using an inducible Cre recombinase in young mice. In the injured niche, Vcam1-/- SC underwent premature lineage progression to a more differentiated state as well as apoptosis leading to a transient delay in myofiber growth during regeneration. Apoptosis was also increased in Vcam1-/- SC in vitro concomitant with decreased levels of phosphorylated Akt, a prosurvival signal activated by VCAM-1 signaling in other cell types. During muscle regeneration, we observed an influx of immune cells expressing α4 integrin, a component of the major, high-affinity VCAM-1 ligand, α4β1 integrin. Furthermore, α4 integrin mRNA and protein were induced in SC 2 days after injury. These results suggest that SC interact with other SC as well as immune cells through α4β1 integrin in the injured niche to promote expansion of SC. In the uninjured niche, multiple cell types also expressed α4 integrin. However, only basal fusion of Vcam1-/- SC with myofibers was decreased, contributing to decreased myofiber growth. These studies define differential roles for VCAM-1 in SC depending on the state of their niche.
Collapse
Affiliation(s)
- Hyo-Jung Choo
- Department of Pharmacology, Emory University, Atlanta, Georgia; and.,Department of Cell Biology, Emory University, Atlanta, Georgia
| | - James P Canner
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Katherine E Vest
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Zachary Thompson
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| |
Collapse
|
18
|
FRZB and melusin, overexpressed in LGMD2A, regulate integrin β1D isoform replacement altering myoblast fusion and the integrin-signalling pathway. Expert Rev Mol Med 2017; 19:e2. [PMID: 28300015 DOI: 10.1017/erm.2017.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is characterised by muscle wasting and progressive degeneration of proximal muscles because of mutations in the CAPN3 gene. However, the underlying pathophysiological mechanisms of muscle degeneration are still not well understood. The objective of this study was to assess the relevance of genes with differential expression in the muscle of LGMD2A patients. For this purpose, we analysed their in vitro expression in primary cultures of human myoblasts and myotubes. Abnormal fusion was observed in the myotubes of these patients, which may be explained by the lack of physiological replacement of integrin β1D. Owing to this observation, we focused on deregulated genes coding proteins that directly interact with integrin, ITGB1BP2 and CD9, as well as FRZB gene, because of its in vitro upregulation in myotubes. Silencing studies established that these genes are closely regulated, CD9 and FRZB being positive regulators of the expression of ITGB1BP2, and in turn, this gene being a negative regulator of the expression of FRZB. Interestingly, we observed that FRZB regulates integrin β1D expression, its silencing increasing integrin β1D expression to levels similar to those in controls. Finally, the administration of LiCl, an enhancer of the Wnt-signalling pathway showed similar experimentally beneficial effects, suggesting FRZB silencing or LiCl administration as potential therapeutic targets, though further studies are required.
Collapse
|
19
|
The CD9, CD81, and CD151 EC2 domains bind to the classical RGD-binding site of integrin αvβ3. Biochem J 2016; 474:589-596. [PMID: 27993971 DOI: 10.1042/bcj20160998] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
Tetraspanins play important roles in normal (e.g. cell adhesion, motility, activation, and proliferation) and pathological conditions (e.g. metastasis and viral infection). Tetraspanins interact with integrins and regulate integrin functions, but the specifics of tetraspanin-integrin interactions are unclear. Using co-immunoprecipitation with integrins as a sole method to detect interaction between integrins and full-length tetraspanins, it has been proposed that the variable region (helices D and E) of the extracellular-2 (EC2) domain of tetraspanins laterally associates with a non-ligand-binding site of integrins. We describe that, using adhesion assays, the EC2 domain of CD81, CD9, and CD151 bound to integrin αvβ3, and this binding was suppressed by cRGDfV, a specific inhibitor of αvβ3, and antibody 7E3, which is mapped to the ligand-binding site of β3. We also present evidence that the specificity loop of β3 directly bound to the EC2 domains. This suggests that the EC2 domains specifically bind to the classical ligand-binding site of αvβ3. αvβ3 was a more effective receptor for the EC2 domains than the previously known tetraspanin receptors α3β1, α4β1, and α6β1. Docking simulation predicted that the helices A and B of CD81 EC2 bind to the RGD-binding site of αvβ3. Substituting Lys residues at positions 116 and 144/148 of CD81 EC2 in the predicted integrin-binding interface reduced the binding of CD81 EC2 to αvβ3, consistent with the docking model. These findings suggest that, in contrast with previous models, the ligand-binding site of integrin αvβ3, a new tetraspanin receptor, binds to the constant region (helices A and B) of the EC2 domain.
Collapse
|
20
|
Penton CM, Badarinarayana V, Prisco J, Powers E, Pincus M, Allen RE, August PR. Laminin 521 maintains differentiation potential of mouse and human satellite cell-derived myoblasts during long-term culture expansion. Skelet Muscle 2016; 6:44. [PMID: 27964750 PMCID: PMC5154152 DOI: 10.1186/s13395-016-0116-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/01/2016] [Indexed: 12/03/2022] Open
Abstract
Background Large-scale expansion of myogenic progenitors is necessary to support the development of high-throughput cellular assays in vitro and to advance genetic engineering approaches necessary to develop cellular therapies for rare muscle diseases. However, optimization has not been performed in order to maintain the differentiation capacity of myogenic cells undergoing long-term cell culture. Multiple extracellular matrices have been utilized for myogenic cell studies, but it remains unclear how different matrices influence long-term myogenic activity in culture. To address this challenge, we have evaluated multiple extracellular matrices in myogenic studies over long-term expansion. Methods We evaluated the consequence of propagating mouse and human myogenic stem cell progenitors on various extracellular matrices to determine if they could enhance long-term myogenic potential. For the first time reported, we comprehensively examine the effect of physiologically relevant laminins, laminin 211 and laminin 521, compared to traditionally utilized ECMs (e.g., laminin 111, gelatin, and Matrigel) to assess their capacity to preserve myogenic differentiation potential. Results Laminin 521 supported increased proliferation in early phases of expansion and was the only substrate facilitating high-level fusion following eight passages in mouse myoblast cell cultures. In human myoblast cell cultures, laminin 521 supported increased proliferation during expansion and superior differentiation with myotube hypertrophy. Counterintuitively however, laminin 211, the native laminin isoform in resting skeletal muscle, resulted in low proliferation and poor differentiation in mouse and human cultures. Matrigel performed excellent in short-term mouse studies but showed high amounts of variability following long-term expansion. Conclusions These results demonstrate laminin 521 is a superior substrate for both short-term and long-term myogenic cell culture applications compared to other commonly utilized substrates. Since Matrigel cannot be used for clinical applications, we propose that laminin 521 could possibly be employed in the future to provide myoblasts for cellular therapy directed clinical studies. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0116-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher M Penton
- Discovery Biology, Tucson Innovation Center, Icagen, Oro Valley, AZ, 85755, USA.
| | | | - Joy Prisco
- Discovery Biology, Tucson Innovation Center, Sanofi, Oro Valley, AZ, 85755, USA
| | - Elaine Powers
- Discovery Biology, Tucson Innovation Center, Sanofi, Oro Valley, AZ, 85755, USA
| | - Mark Pincus
- Discovery Biology, Tucson Innovation Center, Icagen, Oro Valley, AZ, 85755, USA
| | - Ronald E Allen
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Paul R August
- Discovery Biology, Tucson Innovation Center, Icagen, Oro Valley, AZ, 85755, USA.
| |
Collapse
|
21
|
Schejter ED. Myoblast fusion: Experimental systems and cellular mechanisms. Semin Cell Dev Biol 2016; 60:112-120. [DOI: 10.1016/j.semcdb.2016.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
|
22
|
Parent VA, Tremblay JP, Garnier A. Rational design of a serum-free culture medium for the growth of human myoblasts destined to cell therapy. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jacques P. Tremblay
- Département de Médecine Moléculaire, Faculté de Médecine, and Centre de Recherche du CHU de Québec; 2705 Laurier blv., room P09300; Québec, QC G1V 4G2 Canada
| | - Alain Garnier
- Département de génie chimique, Faculté des sciences et de génie; Université Laval, 1065, avenue de la médecine; Québec, QC G1V 0A6 Canada
| |
Collapse
|
23
|
Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds. Acta Biomater 2016; 39:44-54. [PMID: 27142254 DOI: 10.1016/j.actbio.2016.04.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED The aligned structural environment in skeletal muscle is believed to be a crucial component in functional muscle regeneration. Myotube formation is increased on aligned biomaterials, but we do not fully understand the mechanisms that direct this enhanced fusion. Previous studies indicate that the α7 integrin subunit is upregulated during myoblast differentiation, suggesting that signaling via α7β1 mediates the effect of alignment. To test this hypothesis, we took advantage of an in vitro model using random and aligned polydioxanone (PDO) matrices and C2C12 myoblasts. We measured expression and production of myoblast markers: paired box-7 (Pax7), myogenic differentiation factor-1 (MyoD), myogenin (MyoG), myogenic factor-6 (Myf6), and myosin heavy chain (MyHC). To examine the role of α7β1 signaling, we measured expression and production of α7, α5, and β1 and myoblast markers in wild type cells and in cells silenced for α7 and assessed effects of silencing on myogenic differentiation. Downstream signaling via ERK1/2 mitogen activated protein kinase (MAPK) was examined using a specific MEK1/2 inhibitor. Alignment increased mRNAs and protein for early (MyoD) and late (MyoG, MyHC) myoblast markers in comparison to non-aligned matrices, and these levels corresponded with increased α7 protein. α7-silencing reduced MyoG and MyHC protein in cells cultured on tissue culture polystyrene and aligned PDO matrices compared to wild type cells. Inhibition of ERK1/2 blocked effects of alignment. These data suggest that alignment regulates myogenic differentiation via α7β1 integrin signaling and ERK1/2 mediated gene expression. STATEMENT OF SIGNIFICANCE Muscle regeneration in severe muscle injuries is complex, requiring a sequence of events to promote healing and not fibrosis. Aligned biomaterials that recapitulate muscle environments hold potential to facilitate regeneration, but it is important to understand cell-substrate signaling to form functional muscle. A critical component of muscle signaling is integrin α7β1, where mice lacking α7 exhibit a dystrophic phenotype and impaired regeneration. Here, we report the role of α7β1 signaling in myoblast differentiation on aligned biomaterials. α7-silenced myoblasts were found to regulate myogenic differentiation and demonstrate defective fusion. Our data shows reduced levels of myogenin and myosin heavy chain protein, while MyoD remains unchanged. These results support the hypothesis that α7β1 signaling plays a role in substrate-dependent tissue engineering strategies.
Collapse
|
24
|
Structure-function analysis of myomaker domains required for myoblast fusion. Proc Natl Acad Sci U S A 2016; 113:2116-21. [PMID: 26858401 DOI: 10.1073/pnas.1600101113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.
Collapse
|
25
|
Brzoska E, Kowalski K, Markowska-Zagrajek A, Kowalewska M, Archacki R, Plaskota I, Stremińska W, Jańczyk-Ilach K, Ciemerych MA. Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration. Stem Cell Res Ther 2015; 6:46. [PMID: 25890097 PMCID: PMC4445299 DOI: 10.1186/s13287-015-0041-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/31/2014] [Accepted: 03/05/2015] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Understanding the mechanism of stem cell mobilization into injured skeletal muscles is a prerequisite step for the development of muscle disease therapies. Many of the currently studied stem cell types present myogenic potential; however, when introduced either into the blood stream or directly into the tissue, they are not able to efficiently engraft injured muscle. For this reason their use in therapy is still limited. Previously, we have shown that stromal-derived factor-1 (Sdf-1) caused the mobilization of endogenous (not transplanted) stem cells into injured skeletal muscle improving regeneration. Here, we demonstrate that the beneficial effect of Sdf-1 relies on the upregulation of the tetraspanin CD9 expression in stem cells. METHODS The expression pattern of adhesion proteins, including CD9, was analysed after Sdf-1 treatment during regeneration of rat skeletal muscles and mouse Pax7-/- skeletal muscles, that are characterized by the decreased number of satellite cells. Next, we examined the changes in CD9 level in satellite cells-derived myoblasts, bone marrow-derived mesenchymal stem cells, and embryonic stem cells after Sdf-1 treatment or silencing expression of CXCR4 and CXCR7. Finally, we examined the potential of stem cells to fuse with myoblasts after Sdf-1 treatment. RESULTS In vivo analyses of Pax7-/- mice strongly suggest that Sdf-1-mediates increase in CD9 levels also in mobilized stem cells. In the absence of CXCR4 receptor the effect of Sdf-1 on CD9 expression is blocked. Next, in vitro studies show that Sdf-1 increases the level of CD9 not only in satellite cell-derived myoblasts but also in bone marrow derived mesenchymal stem cells, as well as embryonic stem cells. Importantly, the Sdf-1 treated cells migrate and fuse with myoblasts more effectively. CONCLUSIONS We suggest that Sdf-1 binding CXCR4 receptor improves skeletal muscle regeneration by upregulating expression of CD9 and thus, impacting at stem cells mobilization to the injured muscles.
Collapse
Affiliation(s)
- Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | | | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland. .,Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Rafał Archacki
- Departament of Systems Biology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Izabela Plaskota
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Władysława Stremińska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
26
|
George C, Smith C, Isaacs AW, Huisamen B. Chronic Prosopis glandulosa treatment blunts neutrophil infiltration and enhances muscle repair after contusion injury. Nutrients 2015; 7:815-30. [PMID: 25625816 PMCID: PMC4344562 DOI: 10.3390/nu7020815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/09/2015] [Indexed: 12/31/2022] Open
Abstract
The current treatment options for soft tissue injuries remain suboptimal and often result in delayed/incomplete recovery of damaged muscle. The current study aimed to evaluate the effects of oral Prosopis glandulosa treatment on inflammation and regeneration in skeletal muscle after contusion injury, in comparison to a conventional treatment. The gastrocnemius muscle of rats was subjected to mass-drop injury and muscle samples collected after 1-, 3 h, 1- and 7 days post-injury. Rats were treated with P. glandulosa (100 mg/kg/day) either for 8 weeks prior to injury (up until day 7 post-injury), only post-injury, or with topically applied diclofenac post-injury (0.57 mg/kg). Neutrophil (His48-positive) and macrophage (F4/80-positive) infiltration was assessed by means of immunohistochemistry. Indicators of muscle satellite cell proliferation (ADAM12) and regeneration (desmin) were used to evaluate muscle repair. Chronic P. glandulosa and diclofenac treatment (p < 0.0001) was associated with suppression of the neutrophil response to contusion injury, however only chronic P. glandulosa treatment facilitated more effective muscle recovery (increased ADAM12 (p < 0.05) and desmin (p < 0.001) expression), while diclofenac treatment had inhibitory effects on repair, despite effective inhibition of neutrophil response. Data indicates that P. glandulosa treatment results in more effective muscle repair after contusion.
Collapse
Affiliation(s)
- Cindy George
- Department of Biomedical Sciences, Faculty of Health Science, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Carine Smith
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Ashwin W Isaacs
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Barbara Huisamen
- Department of Biomedical Sciences, Faculty of Health Science, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
27
|
Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts. J Biosci Bioeng 2014; 119:596-603. [PMID: 25454061 DOI: 10.1016/j.jbiosc.2014.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
Skeletal muscle regeneration requires migration, proliferation and fusion of myoblasts to form multinucleated myotubes. In our previous study, we showed that insulin-like growth factor (IGF)-I gene delivery stimulates the proliferation and differentiation of mouse myoblast C2C12 cells and promotes the contractile force generated by tissue-engineered skeletal muscles. The aim of this study was to investigate the effects of the extracellular matrix on IGF-I gene-engineered C2C12 cells in vitro. Retroviral vectors for doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into C2C12 cells. When cultured on a type IV collagen-coated surface, we observed significant increases in the migration speed and number of IGF-I gene-engineered C2C12 cells with Dox addition, designated as C2C12/IGF (+) cells. Co-culture of C2C12/IGF (+) cells and parental C2C12 cells, which had been cultured in differentiation medium for 3 days, greatly enhanced myotube formation. Moreover, type IV collagen supplementation promoted the fusion of C2C12/IGF (+) cells with differentiated C2C12 cells and increased the number of myotubes with striations. Myotubes formed by C2C12/IGF (+) cells cultured on type IV collagen showed a dynamic contractile activity in response to electrical pulse stimulation. These findings indicate that type IV collagen promotes skeletal muscle regeneration mediated by IGF-I-expressing myoblasts, which may have important clinical implications in the design of myoblast-based therapies.
Collapse
|
28
|
Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:403-36. [PMID: 24320971 PMCID: PMC4193686 DOI: 10.1089/ten.teb.2013.0534] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022]
Abstract
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshinori Fujie
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg Cedex, France
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Turner NJ, Londono R, Dearth CL, Culiat CT, Badylak SF. Human NELL1 protein augments constructive tissue remodeling with biologic scaffolds. Cells Tissues Organs 2013; 198:249-65. [PMID: 24335144 DOI: 10.1159/000356491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) derived from decellularized tissues effectively reprogram key stages of the mammalian response to injury, altering the wound microenvironment from one that promotes scar tissue formation to one that stimulates constructive and functional tissue remodeling. In contrast, engineered scaffolds, composed of purified ECM components such as collagen, lack the complex ultrastructure and composition of intact ECM and may promote wound healing but lack factors that facilitate constructive and functional tissue remodeling. The objective of the present study was to test the hypothesis that addition of NELL1, a signaling protein that controls cell growth and differentiation, enhances the constructive tissue remodeling of a purified collagen scaffold. An abdominal wall defect model in the rat of 1.5-cm(2) partial thickness was used to compare the constructive remodeling of a bovine type I collagen scaffold to a biologic scaffold derived from small intestinal submucosa (SIS)-ECM with and without augmentation with 17 μg NELL1 protein. Samples were evaluated histologically at 14 days and 4 months. The contractile response of the defect site was also evaluated at 4 months. Addition of NELL1 protein improved the constructive remodeling of collagen scaffolds but not SIS-ECM scaffolds. Results showed an increase in the contractile force of the remodeled skeletal muscle and a fast:slow muscle composition similar to native tissue in the collagen-treated group. The already robust remodeling response to SIS-ECM was not enhanced by NELL1 at the dose tested. These findings suggest that NELL1 protein does contribute to the enhanced constructive remodeling of skeletal muscle.
Collapse
Affiliation(s)
- Neill J Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa., USA
| | | | | | | | | |
Collapse
|
30
|
Zemianek JM, Lee S, Shea TB. Acceleration of myofiber formation in culture by a digitized synaptic signal. Tissue Eng Part A 2013; 19:2693-702. [PMID: 23859139 DOI: 10.1089/ten.tea.2012.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Developing myofibers require chemical and electrical stimulation to induce functional muscle tissue. Tissue engineering protocols utilize either or both of these to initiate differentiation ex vivo. Current methodologies typically deliver multi-volt electrical signals, which may be hazardous to developing tissues. In attempts to mimic in vivo muscle development, we stimulated cultured muscle precursor cells with a low-voltage (1 mV) digitized synaptic signal derived from cultured cortical neurons. This synaptic signal induced larger and more adherent myofibers, along with markers of myoblast differentiation, compared to those induced following stimulation with a conventional (28 V) square signal. These findings suggest that stimulation with a digitized synaptic signal may be useful in tissue engineering and physical therapy.
Collapse
Affiliation(s)
- Jill M Zemianek
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts at Lowell , Lowell, Massachusetts
| | | | | |
Collapse
|