1
|
Han Y, Barasa P, Zeger L, Salomonsson SB, Zanotti F, Egli M, Zavan B, Trentini M, Florin G, Vaerneus A, Aldskogius H, Fredriksson R, Kozlova EN. Effects of microgravity on neural crest stem cells. Front Neurosci 2024; 18:1379076. [PMID: 38660221 PMCID: PMC11041629 DOI: 10.3389/fnins.2024.1379076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Exposure to microgravity (μg) results in a range of systemic changes in the organism, but may also have beneficial cellular effects. In a previous study we detected increased proliferation capacity and upregulation of genes related to proliferation and survival in boundary cap neural crest stem cells (BC) after MASER14 sounding rocket flight compared to ground-based controls. However, whether these changes were due to μg or hypergravity was not clarified. In the current MASER15 experiment BCs were exposed simultaneously to μg and 1 g conditions provided by an onboard centrifuge. BCs exposed to μg displayed a markedly increased proliferation capacity compared to 1 g on board controls, and genetic analysis of BCs harvested 5 h after flight revealed an upregulation, specifically in μg-exposed BCs, of Zfp462 transcription factor, a key regulator of cell pluripotency and neuronal fate. This was associated with alterations in exosome microRNA content between μg and 1 g exposed MASER15 specimens. Since the specimens from MASER14 were obtained for analysis with 1 week's delay, we examined whether gene expression and exosome content were different compared to the current MASER15 experiments, in which specimens were harvested 5 h after flight. The overall pattern of gene expression was different and Zfp462 expression was down-regulated in MASER14 BC μg compared to directly harvested specimens (MASER15). MicroRNA exosome content was markedly altered in medium harvested with delay compared to directly collected samples. In conclusion, our analysis indicates that even short exposure to μg alters gene expression, leading to increased BC capacity for proliferation and survival, lasting for a long time after μg exposure. With delayed harvest of specimens, a situation which may occur due to special post-flight circumstances, the exosome microRNA content is modified compared to fast specimen harvest, and the direct effects from μg exposure may be partially attenuated, whereas other effects can last for a long time after return to ground conditions.
Collapse
Affiliation(s)
- Yilin Han
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Povilas Barasa
- Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Lukas Zeger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara B. Salomonsson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcel Egli
- Space Biology Group, School of Engineering and Architecture, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation, University of Zurich, Zurich, Switzerland
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | - Håkan Aldskogius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Elena N. Kozlova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Towards 3D Bioprinted Spinal Cord Organoids. Int J Mol Sci 2022; 23:ijms23105788. [PMID: 35628601 PMCID: PMC9144715 DOI: 10.3390/ijms23105788] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cultures, so-called organoids, have emerged as an attractive tool for disease modeling and therapeutic innovations. Here, we aim to determine if boundary cap neural crest stem cells (BC) can survive and differentiate in gelatin-based 3D bioprinted bioink scaffolds in order to establish an enabling technology for the fabrication of spinal cord organoids on a chip. BC previously demonstrated the ability to support survival and differentiation of co-implanted or co-cultured cells and supported motor neuron survival in excitotoxically challenged spinal cord slice cultures. We tested different combinations of bioink and cross-linked material, analyzed the survival of BC on the surface and inside the scaffolds, and then tested if human iPSC-derived neural cells (motor neuron precursors and astrocytes) can be printed with the same protocol, which was developed for BC. We showed that this protocol is applicable for human cells. Neural differentiation was more prominent in the peripheral compared to central parts of the printed construct, presumably because of easier access to differentiation-promoting factors in the medium. These findings show that the gelatin-based and enzymatically cross-linked hydrogel is a suitable bioink for building a multicellular, bioprinted spinal cord organoid, but that further measures are still required to achieve uniform neural differentiation.
Collapse
|
3
|
Jiang Y, Lin J, Zheng H, Zhu P. The Role of Purinergic Signaling in Heart Transplantation. Front Immunol 2022; 13:826943. [PMID: 35529844 PMCID: PMC9069525 DOI: 10.3389/fimmu.2022.826943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Heart transplantation remains the optimal treatment option for patients with end-stage heart disease. Growing evidence demonstrates that purinergic signals mediated by purine nucleotides and nucleosides play vital roles in heart transplantation, especially in the era of ischemia-reperfusion injury (IRI) and allograft rejection. Purinergic signaling consists of extracellular nucleotides and nucleosides, ecto-enzymes, and cell surface receptors; it participates in the regulation of many physiological and pathological processes. During transplantation, excess adenosine triphosphate (ATP) levels are released from damaged cells, and driver detrimental inflammatory responses largely via purinergic P2 receptors. Ecto-nucleosidases sequentially dephosphorylate extracellular ATP to ADP, AMP, and finally adenosine. Adenosine exerts a cardioprotective effect by its anti-inflammatory, antiplatelet, and vasodilation properties. This review focused on the role of purinergic signaling in IRI and rejection after heart transplantation, as well as the clinical applications and prospects of purinergic signaling.
Collapse
Affiliation(s)
| | | | | | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
4
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
5
|
Akolpoglu MB, Inceoglu Y, Bozuyuk U, Sousa AR, Oliveira MB, Mano JF, Kizilel S. Recent advances in the design of implantable insulin secreting heterocellular islet organoids. Biomaterials 2020; 269:120627. [PMID: 33401104 DOI: 10.1016/j.biomaterials.2020.120627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Islet transplantation has proved one of the most remarkable transmissions from an experimental curiosity into a routine clinical application for the treatment of type I diabetes (T1D). Current efforts for taking this technology one-step further are now focusing on overcoming islet donor shortage, engraftment, prolonged islet availability, post-transplant vascularization, and coming up with new strategies to eliminate lifelong immunosuppression. To this end, insulin secreting 3D cell clusters composed of different types of cells, also referred as heterocellular islet organoids, spheroids, or pseudoislets, have been engineered to overcome the challenges encountered by the current islet transplantation protocols. β-cells or native islets are accompanied by helper cells, also referred to as accessory cells, to generate a cell cluster that is not only able to accurately secrete insulin in response to glucose, but also superior in terms of other key features (e.g. maintaining a vasculature, longer durability in vivo and not necessitating immunosuppression after transplantation). Over the past decade, numerous 3D cell culture techniques have been integrated to create an engineered heterocellular islet organoid that addresses current obstacles. Here, we first discuss the different cell types used to prepare heterocellular organoids for islet transplantation and their contribution to the organoids design. We then introduce various cell culture techniques that are incorporated to prepare a fully functional and insulin secreting organoids with select features. Finally, we discuss the challenges and present a future outlook for improving clinical outcomes of islet transplantation.
Collapse
Affiliation(s)
- M Birgul Akolpoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Yasemin Inceoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ugur Bozuyuk
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
6
|
Leyton-Jaimes MF, Ivert P, Hoeber J, Han Y, Feiler A, Zhou C, Pankratova S, Shoshan-Barmatz V, Israelson A, Kozlova EN. Empty mesoporous silica particles significantly delay disease progression and extend survival in a mouse model of ALS. Sci Rep 2020; 10:20675. [PMID: 33244084 PMCID: PMC7691331 DOI: 10.1038/s41598-020-77578-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating incurable neurological disorder characterized by motor neuron (MN) death and muscle dysfunction leading to mean survival time after diagnosis of only 2-5 years. A potential ALS treatment is to delay the loss of MNs and disease progression by the delivery of trophic factors. Previously, we demonstrated that implanted mesoporous silica nanoparticles (MSPs) loaded with trophic factor peptide mimetics support survival and induce differentiation of co-implanted embryonic stem cell (ESC)-derived MNs. Here, we investigate whether MSP loaded with peptide mimetics of ciliary neurotrophic factor (Cintrofin), glial-derived neurotrophic factor (Gliafin), and vascular endothelial growth factor (Vefin1) injected into the cervical spinal cord of mutant SOD1 mice affect disease progression and extend survival. We also transplanted boundary cap neural crest stem cells (bNCSCs) which have been shown previously to have a positive effect on MN survival in vitro and in vivo. We show that mimetic-loaded MSPs and bNCSCs significantly delay disease progression and increase survival of mutant SOD1 mice, and also that empty particles significantly improve the condition of ALS mice. Our results suggest that intraspinal delivery of MSPs is a potential therapeutic approach for the treatment of ALS.
Collapse
Affiliation(s)
- Marcel F Leyton-Jaimes
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Patrik Ivert
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University Biomedical Center, Box 593, 751 24, Uppsala, Sweden
| | - Jan Hoeber
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University Biomedical Center, Box 593, 751 24, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08, Uppsala, Sweden
| | - Yilin Han
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University Biomedical Center, Box 593, 751 24, Uppsala, Sweden
| | - Adam Feiler
- Nanologica AB, Forskargatan 20G, 151 36, Södertälje, Sweden.,Chemistry Department, KTH, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Chunfang Zhou
- Chemistry Department, KTH, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Stanislava Pankratova
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark.,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, The National Institute for Biotechnology in the Negev Ltd, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| | - Elena N Kozlova
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University Biomedical Center, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
7
|
Alvarsson A, Jimenez-Gonzalez M, Li R, Rosselot C, Tzavaras N, Wu Z, Stewart AF, Garcia-Ocaña A, Stanley SA. A 3D atlas of the dynamic and regional variation of pancreatic innervation in diabetes. SCIENCE ADVANCES 2020; 6:6/41/eaaz9124. [PMID: 33036983 PMCID: PMC7557000 DOI: 10.1126/sciadv.aaz9124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/27/2020] [Indexed: 05/08/2023]
Abstract
Understanding the detailed anatomy of the endocrine pancreas, its innervation, and the remodeling that occurs in diabetes can provide new insights into metabolic disease. Using tissue clearing and whole-organ imaging, we identified the 3D associations between islets and innervation. This technique provided detailed quantification of α and β cell volumes and pancreatic nerve fibers, their distribution and heterogeneity in healthy tissue, canonical mouse models of diabetes, and samples from normal and diabetic human pancreata. Innervation was highly enriched in the mouse endocrine pancreas, with regional differences. Islet nerve density was increased in nonobese diabetic mice, in mice treated with streptozotocin, and in pancreata of human donors with type 2 diabetes. Nerve contacts with β cells were preserved in diabetic mice and humans. In summary, our whole-organ assessment allows comprehensive examination of islet characteristics and their innervation and reveals dynamic regulation of islet innervation in diabetes.
Collapse
Affiliation(s)
- Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosemary Li
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina Rosselot
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- The Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhuhao Wu
- Department of Cell, Developmental & Regenerative Biology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Han Y, Baltriukienė D, Kozlova EN. Effect of scaffold properties on adhesion and maintenance of boundary cap neural crest stem cells in vitro. J Biomed Mater Res A 2020; 108:1274-1280. [PMID: 32061005 DOI: 10.1002/jbm.a.36900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Optimal combination of stem cells and biocompatible support material is a promising strategy for successful tissue engineering. The required differentiation of stem cells is crucial for functionality of engineered tissues and can be regulated by chemical and physical cues. Here we examined how boundary cap neural crest stem cells (bNCSCs) are affected when cultured in the same medium, but on collagen- or laminin-polyacrylamide (PAA) scaffolds of different stiffness (0.5, 1, or ~7 kPa). bNCSCs displayed marked differences in their ability to attach, maintain a large cell population and differentiate, depending on scaffold stiffness. These findings show that the design of physical cues is an important parameter to achieve optimal stem cell properties for tissue repair and engineering.
Collapse
Affiliation(s)
- Yilin Han
- Department of Neuroscience, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Daiva Baltriukienė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Biomedical Centre, Uppsala, Sweden
| |
Collapse
|
9
|
Brboric A, Vasylovska S, Saarimäki-Vire J, Espes D, Caballero-Corbalan J, Larfors G, Otonkoski T, Lau J. Characterization of neural crest-derived stem cells isolated from human bone marrow for improvement of transplanted islet function. Ups J Med Sci 2019; 124:228-237. [PMID: 31623497 PMCID: PMC6968573 DOI: 10.1080/03009734.2019.1658661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Murine boundary cap-derived neural crest stem cells (NCSCs) are capable of enhancing islet function by stimulating beta cell proliferation as well as increasing the neural and vascular density in the islets both in vitro and in vivo. This study aimed to isolate NCSC-like cells from human bone marrow.Methods: CD271 magnetic cell separation and culture techniques were used to purify a NCSC-enriched population of human bone marrow. Analyses of the CD271+ and CD271- fractions in terms of protein expression were performed, and the capacity of the CD271+ bone marrow cells to form 3-dimensional spheres when grown under non-adherent conditions was also investigated. Moreover, the NCSC characteristics of the CD271+ cells were evaluated by their ability to migrate toward human islets as well as human islet-like cell clusters (ICC) derived from pluripotent stem cells.Results: The CD271+ bone marrow population fulfilled the criterion of being multipotent stem cells, having the potential to differentiate into glial cells, neurons as well as myofibroblasts in vitro. They had the capacity to form 3-dimensional spheres as well as an ability to migrate toward human islets, further supporting their NCSC identity. Additionally, we demonstrated similar migration features toward stem cell-derived ICC.Conclusion: The results support the NCSC identity of the CD271-enriched human bone marrow population. It remains to investigate whether the human bone marrow-derived NCSCs have the ability to improve transplantation efficacy of not only human islets but stem cell-derived ICC as well.
Collapse
Affiliation(s)
- Anja Brboric
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jonna Saarimäki-Vire
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Gunnar Larfors
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- CONTACT Joey Lau Department of Medical Cell Biology, Uppsala University, Husargatan 3, Box 571, SE-751 23 Uppsala, Sweden
| |
Collapse
|
10
|
Schizas N, König N, Andersson B, Vasylovska S, Hoeber J, Kozlova EN, Hailer NP. Neural crest stem cells protect spinal cord neurons from excitotoxic damage and inhibit glial activation by secretion of brain-derived neurotrophic factor. Cell Tissue Res 2018. [PMID: 29516218 PMCID: PMC5949140 DOI: 10.1007/s00441-018-2808-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The acute phase of spinal cord injury is characterized by excitotoxic and inflammatory events that mediate extensive neuronal loss in the gray matter. Neural crest stem cells (NCSCs) can exert neuroprotective and anti-inflammatory effects that may be mediated by soluble factors. We therefore hypothesize that transplantation of NCSCs to acutely injured spinal cord slice cultures (SCSCs) can prevent neuronal loss after excitotoxic injury. NCSCs were applied onto SCSCs previously subjected to N-methyl-d-aspartate (NMDA)-induced injury. Immunohistochemistry and TUNEL staining were used to quantitatively study cell populations and apoptosis. Concentrations of neurotrophic factors were measured by ELISA. Migration and differentiation properties of NCSCs on SCSCs, laminin, or hyaluronic acid hydrogel were separately studied. NCSCs counteracted the loss of NeuN-positive neurons that was otherwise observed after NMDA-induced excitotoxicity, partly by inhibiting neuronal apoptosis. They also reduced activation of both microglial cells and astrocytes. The concentration of brain-derived neurotrophic factor (BDNF) was increased in supernatants from SCSCs cultured with NCSCs compared to SCSCs alone and BDNF alone mimicked the effects of NCSC application on SCSCs. NCSCs migrated superficially across the surface of SCSCs and showed no signs of neuronal or glial differentiation but preserved their expression of SOX2 and Krox20. In conclusion, NCSCs exert neuroprotective, anti-apoptotic and glia-inhibitory effects on excitotoxically injured spinal cord tissue, some of these effects mediated by secretion of BDNF. However, the investigated NCSCs seem not to undergo neuronal or glial differentiation in the short term since markers indicative of an undifferentiated state were expressed during the entire observation period.
Collapse
Affiliation(s)
- Nikos Schizas
- The OrthoLab, Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - N König
- Department of Neuroscience, Biomedicine Centre (BMC) Uppsala, BOX 593, SE-751 24, Uppsala, Sweden
| | - B Andersson
- The OrthoLab, Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, SE-751 85, Uppsala, Sweden
| | - S Vasylovska
- Department of Neuroscience, Biomedicine Centre (BMC) Uppsala, BOX 593, SE-751 24, Uppsala, Sweden
| | - J Hoeber
- Department of Neuroscience, Biomedicine Centre (BMC) Uppsala, BOX 593, SE-751 24, Uppsala, Sweden
| | - E N Kozlova
- Department of Neuroscience, Biomedicine Centre (BMC) Uppsala, BOX 593, SE-751 24, Uppsala, Sweden
| | - N P Hailer
- The OrthoLab, Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
11
|
Aggarwal T, Hoeber J, Ivert P, Vasylovska S, Kozlova EN. Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons. Neurotherapeutics 2017; 14:773-783. [PMID: 28070746 PMCID: PMC5509618 DOI: 10.1007/s13311-016-0505-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
ALS is a devastating disease resulting in degeneration of motor neurons (MNs) in the brain and spinal cord. The survival of MNs strongly depends on surrounding glial cells and neurotrophic support from muscles. We previously demonstrated that boundary cap neural crest stem cells (bNCSCs) can give rise to neurons and glial cells in vitro and in vivo and have multiple beneficial effects on co-cultured and co-implanted cells, including neural cells. In this paper, we investigate if bNCSCs may improve survival of MNs harboring a mutant form of human SOD1 (SOD1G93A) in vitro under normal conditions and oxidative stress and in vivo after implantation to the spinal cord. We found that survival of SOD1G93A MNs in vitro was increased in the presence of bNCSCs under normal conditions as well as under oxidative stress. In addition, when SOD1G93A MN precursors were implanted to the spinal cord of adult mice, their survival was increased when they were co-implanted with bNCSCs. These findings show that bNCSCs support survival of SOD1G93A MNs in normal conditions and under oxidative stress in vitro and improve their survival in vivo, suggesting that bNCSCs have a potential for the development of novel stem cell-based therapeutic approaches in ALS models.
Collapse
Affiliation(s)
- Tanya Aggarwal
- Department of Neuroscience, Uppsala University Biomedical Center, Box 593, 75124, Uppsala, Sweden
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University Biomedical Center, Box 593, 75124, Uppsala, Sweden
| | - Patrik Ivert
- Department of Neuroscience, Uppsala University Biomedical Center, Box 593, 75124, Uppsala, Sweden
| | - Svitlana Vasylovska
- Department of Neuroscience, Uppsala University Biomedical Center, Box 593, 75124, Uppsala, Sweden
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University Biomedical Center, Box 593, 75124, Uppsala, Sweden.
| |
Collapse
|
12
|
Trolle C, Ivert P, Hoeber J, Rocamonde-Lago I, Vasylovska S, Lukanidin E, Kozlova EN. Boundary cap neural crest stem cell transplants contribute Mts1/S100A4-expressing cells in the glial scar. Regen Med 2017. [PMID: 28621171 DOI: 10.2217/rme-2016-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM During development, boundary cap neural crest stem cells (bNCSCs) assist sensory axon growth into the spinal cord. Here we repositioned them to test if they assist regeneration of sensory axons in adult mice after dorsal root avulsion injury. MATERIALS & METHODS Avulsed mice received bNCSC or human neural progenitor (hNP) cell transplants and their contributions to glial scar formation and sensory axon regeneration were analyzed with immunohistochemistry and transganglionic tracing. RESULTS hNPs and bNCSCs form similar gaps in the glial scar, but unlike hNPs, bNCSCs contribute Mts1/S100A4 (calcium-binding protein) expression to the scar and do not assist sensory axon regeneration. CONCLUSION bNCSC transplants contribute nonpermissive Mts1/S100A4-expressing cells to the glial scar after dorsal root avulsion.
Collapse
Affiliation(s)
- Carl Trolle
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Patrik Ivert
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Eugen Lukanidin
- Department of Molecular Cancer Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Qujeq D, Abedian Z. Viability and functional recovery of pancreatic islet cells co-cultured with liver, salivary glands and intestine cells. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol 2016; 146:13-31. [PMID: 27020567 DOI: 10.1007/s00418-016-1428-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 01/09/2023]
Abstract
Intercellular junctions play a role in regulating islet cytoarchitecture, insulin biosynthesis and secretion. In this study, we investigated the animal metabolic state as well as islet histology and cellular distribution/expression of CAMs and F-actin in the endocrine pancreas of C57BL/6/JUnib mice fed a high-fat diet (HFd) for a prolonged time period (8 months). Mice fed a HFd became obese and type 2 diabetic, displaying significant peripheral insulin resistance, hyperglycemia and moderate hyperinsulinemia. Isolated islets of HFd-fed mice displayed a significant impairment of glucose-induced insulin secretion associated with a diminished frequency of intracellular calcium oscillations compared with control islets. No marked change in islet morphology and cytoarchitecture was observed; however, HFd-fed mice showed higher beta cell relative area in comparison with controls. As shown by immunohistochemistry, ZO-1, E-, N-cadherins, α- and β-catenins were expressed at the intercellular contact site of endocrine cells, while VE-cadherin, as well as ZO-1, was found at islet vascular compartment. Redistribution of N-, E-cadherins and α-catenin (from the contact region to the cytoplasm in endocrine cells) associated with increased submembranous F-actin cell level as well as increased VE-cadherin islet immunolabeling was observed in diabetic mice. Increased gene expression of VE-cadherin and ZO-1, but no change for the other proteins, was observed in islets of diabetic mice. Only in the case of VE-cadherin, a significant increase in islet content of this CAM was detected by immunoblotting in diabetic mice. In conclusion, CAMs are expressed by endocrine and endothelial cells of pancreatic islets. The distribution/expression of N-, E- and VE-cadherins as well as α-catenin and F-actin is significantly altered in islet cells of obese and diabetic mice.
Collapse
|
15
|
Wang X, Xie B, Qi Y, Wallerman O, Vasylovska S, Andersson L, Kozlova EN, Welsh N. Knock-down of ZBED6 in insulin-producing cells promotes N-cadherin junctions between beta-cells and neural crest stem cells in vitro. Sci Rep 2016; 6:19006. [PMID: 26750727 PMCID: PMC4707466 DOI: 10.1038/srep19006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/02/2015] [Indexed: 11/21/2022] Open
Abstract
The role of the novel transcription factor ZBED6 for the adhesion/clustering of insulin-producing mouse MIN6 and βTC6 cells was investigated. Zbed6-silencing in the insulin producing cells resulted in increased three-dimensional cell-cell clustering and decreased adhesion to mouse laminin and human laminin 511. This was paralleled by a weaker focal adhesion kinase phosphorylation at laminin binding sites. Zbed6-silenced cells expressed less E-cadherin and more N-cadherin at cell-to-cell junctions. A strong ZBED6-binding site close to the N-cadherin gene transcription start site was observed. Three-dimensional clustering in Zbed6-silenced cells was prevented by an N-cadherin neutralizing antibody and by N-cadherin knockdown. Co-culture of neural crest stem cells (NCSCs) with Zbed6-silenced cells, but not with control cells, stimulated the outgrowth of NCSC processes. The cell-to-cell junctions between NCSCs and βTC6 cells stained more intensely for N-cadherin when Zbed6-silenced cells were co-cultured with NCSCs. We conclude that ZBED6 decreases the ratio between N- and E-cadherin. A lower N- to E-cadherin ratio may hamper the formation of three-dimensional beta-cell clusters and cell-to-cell junctions with NCSC, and instead promote efficient attachment to a laminin support and monolayer growth. Thus, by controlling beta-cell adhesion and cell-to-cell junctions, ZBED6 might play an important role in beta-cell differentiation, proliferation and survival.
Collapse
Affiliation(s)
- Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Beichen Xie
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yu Qi
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
16
|
Dietrich I, Crescenzi A, Chaib E, D'Albuquerque LAC. Trophic effects of adipose derived stem cells on Langerhans islets viability--Review. Transplant Rev (Orlando) 2015; 29:121-6. [PMID: 26002997 DOI: 10.1016/j.trre.2015.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/14/2015] [Accepted: 04/30/2015] [Indexed: 12/18/2022]
Abstract
Langerhans islets transplantation has been proposed to provide an endogenous source of insulin in Type I diabetes. However, the hypoxic stress and the receptor's immune reaction suffered by the implants cause them to fail in sustaining the insulin production along the time. Experimental studies have shown that adipose derived stem cells (ADSCs) can secrete cytokines that activate free radical scavengers, antioxidants and chaperone heat/shock proteins leading to reduction of apoptosis in damaged tissues. Therefore, using the PubMed database, we reviewed the experimental studies that investigated the trophic effects of ADSCs on Langerhans islets viability, in vitro and in vivo, from 2009 to 2014. We excluded articles that investigated the effects of other types of mesenchymal stem cells on β-cell survival as well articles that worked in the differentiation of ADSCs into insulin producing cells. The analysis of the experiments revealed that exposure of islets to ADSCs in vitro, even for a short period of time, can enhance islet cell viability and function. In vivo studies also corroborated the trophic effects of ADSCs leading to the improvement of islet function and reduction of the number of the islets required for controlling the receptor's glucose levels. This review can contribute to guide future experiments looking for a long term diabetes treatment employing ADSC trophic effects for the enhancement of transplanted Langerhans islet viability and functioning.
Collapse
Affiliation(s)
- Isa Dietrich
- Department of Gastroenterology, Liver and Pancreas Transplantation-Surgery Unit, São Paulo University Medical School, São Paulo 05403090 Brazil.
| | - Alessandra Crescenzi
- Department of Gastroenterology, Liver and Pancreas Transplantation-Surgery Unit, São Paulo University Medical School, São Paulo 05403090 Brazil
| | - Elezar Chaib
- Department of Gastroenterology, Liver and Pancreas Transplantation-Surgery Unit, São Paulo University Medical School, São Paulo 05403090 Brazil
| | - Luiz Augusto Carneiro D'Albuquerque
- Department of Gastroenterology, Liver and Pancreas Transplantation-Surgery Unit, São Paulo University Medical School, São Paulo 05403090 Brazil
| |
Collapse
|