1
|
Zhu T, Li W, Zhu X, Zheng W, Xu T, Sun Y. Identification and functional regulation of three alternative splicing isoforms of the Ythdc2 gene in Miichthysmiiuy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105351. [PMID: 40049308 DOI: 10.1016/j.dci.2025.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 05/06/2025]
Abstract
Alternative splicing is an important process in the post-transcriptional processing of mRNA. Different alternative splicing isoforms of the same gene may encode proteins with different structures and functions.Ythdc2 gene is a kind of ATPase with RNA helicase activity, and its YTH domain can recognize and bind RNA molecules containing m6A methylation site, thus playing a regulatory role. Many studies have shown that the Ythdc2 gene is important in tumorigenesis and non-neoplastic diseases. However, there were few studies on the alternative splicing events of the Ythdc2 gene. Therefore, this study identified three alternative splicing isoforms of the Ythdc2 gene in Miichthys miiuy. We named them Ythdc2-α, Ythdc2-β, and Ythdc2-γ. The results showed that only Ythdc2-α had a YTH domain, and the other two alternative splicing isoforms Ythdc2-β and Ythdc2-γ lacked the YTH domain. Under the stimulation of LPS, the expression levels of three alternative splicing isoforms showed an upward trend. Moreover, these three alternative splicing isoforms might have had different regulatory effects on the expression of inflammatory factors, which could negatively regulate the innate immune response and inhibit the NF-κB and IRF3 signaling pathways, providing new evidence for the role of Ythdc2 in fish innate immune response.
Collapse
Affiliation(s)
- Tongtong Zhu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenxin Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiangxiang Zhu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
2
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
3
|
Leal Y, Valenzuela-Muñoz V, Gallardo-Escárate C. Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the Piscirickettsia salmonis infection: A comparative transcriptome survey. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109127. [PMID: 37813155 DOI: 10.1016/j.fsi.2023.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because it is responsible for 54.2% of Atlantic salmon mortalities. In recent years, the high relevance of Alternative Splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation, has been observed. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS transcriptome profiles during P. salmonis infection in the two most used study models, SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14-days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strayingwase used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 228.6 in salmon HK; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS during P. salmonis infection in Atlantic salmon. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.
Collapse
Affiliation(s)
- Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile.
| |
Collapse
|
4
|
Wei W, Wang G, Zhang H, Bao X, An S, Luo Q, He J, Chen L, Ning C, Lai J, Yuan Z, Chen R, Jiang J, Ye L, Liang H. Talaromyces marneffei suppresses macrophage inflammation by regulating host alternative splicing. Commun Biol 2023; 6:1046. [PMID: 37845378 PMCID: PMC10579421 DOI: 10.1038/s42003-023-05409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Talaromyces marneffei (T. marneffei) immune escape is essential in the pathogenesis of talaromycosis. It is currently known that T. marneffei achieves immune escape through various strategies. However, the role of cellular alternative splicing (AS) in immune escape remains unclear. Here, we depict the AS landscape in macrophages upon T. marneffei infection via high-throughput RNA sequencing and detect a truncated protein of NCOR2 / SMRT, named NCOR2-013, which is significantly upregulated after T. marneffei infection. Mechanistic analysis indicates that NCOR2-013 forms a co-repression complex with TBL1XR1 / TBLR1 and HDAC3, thereby inhibiting JunB-mediated transcriptional activation of pro-inflammatory cytokines via the inhibition of histone acetylation. Furthermore, we identify TUT1 as the AS regulator that regulates NCOR2-013 production and promotes T. marneffei immune evasion. Collectively, these findings indicate that T. marneffei escapes macrophage killing through TUT1-mediated alternative splicing of NCOR2 / SMRT, providing insight into the molecular mechanisms of T. marneffei immune evasion and potential targets for talaromycosis therapy.
Collapse
Affiliation(s)
- Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong Zhang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuli Bao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sanqi An
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiang Luo
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinhao He
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lixiang Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuanyi Ning
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Nursing College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingzhen Lai
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Biobank, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Biobank, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Lee FFY, Alper S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front Immunol 2022; 13:1023567. [PMID: 36531997 PMCID: PMC9755862 DOI: 10.3389/fimmu.2022.1023567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing. In addition to encoding the canonical mRNAs that produce proteins that promote inflammation, many genes in the TLR signaling pathway also encode alternative mRNAs that produce proteins that are dominant negative inhibitors of signaling. Many of these negative regulators are induced by immune challenge, so production of these alternative isoforms represents a negative feedback loop that limits persistent inflammation. While these alternative splicing events have been investigated on a gene by gene basis, there has been limited systemic analysis of this mechanism that terminates TLR signaling. Here we review what is known about the production of negatively acting alternative isoforms in the TLR signaling pathway including how these inhibitors function, how they are produced, and what role they may play in inflammatory disease.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States
| | - Scott Alper
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States,*Correspondence: Scott Alper,
| |
Collapse
|
6
|
Wu WS, Yang TH, Chen KD, Lin PH, Chen GR, Kuo HC. KDmarkers: A biomarker database for investigating epigenetic methylation and gene expression levels in Kawasaki disease. Comput Struct Biotechnol J 2022; 20:1295-1305. [PMID: 35356542 PMCID: PMC8931344 DOI: 10.1016/j.csbj.2022.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Kawasaki disease (KD) is a form of acute systemic vasculitis that primarily affects children and has become the most common cause of acquired heart disease. While the etiopathogenesis of KD remains unknown, the diagnostic criteria of KD have been well established. Nevertheless, the diagnosis of KD is currently based on subjective clinical symptoms, and no molecular biomarker is yet available. We have previously performed and combined methylation array (Illumina HumanMethylation450 BeadChip) and transcriptome array (Affymetrix GeneChip Human Transcriptome Array 2.0) to identify genes that are differentially methylated/expressed in KD patients compared with control subjects. We have found that decreased methylation levels combined with elevated gene expression can indicate genes (e.g., toll-like receptors and CD177) involved in the disease mechanisms of KD. In this study, we constructed a database called KDmarkers to allow researchers to access these valuable potential KD biomarkers identified via methylation array and transcriptome array. KDmarkers provides three search modes. First, users can search genes differentially methylated and/or differentially expressed in KD patients compared with control subjects. Second, users can check the KD patient groups in which a given gene is differentially methylated and/or differentially expressed. Third, users can explore the DNA methylation levels and gene expression levels in all samples (KD patients and controls) for a particular gene of interest. We further demonstrated that the results in KDmarkers are strongly associated with KD immune responses. All analysis results can be downloaded for downstream experimental designs. KDmarkers is available online at https://cosbi.ee.ncku.edu.tw/KDmarkers/.
Collapse
|
7
|
Lai HC, Ho UY, James A, De Souza P, Roberts TL. RNA metabolism and links to inflammatory regulation and disease. Cell Mol Life Sci 2021; 79:21. [PMID: 34971439 PMCID: PMC11072290 DOI: 10.1007/s00018-021-04073-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Inflammation is vital to protect the host against foreign organism invasion and cellular damage. It requires tight and concise gene expression for regulation of pro- and anti-inflammatory gene expression in immune cells. Dysregulated immune responses caused by gene mutations and errors in post-transcriptional regulation can lead to chronic inflammatory diseases and cancer. The mechanisms underlying post-transcriptional gene expression regulation include mRNA splicing, mRNA export, mRNA localisation, mRNA stability, RNA/protein interaction, and post-translational events such as protein stability and modification. The majority of studies to date have focused on transcriptional control pathways. However, post-transcriptional regulation of mRNA in eukaryotes is equally important and related information is lacking. In this review, we will focus on the mechanisms involved in the pre-mRNA splicing events, mRNA surveillance, RNA degradation pathways, disorders or symptoms caused by mutations or errors in post-transcriptional regulation during innate immunity especially toll-like receptor mediated pathways.
Collapse
Affiliation(s)
- Hui-Chi Lai
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
- South West Sydney Clinical School, UNSW Australia, Liverpool, NSW, Australia.
| | - Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Paul De Souza
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, Western Sydney University, Macarthur, NSW, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- South West Sydney Clinical School, UNSW Australia, Liverpool, NSW, Australia
- School of Medicine, Western Sydney University, Macarthur, NSW, Australia
| |
Collapse
|
8
|
Zimowski KL, Petrillo T, Ho MD, Wechsler J, Shields JE, Denning G, Jhita N, Rivera AA, Escobar MA, Kempton CL, Camire RM, Doering CB. F5-Atlanta: A novel mutation in F5 associated with enhanced East Texas splicing and FV-short production. J Thromb Haemost 2021; 19:1653-1665. [PMID: 33773040 DOI: 10.1111/jth.15314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Elucidating the molecular pathogenesis underlying East Texas bleeding disorder (ET) led to the discovery of alternatively spliced F5 transcripts harboring large deletions within exon 13. These alternatively spliced transcripts produce a shortened form of coagulation factor V (FV) in which a large portion of its B-domain is deleted. These FV isoforms bind tissue factor pathway inhibitor alpha (TFPIα) with high affinity, prolonging its circulatory half-life and enhancing its anticoagulant effects. While two missense pathogenic variants highlighted this alternative splicing event, similar internally deleted FV proteins are found in healthy controls. OBJECTIVE We identified a novel heterozygous 832 base pair deletion within F5 exon 13, termed F5-Atlanta (F5-ATL), in a patient with severe bleeding. Our objective is to investigate the effect of this deletion on F5 and FV expression. METHODS & RESULTS Assessment of patient plasma revealed markedly elevated levels of total and free TFPI and a FV isoform similar in size to the FV-short described in ET. Sequencing analyses of cDNA revealed the presence of a transcript alternatively spliced using the ET splice sites, thereby removing the F5-ATL deletion. This alternative splicing pattern was recapitulated by heterologous expression in mammalian cells. CONCLUSIONS These findings support a mechanistic model consisting of cis-acting regulatory sequences encoded within F5 exon 13 that control alternative splicing at the ET splice sites and thereby regulate circulating FV-short and TFPIα levels.
Collapse
Affiliation(s)
- Karen L Zimowski
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Teodolinda Petrillo
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Michelle D Ho
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Julie Wechsler
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jordan E Shields
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | | | | | - Miguel A Escobar
- University of Texas Houston Health Science Center, Houston, Texas, USA
| | - Christine L Kempton
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rodney M Camire
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Su Z, Huang D. Alternative Splicing of Pre-mRNA in the Control of Immune Activity. Genes (Basel) 2021; 12:genes12040574. [PMID: 33921058 PMCID: PMC8071365 DOI: 10.3390/genes12040574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
The human immune response is a complex process that responds to numerous exogenous antigens in preventing infection by microorganisms, as well as to endogenous components in the surveillance of tumors and autoimmune diseases, and a great number of molecules are necessary to carry the functional complexity of immune activity. Alternative splicing of pre-mRNA plays an important role in immune cell development and regulation of immune activity through yielding diverse transcriptional isoforms to supplement the function of limited genes associated with the immune reaction. In addition, multiple factors have been identified as being involved in the control of alternative splicing at the cis, trans, or co-transcriptional level, and the aberrant splicing of RNA leads to the abnormal modulation of immune activity in infections, immune diseases, and tumors. In this review, we summarize the recent discoveries on the generation of immune-associated alternative splice variants, clinical disorders, and possible regulatory mechanisms. We also discuss the immune responses to the neoantigens produced by alternative splicing, and finally, we issue some alternative splicing and immunity correlated questions based on our knowledge.
Collapse
Affiliation(s)
- Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, China
- Correspondence: (Z.S.); (D.H.)
| | - Dongyang Huang
- Department of Cell Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, China
- Correspondence: (Z.S.); (D.H.)
| |
Collapse
|
10
|
Lang AS, Austin SH, Harris RM, Calisi RM, MacManes MD. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 2020; 21:251. [PMID: 32293250 PMCID: PMC7092514 DOI: 10.1186/s12864-020-6600-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The process of alternative splicing provides a unique mechanism by which eukaryotes are able to produce numerous protein products from the same gene. Heightened variability in the proteome has been thought to potentiate increased behavioral complexity and response flexibility to environmental stimuli, thus contributing to more refined traits on which natural and sexual selection can act. While it has been long known that various forms of environmental stress can negatively affect sexual behavior and reproduction, we know little of how stress can affect the alternative splicing associated with these events, and less still about how splicing may differ between sexes. Using the model of the rock dove (Columba livia), our team previously uncovered sexual dimorphism in the basal and stress-responsive gene transcription of a biological system necessary for facilitating sexual behavior and reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we delve further into understanding the mechanistic underpinnings of how changes in the environment can affect reproduction by testing the alternative splicing response of the HPG axis to an external stressor in both sexes. RESULTS This study reveals dramatic baseline differences in HPG alternative splicing between males and females. However, after subjecting subjects to a restraint stress paradigm, we found a significant reduction in these differences between the sexes. In both stress and control treatments, we identified a higher incidence of splicing activity in the pituitary in both sexes as compared to other tissues. Of these splicing events, the core exon event is the most abundant form of splicing and more frequently occurs in the coding regions of the gene. Overall, we observed less splicing activity in the 3'UTR (untranslated region) end of transcripts than the 5'UTR or coding regions. CONCLUSIONS Our results provide vital new insight into sex-specific aspects of the stress response on the HPG axis at an unprecedented proximate level. Males and females uniquely respond to stress, yet exhibit splicing patterns suggesting a convergent, optimal splicing landscape for stress response. This information has the potential to inform evolutionary theory as well as the development of highly-specific drug targets for stress-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rayna M Harris
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| |
Collapse
|
11
|
Zhang X, Yuan J, Zhang X, Liu C, Xiang J, Li F. Genome-Wide Analysis of Alternative Splicing Provides Insights Into Stress Response of the Pacific White Shrimp Litopenaeus vanname. Front Genet 2019; 10:845. [PMID: 31572450 PMCID: PMC6752684 DOI: 10.3389/fgene.2019.00845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023] Open
Abstract
Alternative splicing (AS) can enhance transcript diversity dramatically and play an important role in stress adaptation. Limited researches of AS have been reported in the Pacific white shrimp (Litopenaeus vannamei), which is an important aquaculture species in the world. Here, we performed a genome-wide identification of AS events in L. vannamei based on eight transcriptomes. We identified 38,781 AS events in the shrimp genome, and some of them were validated by polymerase chain reaction experiments. These AS events correspond to 9,209 genes, accounting for 36% of protein-coding genes in the shrimp genome. The number of AS events increased after virus or bacteria infection and low salinity stress. Type 1 AS genes (AS was initially activated) were mainly enriched in substance and energy metabolism, such as carbon metabolism and amino metabolism. However, type 2 AS genes (AS events changed) displayed specific enrichment under different stress challenges. Specifically, type 2 AS genes under biotic stresses were mainly enriched in the pathogenic pathway and immune network, and the AS genes under low salinity stress were significantly enriched for betalain biosynthesis. In summary, our study indicates that AS events are complex in shrimp and may be related to stress adaptation. These results will provide valuable resource for functional genomic studies on crustaceans.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, China
| | - Chengzhang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
12
|
Han AL, Kim HR, Choi KH, Ryu JW, Hwang KE, So HS, Park MC, Zhu M, Huang Y, Lee YJ, Park DS. Expression Profile of Three Splicing Factors in Pleural Cells Based on the Underlying Etiology and Its Clinical Values in Patients with Pleural Effusion. Transl Oncol 2018; 11:147-156. [PMID: 29288986 PMCID: PMC6002346 DOI: 10.1016/j.tranon.2017.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022] Open
Abstract
Splicing factors (SFs) are involved in oncogenesis or immune modulation, the common underlying processes giving rise to pleural effusion (PE). The expression profiles of three SFs (HNRNPA1, SRSF1, and SRSF3) and their clinical values have never been assessed in PE. The three SFs (in pellets of PE) and conventional tumor markers were analyzed using PE samples in patients with PE (N = 336). The sum of higher-molecular weight (Mw) forms of HNRNPA1 (Sum-HMws-HNRNPA1) and SRSF1 (Sum-HMws-SRSF1) and SRSF3 levels were upregulated in malignant PE (MPE) compared to benign PE (BPE); they were highest in cytology-positive MPE, followed by tuberculous PE and parapneumonic PE. Meanwhile, the lowest-Mw HNRNPA1 (LMw-HNRNPA1) and SRSF1 (LMw-SRSF1) levels were not upregulated in MPE. Sum-HMws-HNRNPA1, Sum-HMws-SRSF1, and SRSF3, but neither LMw-HNRNPA1 nor LMw-SRSF1, showed positive correlations with cancer cell percentages in MPE. The detection accuracy for MPE was high in the order of carcinoembryonic antigen (CEA, 85%), Sum-HMws-HNRNPA1 (76%), Sum-HMws-SRSF1 (68%), SRSF3, cytokeratin-19 fragments (CYFRA 21-1), LMw-HNRNPA1, and LMw-SRSF1. Sum-HMws-HNRNPA1 detected more than half of the MPE cases that were undetected by cytology and CEA. Sum-HMws-HNRNPA1, but not other SFs or conventional tumor markers, showed an association with longer overall survival among patients with MPE receiving chemotherapy. Our results demonstrated different levels of the three SFs with their Mw-specific profiles depending on the etiology of PE. We suggest that Sum-HMws-HNRNPA1 is a supplementary diagnostic marker for MPE and a favorable prognostic indicator for patients with MPE receiving chemotherapy.
Collapse
Affiliation(s)
- A-Lum Han
- Department of Family Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Hak-Ryul Kim
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Keum-Ha Choi
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Jae-Won Ryu
- School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Ki-Eun Hwang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Hong-Seob So
- Department of Microbiology, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Min-Cheol Park
- Department of Oriental Medical Ophthalmology & Otolaryngology & Dermatology, College of Oriental Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Mengyu Zhu
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Yuya Huang
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Young-Jin Lee
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Do-Sim Park
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea; Wonkwang Institute of Clinical Medicine, Wonkwang University Hospital, Iksan, 54538, Korea; Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, 54538, Korea.
| |
Collapse
|
13
|
Wang Y, Zhang H, Lu Y, Wang F, Liu L, Liu J, Liu X. Comparative transcriptome analysis of zebrafish (Danio rerio) brain and spleen infected with spring viremia of carp virus (SVCV). FISH & SHELLFISH IMMUNOLOGY 2017; 69:35-45. [PMID: 28757199 DOI: 10.1016/j.fsi.2017.07.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/14/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Spring viremia of carp virus (SVCV) is the pathogen of spring viremia of carp (SVC) and often causes acute hemorrhagic symptoms in various kinds of cyprinids and induces serious environmental and economic losses. However, the molecular mechanisms of infection remain poorly understood, especially at the individual level. In this study, zebrafish was employed as the infection model to explore the pathogenesis of SVCV. 4 groups of zebrafish tissues were set and RNA sequencing (RNA-Seq) technology was employed to analyze the differentially expressed genes (DEGs) after SVCV-infection. A total of 360,971,498 clean reads were obtained from 12 samples, 382 DEGs in the brain and 926 DEGs in the spleen were identified. These DEGs were annotated into three ontologies after gene ontology (GO) enrichment analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these DEGs were primarily related to Influenza A pathway and Herpes simplex infection pathway in brain and Tuberculosis and Toxoplasmosis pathways in spleen, and all of these pathways may be involved in response to pathogen invasion. At the same time, 3' and 5' alternative splicing (AS) events were significantly up-regulated in the spleen. The transcriptome analysis results demonstrated changes and tissue-specific influences caused by SVCV in vivo, which provided us with more information to understand the complex relationships between SVCV and its host.
Collapse
Affiliation(s)
- Yeda Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
| | - Hao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
| | - Liyue Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Jingxia Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China.
| |
Collapse
|
14
|
Abstract
The TRIM family protein was known to play an important role in many cellular processes, including potential antiviral activity, which has attracted lots of attention. In this study, a TRIM47 homolog from common carp (Cyprinus carpio) was cloned and the full length coding DNA sequence (CDS) of this gene was analyzed, results showed that there was a 97% similarity between common carp and zebrafish (Danio rerio), but only 18% similarity with that of human (Homo sapiens) and mouse (Mus musculus). The tissue distribution analysis showed TRIM47 had the highest mRNA level in the brain, a few immune related organs such as liver and kidney also had a relatively high level of TRIM47 expression. SVCV infection decreased TRIM47 mRNA level significantly both in vitro and in vivo, but its expression was not affected by the virus at the protein level. The recombinant plasmid pcDNA4-TRIM47-His was constructed, the subcellular localization in FHM cells showed that TRIM47 uniformly distributed in the cytoplasm at the form of tiny spots, and partially localized in the mitochondria. Overexpression TRIM47 in FHM cells significantly decreased the mRNA level of SVCV-G gene, and it was accompanied with the increasing of IFN1, a member of type I IFN, at the case of SVCV stimulation. In summary, our results had first demonstrated that TRIM47 of the common carp played an important role in viral resistance processes as well as the regulation of IFN signaling pathway.
Collapse
|
15
|
Huang B, Zhang L, Tang X, Zhang G, Li L. Genome-Wide Analysis of Alternative Splicing Provides Insights into Stress Adaptation of the Pacific Oyster. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:598-609. [PMID: 27771778 DOI: 10.1007/s10126-016-9720-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Alternative splicing (AS) is thought to enhance transcriptome diversity dramatically and play an important role in stress adaptation. While well studied in vertebrates, AS remains poorly understood in invertebrates. Here, we used high-throughput RNA-sequencing data to perform a genome-wide survey of AS in the Pacific oyster (Crassostrea gigas), an economically important mollusk that is cultivated worldwide. This analysis identified 8223 AS events corresponding to 4480 genes in the Pacific oyster, suggesting that about 16 % of oyster multiexonic genes undergo AS. We observed that a majority of the identified AS events were related to skipped exons (37.8 %). Then Gene Ontology analysis was conducted to analyze the function of the genes that undergo AS and the genes that produce more than five AS isoforms. After that, the expression of AS isoforms facing temperature, salinity, and air exposure challenge were examined. To validate our bioinformatic-predicted results and examine whether AS affects stress adaptation, we selected heat-shock protein 60 (HSP60) and HSP90 genes, both of which experience AS, for reverse transcription PCR (RT-PCR). We also performed quantitative real-time PCR (qRT-PCR) to determine the relative expression of each AS isoform among different stress adapted populations. Our study indicates that AS events are likely complex in the Pacific oyster and may be related to stress adaptation. These results will complement the predicted gene database of C. gigas and provide an invaluable resource for future functional genomic studies on molluscs.
Collapse
Affiliation(s)
- Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xueying Tang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China.
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
16
|
Widespread Shortening of 3' Untranslated Regions and Increased Exon Inclusion Are Evolutionarily Conserved Features of Innate Immune Responses to Infection. PLoS Genet 2016; 12:e1006338. [PMID: 27690314 PMCID: PMC5045211 DOI: 10.1371/journal.pgen.1006338] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/02/2016] [Indexed: 11/19/2022] Open
Abstract
The contribution of pre-mRNA processing mechanisms to the regulation of immune responses remains poorly studied despite emerging examples of their role as regulators of immune defenses. We sought to investigate the role of mRNA processing in the cellular responses of human macrophages to live bacterial infections. Here, we used mRNA sequencing to quantify gene expression and isoform abundances in primary macrophages from 60 individuals, before and after infection with Listeria monocytogenes and Salmonella typhimurium. In response to both bacteria we identified thousands of genes that significantly change isoform usage in response to infection, characterized by an overall increase in isoform diversity after infection. In response to both bacteria, we found global shifts towards (i) the inclusion of cassette exons and (ii) shorter 3’ UTRs, with near-universal shifts towards usage of more upstream polyadenylation sites. Using complementary data collected in non-human primates, we show that these features are evolutionarily conserved among primates. Following infection, we identify candidate RNA processing factors whose expression is associated with individual-specific variation in isoform abundance. Finally, by profiling microRNA levels, we show that 3’ UTRs with reduced abundance after infection are significantly enriched for target sites for particular miRNAs. These results suggest that the pervasive usage of shorter 3’ UTRs is a mechanism for particular genes to evade repression by immune-activated miRNAs. Collectively, our results suggest that dynamic changes in RNA processing may play key roles in the regulation of innate immune responses. Changes in gene regulation have long been known to play important roles in both innate and adaptive immune responses. While transcriptional responses to infection have been well-characterized, much less is known about the extent to which co-transcriptional mechanisms of mRNA processing are involved in the regulation of immune defenses. In this study, we sought to investigate the role of mRNA processing in the cellular responses of human macrophages to live bacterial infection. Using primary human macrophages derived from whole blood samples from 60 individuals, we sequenced mRNA both before and after infection with two live bacteria. We show that immune responses to infection are accompanied by pervasive changes in mRNA isoform usage, with systematic shifts towards increased cassette exon inclusion and shortening of Tandem 3’ UTRs post-infection. These patterns are conserved in nonhuman primates, supporting their functional importance across evolutionary time. Complementary microRNA profiling revealed that shortened 3’ UTRs are enriched for target sites of macrophage-expressed miRNAs, many of which are specifically activated after infection to regulate the innate immune response. Our results therefore provide the first genome-wide empirical support for the idea that actively regulated shifts towards shorter 3’ UTRs might allow specific genes to evade repression by immune-activated miRNAs.
Collapse
|
17
|
Alternative Splicing of Toll-Like Receptor 9 Transcript in Teleost Fish Grouper Is Regulated by NF-κB Signaling via Phosphorylation of the C-Terminal Domain of the RPB1 Subunit of RNA Polymerase II. PLoS One 2016; 11:e0163415. [PMID: 27658294 PMCID: PMC5033454 DOI: 10.1371/journal.pone.0163415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/25/2016] [Indexed: 11/19/2022] Open
Abstract
Similar to its mammalian counterparts, teleost Toll-like receptor 9 (TLR9) recognizes unmethylated CpG DNA presented in the genome of bacteria or DNA viruses and initiates signaling pathway(s) for immune responses. We have previously shown that the TLR9 pathway in grouper, an economically important teleost, can be debilitated by an inhibitory gTLR9B isoform, whose production is mediated by RNA alternative splicing. However, how does grouper TLR9 (gTLR9) signaling impinge on the RNA splicing machinery to produce gTlr9B is unknown. Here we show that the gTlr9 alternative splicing is regulated through ligand-induced phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II). We first observed that ligand-activated NF- κB pathway biased the production of the gTlr9B isoform. Because NF- κB is known to recruit p-TEFb kinase, which phosphorylates the Pol II CTD at Ser2 residues, we examined p-TEFb’s role in alternative splicing. We found that promoting p-TEFb kinase activity significantly favored the production of the gTlr9B isoform, whereas inhibiting p-TEFb yielded an opposite result. We further showed that p-TEFb-mediated production of the gTlr9B isoform down-regulates its own immune responses, suggesting a self-limiting mechanism. Taken together, our data indicate a feedback mechanism of the gTLR9 signaling pathway to regulate the alternative splicing machinery, which in turn produces an inhibitor to the pathway.
Collapse
|
18
|
Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci Rep 2016; 6:28075. [PMID: 27354008 PMCID: PMC4926211 DOI: 10.1038/srep28075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions.
Collapse
|
19
|
Altered microRNA expression and pre-mRNA splicing events reveal new mechanisms associated with early stage Mycobacterium avium subspecies paratuberculosis infection. Sci Rep 2016; 6:24964. [PMID: 27102525 PMCID: PMC4840452 DOI: 10.1038/srep24964] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
The molecular regulatory mechanisms of host responses to Mycobacterium avium subsp. paratuberculosis (MAP) infection during the early subclinical stage are still not clear. In this study, surgically isolated ileal segments in newborn calves (n = 5) were used to establish in vivo MAP infection adjacent to an uninfected control intestinal compartment. RNA-Seq was used to profile the whole transcriptome (mRNAs) and the microRNAome (miRNAs) of ileal tissues collected at one-month post-infection. The most related function of the differentially expressed mRNAs between infected and uninfected tissues was “proliferation of endothelial cells”, indicating that MAP infection may lead to the over-proliferation of endothelial cells. In addition, 46.2% of detected mRNAs displayed alternative splicing events. The pre-mRNA of two genes related to macrophage maturation (monocyte to macrophage differentiation-associated) and lysosome function (adenosine deaminase) showed differential alternative splicing events, suggesting that specific changes in the pre-mRNA splicing sites may be a mechanism by which MAP escapes host immune responses. Moreover, 9 miRNAs were differentially expressed after MAP infection. The integrated analysis of microRNAome and transcriptome revealed that these miRNAs might regulate host responses to MAP infection, such as “proliferation of endothelial cells” (bta-miR-196 b), “bacteria recognition” (bta-miR-146 b), and “regulation of the inflammatory response” (bta-miR-146 b).
Collapse
|
20
|
Global Gene Expression Profiling and Alternative Splicing Events during the Chondrogenic Differentiation of Human Cartilage Endplate-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:604972. [PMID: 26649308 PMCID: PMC4662983 DOI: 10.1155/2015/604972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023]
Abstract
Low back pain (LBP) is a very prevalent disease and degenerative disc diseases (DDDs) usually account for the LBP. However, the pathogenesis of DDDs is complicated and difficult to elucidate. Alternative splicing is a sophisticated regulatory process which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. In addition, the cartilage endplate-derived stem cells have been discovered and identified by our research group. In this paper, we continue to investigate gene expression profiling and alternative splicing events during chondrogenic differentiation of cartilage endplate-derived stem cells. We adopted Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) to compare the transcriptional and splicing changes between the control and differentiated samples. RT-PCR and quantitative PCR are used to validate the microarray results. The GO and KEGG pathway analysis was also performed. After bioinformatics analysis of the data, we detected 1953 differentially expressed genes. In terms of alternative splicing, the Splicing Index algorithm was used to select alternatively spliced genes. We detected 4411 alternatively spliced genes. GO and KEGG pathway analysis also revealed several functionally involved biological processes and signaling pathways. To our knowledge, this is the first study to investigate the alternative splicing mechanisms in chondrogenic differentiation of stem cells on a genome-wide scale.
Collapse
|
21
|
Li J, Fung I, Glessner JT, Pandey R, Wei Z, Bakay M, Mentch FD, Pellegrino R, Wang T, Kim C, Hou C, Wang F, Chiavacci RM, Thomas KA, Spergel JM, Hakonarson H, Sleiman PMA. Copy Number Variations in CTNNA3 and RBFOX1 Associate with Pediatric Food Allergy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1599-607. [PMID: 26188062 DOI: 10.4049/jimmunol.1402310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/20/2015] [Indexed: 11/19/2022]
Abstract
Food allergy is a significant public health concern, especially among children. Previous candidate gene studies suggested a few susceptibility loci for food allergy, but no study investigated the contribution of copy number variations (CNVs) to food allergy on a genome-wide scale. To investigate the genetics of food allergy, we performed CNV assessment using high-resolution genome-wide single nucleotide polymorphism arrays. CNV calls from a total of 357 cases with confirmed food allergy and 3980 controls were analyzed within a discovery cohort, followed by a replication analysis composed of 167 cases and 1573 controls. We identified that CNVs in CTNNA3 were significantly associated with food allergy in both the discovery cohort and the replication cohort. Of particular interest, CTNNA3 CNVs hit exons or intron regions rich in histone marker H3K4Me1. CNVs in a second gene (RBFOX1) showed a significant association (p = 7.35 × 10(-5)) with food allergy at the genome-wide level in our meta-analysis of the European ancestry cohorts. The presence of these CNVs was confirmed by quantitative PCR. Furthermore, knockdown of CTNNA3 resulted in upregulation of CD63 and CD203c in mononuclear cells upon PMA stimulation, suggesting a role in sensitization to allergen. We uncovered at least two plausible genes harboring CNV loci that are enriched in pediatric patients with food allergies. The novel gene candidates discovered in this study by genome-wide CNV analysis are compelling drug and diagnostic targets for food allergy.
Collapse
Affiliation(s)
- Jin Li
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Irene Fung
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Joseph T Glessner
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rahul Pandey
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 08540
| | - Marina Bakay
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Frank D Mentch
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Renata Pellegrino
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Tiancheng Wang
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cecilia Kim
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cuiping Hou
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Fengxiang Wang
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kelly A Thomas
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jonathan M Spergel
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Center for Pediatric Eosinophilic Disorders, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Patrick M A Sleiman
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
22
|
Wan Q, Su J. Transcriptome analysis provides insights into the regulatory function of alternative splicing in antiviral immunity in grass carp (Ctenopharyngodon idella). Sci Rep 2015; 5:12946. [PMID: 26248502 PMCID: PMC4528194 DOI: 10.1038/srep12946] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/10/2015] [Indexed: 01/17/2023] Open
Abstract
Characterization of the transcriptomic response to infection is an effective approach to understanding the immune mechanisms. Herein we challenged grass carp (Ctenopharyngodon idella) with grass carp reovirus (GCRV) and sequenced four cDNA libraries obtained from head-kidney and spleen by using Illumina Miseq. As a result, we gained a total of 21.52 Gb clean data with 107.96 million reads, and de novo assembled 55,199 unigenes with an average length of 1,470 bp. Comparative transcriptome analysis reveals that 217 unigenes are differentially expressed (fold-change of at least 4) between resistant and susceptible fish in both head-kidney and spleen, and of which 36 unigenes were validated by RT-qPCR experiment. The expression profile of immune-related genes demonstrates that the immune response of spleen is more intense than that of head-kidney. Remarkably, 11,811 unigenes contain multiple transcripts, of which 322 unigenes possess notably differentially expressed transcripts between the four transcriptomic datasets. Furthermore, the splicing transcripts of IL-12p40 and IL-1R1 are firstly found to play diverse roles in the antiviral response of fishes. This study provides a complete transcriptome dataset of C. idella, which is valuable for the studies of immune complexity and, moreover, throws light on the regulatory role of AS in antiviral immunity.
Collapse
Affiliation(s)
- Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| |
Collapse
|
23
|
Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 2014; 14:361-76. [PMID: 24854588 DOI: 10.1038/nri3682] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Innate immune responses combat infectious microorganisms by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. Multiple genes within each of these functional categories are coordinately and temporally regulated in response to distinct external stimuli. The substantial potential of these responses to drive pathological inflammation and tissue damage highlights the need for rigorous control of these responses. Although transcriptional control of inflammatory gene expression has been studied extensively, the importance of post-transcriptional regulation of these processes is less well defined. In this Review, we discuss the regulatory mechanisms that occur at the level of mRNA splicing, mRNA polyadenylation, mRNA stability and protein translation, and that have instrumental roles in controlling both the magnitude and duration of the inflammatory response.
Collapse
Affiliation(s)
- Susan Carpenter
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Emiliano P Ricci
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Blandine C Mercier
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Katherine A Fitzgerald
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2] Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|