1
|
Urban C, Blom AA, Avanzi C, Walker-Meikle K, Warren AK, White-Iribhogbe K, Turle R, Marter P, Dawson-Hobbis H, Roffey S, Inskip SA, Schuenemann VJ. Ancient Mycobacterium leprae genome reveals medieval English red squirrels as animal leprosy host. Curr Biol 2024; 34:2221-2230.e8. [PMID: 38703773 DOI: 10.1016/j.cub.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Leprosy, one of the oldest recorded diseases in human history, remains prevalent in Asia, Africa, and South America, with over 200,000 cases every year.1,2 Although ancient DNA (aDNA) approaches on the major causative agent, Mycobacterium leprae, have elucidated the disease's evolutionary history,3,4,5 the role of animal hosts and interspecies transmission in the past remains unexplored. Research has uncovered relationships between medieval strains isolated from archaeological human remains and modern animal hosts such as the red squirrel in England.6,7 However, the time frame, distribution, and direction of transmissions remains unknown. Here, we studied 25 human and 12 squirrel samples from two archaeological sites in Winchester, a medieval English city well known for its leprosarium and connections to the fur trade. We reconstructed four medieval M. leprae genomes, including one from a red squirrel, at a 2.2-fold average coverage. Our analysis revealed a phylogenetic placement of all strains on branch 3 as well as a close relationship between the squirrel strain and one newly reconstructed medieval human strain. In particular, the medieval squirrel strain is more closely related to some medieval human strains from Winchester than to modern red squirrel strains from England, indicating a yet-undetected circulation of M. leprae in non-human hosts in the Middle Ages. Our study represents the first One Health approach for M. leprae in archaeology, which is centered around a medieval animal host strain, and highlights the future capability of such approaches to understand the disease's zoonotic past and current potential.
Collapse
Affiliation(s)
- Christian Urban
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alette A Blom
- Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland; Department of Archaeology, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK; School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, 401 W Pitkin St, Fort Collins, CO 80523, USA
| | - Kathleen Walker-Meikle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland; Science Museum Group, Science Museum, Exhibition Road, South Kensington, London SW7 2DD, UK
| | - Alaine K Warren
- Department of Microbiology, Immunology and Pathology, Colorado State University, 401 W Pitkin St, Fort Collins, CO 80523, USA
| | - Katie White-Iribhogbe
- School of Oriental and African Studies (SOAS), University of London, 10 Thornaugh Street, London WC1H 0XG, UK
| | - Ross Turle
- Hampshire Cultural Trust, Chilcomb House, Chilcomb Lane, Winchester SO23 8RB, UK
| | - Phil Marter
- School of History, Archaeology and Philosophy, University of Winchester, Medecroft Building, Sparkford Road, Winchester SO22 4NH, UK
| | - Heidi Dawson-Hobbis
- School of History, Archaeology and Philosophy, University of Winchester, Medecroft Building, Sparkford Road, Winchester SO22 4NH, UK
| | - Simon Roffey
- School of History, Archaeology and Philosophy, University of Winchester, Medecroft Building, Sparkford Road, Winchester SO22 4NH, UK
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland; Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
2
|
Taylor GM, White-Iribhogbe K, Cole G, Ashby D, Stewart GR, Dawson-Hobbis H. Bioarchaeological investigation of individuals with suspected multibacillary leprosy from the mediaeval leprosarium of St Mary Magdalen, Winchester, Hampshire, UK. J Med Microbiol 2024; 73. [PMID: 38362924 DOI: 10.1099/jmm.0.001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Introduction. We have examined four burials from the St Mary Magdalen mediaeval leprosarium cemetery in Winchester, Hampshire, UK. One (Sk.8) was a male child, two (Sk.45 and Sk.52) were adolescent females and the fourth (Sk.512) was an adult male. The cemetery was in use between the 10th and 12th centuries. All showed skeletal lesions of leprosy. Additionally, one of the two females (Sk.45) had lesions suggestive of multi-cystic tuberculosis and the second (Sk.52) of leprogenic odontodysplasia (LO), a rare malformation of the roots of the permanent maxillary incisors.Gap statement. Relatively little is known of the manifestations of lepromatous leprosy (LL) in younger individuals from the archaeological record.Aims and Methodology. To address this, we have used ancient DNA testing and osteological examination of the individuals, supplemented with X-ray and microcomputed tomography (micro-CT) scan as necessary to assess the disease status.Results and Conclusions. The presence of Mycobacterium leprae DNA was confirmed in both females, and genotyping showed SNP type 3I-1 strains but with a clear genotypic variation. We could not confirm Mycobacterium tuberculosis complex DNA in the female individual SK.45. High levels of M. leprae DNA were found within the pulp cavities of four maxillary teeth from the male child (Sk.8) with LO, consistent with the theory that the replication of M. leprae in alveolar bone may interfere with root formation at key stages of development. We report our biomolecular findings in these individuals and review the evidence this site has contributed to our knowledge of mediaeval leprosy.
Collapse
Affiliation(s)
- G Michael Taylor
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Katie White-Iribhogbe
- Centre of African Studies, School of Oriental and African Studies (SOAS), University of London, Thornhaugh Street, Russell Square, London, WC1H 0XG, UK
| | - Garrard Cole
- UCL Institute of Archaeology, 31-34 Gordon Square, London, WC1H 0PY, UK
| | - David Ashby
- School of History, Archaeology and Philosophy, University of Winchester, Sparkford Road, Winchester, Hampshire, SO22 4NR, UK
| | - Graham R Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Heidi Dawson-Hobbis
- School of History, Archaeology and Philosophy, University of Winchester, Sparkford Road, Winchester, Hampshire, SO22 4NR, UK
| |
Collapse
|
3
|
Lee OYC, Wu HHT, Besra GS. Professor David Minnikin Memorial Lecture: An era of the mycobacterial cell wall lipid biomarkers. Tuberculosis (Edinb) 2023; 143S:102415. [PMID: 38012929 DOI: 10.1016/j.tube.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
This paper is dedicated to the memory of Professor David Ernest Minnikin (1939-2021). David was one of the key scientists who pioneered the field of Mycobacterium tuberculosis cell envelope research for over half a century. From the classification, identification, and extraction of the unusual lipids of the mycobacterial cell wall, to exploiting them as characteristic lipid biomarkers for sensitive detection, his ideas enlightened a whole world of possibilities within the tuberculosis (TB) field. In addition, his definition of the intricate models now forms a key milestone in our understanding of the M. tuberculosis cell envelope and has resolved many unanswered questions on the evolution of M. tuberculosis.
Collapse
Affiliation(s)
- Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, United Kingdom; Coventry Road Medical Centre, Small Heath, Birmingham, B10 0UG, United Kingdom
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, United Kingdom; Coventry Road Medical Centre, Small Heath, Birmingham, B10 0UG, United Kingdom; UK Health Security Agency, Public Health Laboratory, Birmingham, B5 9SS, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
4
|
Cole G, Taylor GM, Stewart GR, Dawson-Hobbis H. Ancient DNA confirmation of lepromatous leprosy in a skeleton with concurrent osteosarcoma, excavated from the leprosarium of St. Mary Magdalen in Winchester, Hants., UK. Eur J Clin Microbiol Infect Dis 2022; 41:1295-1304. [DOI: 10.1007/s10096-022-04494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
|
5
|
Filipek KL, Roberts CA, Montgomery J, Gowland RL, Moore J, Tucker K, Evans JA. Creating communities of care: Sex estimation and mobility histories of adolescents buried in the cemetery of St. Mary Magdalen leprosarium (Winchester, England). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9306906 DOI: 10.1002/ajpa.24498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objectives This study examines the biological sex and geographical origins of adolescents buried at the St Mary Magdalen leprosarium (Winchester, UK). The data are combined with archaeological and palaeopathological evidence to broaden the understanding of mobility and its relationship to leprosy and leprosaria in Medieval England. Materials and Methods Nineteen individuals (~10–25 at death) with skeletal lesions diagnostic of leprosy were analyzed using standard osteological methods. Amelogenin peptides were extracted from five individuals whose biological sex could not be assessed from macroscopic methods. Enamel samples were analyzed to produce 87Sr/86Sr and δ18O values to explore mobility histories. Results Amelogenin peptides revealed three males and two females. Tooth enamel samples provided an 87Sr/86Sr ratio range from 0.7084 to 0.7103 (mean 0.7090, ±0.0012, 2σ). δ18OP values show a wide range of 15.6‰–19.3‰ (mean 17.8 ± 1.6‰ 2σ), with corresponding δ18ODW values ranging from −9.7‰ to −4.1‰ (mean −6.3 ± 2.4‰ 2σ). Discussion Amelogenin peptide data reveal the presence of adolescent females with bone changes of leprosy, making them the youngest confirmed females with leprosy in the archaeological record. Results also show at least 12 adolescents were local, and seven were from further afield, including outside Britain. Since St. Mary Magdalen was a leprosarium, it is possible that these people traveled there specifically for care. Archaeological and palaeopathological data support the notion that care was provided at this facility and that leprosy stigma, as we understand it today, may not have existed in this time and place.
Collapse
Affiliation(s)
- Kori Lea Filipek
- Department of Archaeology Durham University Durham UK
- Human Sciences Research Centre, School of Human Sciences University of Derby Derby UK
| | | | | | | | - Joanna Moore
- Department of Archaeology Durham University Durham UK
| | - Katie Tucker
- Department of Archaeology University of Winchester Winchester UK
| | - Jane A. Evans
- National Environmental Isotope Facility British Geological Survey Keyworth UK
| |
Collapse
|
6
|
Pfrengle S, Neukamm J, Guellil M, Keller M, Molak M, Avanzi C, Kushniarevich A, Montes N, Neumann GU, Reiter E, Tukhbatova RI, Berezina NY, Buzhilova AP, Korobov DS, Suppersberger Hamre S, Matos VMJ, Ferreira MT, González-Garrido L, Wasterlain SN, Lopes C, Santos AL, Antunes-Ferreira N, Duarte V, Silva AM, Melo L, Sarkic N, Saag L, Tambets K, Busso P, Cole ST, Avlasovich A, Roberts CA, Sheridan A, Cessford C, Robb J, Krause J, Scheib CL, Inskip SA, Schuenemann VJ. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biol 2021; 19:220. [PMID: 34610848 PMCID: PMC8493730 DOI: 10.1186/s12915-021-01120-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/07/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.
Collapse
Affiliation(s)
- Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Martyna Molak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
- Swiss and Tropical Public Health Institute, Basel, Switzerland
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Núria Montes
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Gunnar U Neumann
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Rezeda I Tukhbatova
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
- Laboratory of Structural Biology, Kazan Federal University, Kazan, Russian Federation, 420008
| | - Nataliya Y Berezina
- Research Institute and Museum of Anthropology, Moscow State University, 125009, Mokhovaya str. 11, Moscow, Russian Federation
| | - Alexandra P Buzhilova
- Research Institute and Museum of Anthropology, Moscow State University, 125009, Mokhovaya str. 11, Moscow, Russian Federation
| | - Dmitry S Korobov
- The Institute of Archaeology of the Russian Academy of Sciences, 117292, Dm. Uljanova str. 19, Moscow, Russian Federation
| | - Stian Suppersberger Hamre
- Department of Archaeology, History, Cultural studies and religion, University of Bergen, 5020, Bergen, Norway
| | - Vitor M J Matos
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Maria T Ferreira
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Centre for Functional Ecology, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Área de Antropología Física, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Laura González-Garrido
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Área de Antropología Física, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana, 24071, León, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Sofia N Wasterlain
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Célia Lopes
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Laboratory of Biological Anthropology, Department of Biology; School of Science and Technology, University of Évora, Évora, Portugal
| | - Ana Luisa Santos
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Nathalie Antunes-Ferreira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz (LCFPEM), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Egas Moniz CRL, Monte de Caparica, Portugal
- Laboratory of Biological Anthropology and Human Osteology (LABOH), CRIA/FCSH, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Vitória Duarte
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ana Maria Silva
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Centre for Functional Ecology, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- UNIARQ - University of Lisbon, Lisbon, Portugal
| | - Linda Melo
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Natasa Sarkic
- OSTEO Research, Camino de la Iglesia 1, Barrio de mata, Santiuste De Pedraza, 40171, Segovia, Spain
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Philippe Busso
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, 25-28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Alexei Avlasovich
- Department of Archeology, History of Belarus and Special Historical Disciplines, Mogilev State A. Kuleshov University, Str Kosmonavtov 1, Mogilev, 212022, Republic of Belarus
| | - Charlotte A Roberts
- Department of Archaeology, Durham University, South Road, Durham, DH1 3 LE, UK
| | - Alison Sheridan
- Department of Scottish History and Archaeology, National Museums Scotland, Chambers Street, Edinburgh, EH1 1JF, UK
| | - Craig Cessford
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - John Robb
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
- St John's College, University of Cambridge, Cambridge, CB2 1TP, UK.
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester, LE1 7RH, UK.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.
| |
Collapse
|
7
|
Brozou A, Fuller BT, Grimes V, Lynnerup N, Boldsen JL, Jørkov ML, Pedersen DD, Olsen J, Mannino MA. Leprosy in medieval Denmark: Exploring life histories through a multi-tissue and multi-isotopic approach. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:36-53. [PMID: 34096038 DOI: 10.1002/ajpa.24339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/25/2021] [Accepted: 05/23/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES By focusing on two Danish leprosaria (Naestved and Odense; 13th-16th c. CE) and using diet and origin as proxies, we follow a multi-isotopic approach to reconstruct life histories of patients and investigate how leprosy affected both institutionalized individuals and the medieval Danish community as a whole. MATERIALS AND METHODS We combine archaeology, historical sources, biological anthropology, isotopic analyses (δ13 C, δ15 N, δ34 S, 87 Sr/86 Sr) and radiocarbon dating, and further analyze bones with different turnover rates (ribs and long bones). RESULTS The δ13 C, δ15 N and δ34 S results indicate a C3 terrestrial diet with small contributions of marine protein for leprosy patients and individuals from other medieval Danish sites. A similar diet is seen through time, between males and females, and patients with and without changes on facial bones. The isotopic comparison between ribs and long bones reveals no significant dietary change. The δ34 S and 87 Sr/86 Sr results suggest that patients were local to the regions of the leprosaria. Moreover, the radiocarbon dates show a mere 50% agreement with the arm position dating method used in Denmark. CONCLUSIONS A local origin for the leprosy patients is in line with historical evidence, unlike the small dietary contribution of marine protein. Although only 10% of the analyzed individuals have rib/long bone offsets that undoubtedly show a dietary shift, the data appear to reveal a pattern for 25 individuals (out of 50), with elevated δ13 C and/or δ15 N values in the ribs compared to the long bones, which points toward a communal type of diet and reveals organizational aspects of the institution.
Collapse
Affiliation(s)
- Anastasia Brozou
- Department of Archaeology and Heritage Studies, Aarhus University, Højbjerg, Denmark
| | - Benjamin T Fuller
- Department of Archaeology and Heritage Studies, Aarhus University, Højbjerg, Denmark
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, Queen's College, St. John's, Newfoundland, Canada.,Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Niels Lynnerup
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Boldsen
- Department of Forensic Medicine, University of Southern Denmark, Odense, Denmark
| | - Marie Louise Jørkov
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dorthe Dangvard Pedersen
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Forensic Medicine, University of Southern Denmark, Odense, Denmark.,National Museum of Denmark, Prince's Mansion, Copenhagen, Denmark
| | - Jesper Olsen
- Aarhus AMS Centre (AARAMS), Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Marcello A Mannino
- Department of Archaeology and Heritage Studies, Aarhus University, Højbjerg, Denmark
| |
Collapse
|
8
|
Avanzi C, Singh P, Truman RW, Suffys PN. Molecular epidemiology of leprosy: An update. INFECTION GENETICS AND EVOLUTION 2020; 86:104581. [PMID: 33022427 DOI: 10.1016/j.meegid.2020.104581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Molecular epidemiology investigations are notoriously challenging in the leprosy field mainly because the inherent characteristics of the disease as well as its yet uncultivated causative agents, Mycobacterium leprae and M. lepromatosis. Despite significant developments in understanding the biology of leprosy bacilli through genomic approaches, the exact mechanisms of transmission is still unclear and the factors underlying pathological variation of the disease in different patients remain as major gaps in our knowledge about leprosy. Despite these difficulties, the last two decades have seen the development of genotyping procedures based on PCR-sequencing of target loci as well as by the genome-wide analysis of an increasing number of geographically diverse isolates of leprosy bacilli. This has provided a foundation for molecular epidemiology studies that are bringing a better understanding of strain evolution associated with ancient human migrations, and phylogeographical insights about the spread of disease globally. This review discusses the advantages and drawbacks of the main tools available for molecular epidemiological investigations of leprosy and summarizes various methods ranging from PCR-based genotyping to genome-typing techniques. We also describe their main applications in analyzing the short-range and long-range transmission of the disease. Finally, we summarise the current gaps and challenges that remain in the field of molecular epidemiology of leprosy.
Collapse
Affiliation(s)
- Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pushpendra Singh
- Indian Council of Medical Research - National Institute of Research in Tribal Health, Jabalpur, India
| | - Richard W Truman
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LO, USA
| | - Philip N Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria - Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Detection of Mycobacterium leprae DNA from remains of a medieval individual, Amiens, France. Clin Microbiol Infect 2020; 26:127-129. [DOI: 10.1016/j.cmi.2019.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022]
|
10
|
Chavarro-Portillo B, Soto CY, Guerrero MI. Mycobacterium leprae's evolution and environmental adaptation. Acta Trop 2019; 197:105041. [PMID: 31152726 DOI: 10.1016/j.actatropica.2019.105041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
Abstract
Leprosy is an ancient disease caused by the acid-fast bacillus Mycobacterium leprae, also known as Hansen's bacillus. M. leprae is an obligate intracellular microorganism with a marked Schwann cell tropism and is the only human pathogen capable of invading the superficial peripheral nerves. The transmission mechanism of M. leprae is not fully understood; however, the nasal mucosa is accepted as main route of M. leprae entry to the human host. The complete sequencing and the comparative genome analysis show that M. leprae underwent a genome reductive evolution process, as result of lifestyle change and adaptation to different environments; some of lost genes are homologous to those of host cells. Thus, M. leprae reduced its genome size to 3.3 Mbp, contributing to obtain the lowest GC content (approximately 58%) among mycobacteria. The M. leprae genome contains 1614 open reading frames coding for functional proteins, and 1310 pseudogenes corresponding to 41% of the genome, approximately. Comparative analyses to different microorganisms showed that M. leprae possesses the highest content of pseudogenes among pathogenic and non-pathogenic bacteria and archaea. The pathogen adaptation into host cells, as the Schwann cells, brought about the reduction of the genome and induced multiple gene inactivation. The present review highlights the characteristics of genome's reductive evolution that M. leprae experiences in the genetic aspects compared with other pathogens. The possible mechanisms of pseudogenes formation are discussed.
Collapse
|
11
|
Donoghue HD. Tuberculosis and leprosy associated with historical human population movements in Europe and beyond - an overview based on mycobacterial ancient DNA. Ann Hum Biol 2019; 46:120-128. [PMID: 31137975 DOI: 10.1080/03014460.2019.1624822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Context: Tuberculosis and leprosy are readily recognised in human remains due to their typical palaeopathology. Both Mycobacterium tuberculosis (MTB) and Mycobacterium leprae (ML) are obligate pathogens and have been detected in ancient human populations. Objective: To demonstrate historical tuberculosis and leprosy cases in Europe and beyond using molecular methods, as human populations are associated with different mycobacterial genotypes. Methods: MTB and ML ancient DNA (aDNA) has been detected by DNA amplification using PCR, or by whole genome sequencing. Mycobacterial cell wall lipids also provide specific markers for identification. Results: In 18th century Hungary, the European indigenous MTB genotype 4 strains have been found. However, many individuals were co-infected with up to three MTB sub-genotypes. In 8th-14th century Europe significant differences in ML genotypes were found between northwest Europe compared with central, southern, or eastern Europe. In addition, several co-infections of MTB and ML were detected in historical samples. Conclusion: Both MTB and ML strain types differ between geographically separate populations. This is associated with ancient human migration after an evolutionary bottleneck and clonal expansion. The absence of indigenous leprosy in Europe today may be due to the greater mortality of tuberculosis in individuals who are co-infected with both organisms.
Collapse
Affiliation(s)
- Helen D Donoghue
- a Centre for Clinical Microbiology , University College London (UCL) , London , UK
| |
Collapse
|
12
|
Taylor GM, Murphy EM, Mendum TA, Pike AWG, Linscott B, Wu H, O’Grady J, Richardson H, O’Donovan E, Troy C, Stewart GR. Leprosy at the edge of Europe-Biomolecular, isotopic and osteoarchaeological findings from medieval Ireland. PLoS One 2018; 13:e0209495. [PMID: 30586394 PMCID: PMC6306209 DOI: 10.1371/journal.pone.0209495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 11/18/2022] Open
Abstract
Relatively little is known of leprosy in Medieval Ireland; as an island located at the far west of Europe it has the potential to provide interesting insights in relation to the historical epidemiology of the disease. To this end the study focuses on five cases of probable leprosy identified in human skeletal remains excavated from inhumation burials. Three of the individuals derived from the cemetery of St Michael Le Pole, Golden Lane, Dublin, while single examples were also identified from Ardreigh, Co. Kildare, and St Patrick’s Church, Armoy, Co. Antrim. The individuals were radiocarbon dated and examined biomolecularly for evidence of either of the causative pathogens, M. leprae or M. lepromatosis. Oxygen and strontium isotopes were measured in tooth enamel and rib samples to determine where the individuals had spent their formative years and to ascertain if they had undertaken any recent migrations. We detected M. leprae DNA in the three Golden Lane cases but not in the probable cases from either Ardreigh Co. Kildare or Armoy, Co. Antrim. M. lepromatosis was not detected in any of the burals. DNA preservation was sufficiently robust to allow genotyping of M. leprae strains in two of the Golden Lane burials, SkCXCV (12-13th century) and SkCCXXX (11-13th century). These strains were found to belong on different lineages of the M. leprae phylogenetic tree, namely branches 3 and 2 respectively. Whole genome sequencing was also attempted on these two isolates with a view to gaining further information but poor genome coverage precluded phylogenetic analysis. Data from the biomolecular study was combined with osteological, isotopic and radiocarbon dating to provide a comprehensive and multidisciplinary study of the Irish cases. Strontium and oxygen isotopic analysis indicate that two of the individuals from Golden Lane (SkCXLVIII (10-11th century) and SkCXCV) were of Scandinavian origin, while SkCCXXX may have spent his childhood in the north of Ireland or central Britain. We propose that the Vikings were responsible for introducing leprosy to Ireland. This work adds to our knowledge of the likely origins of leprosy in Medieval Ireland and will hopefully stimulate further research into the history and spread of this ancient disease across the world.
Collapse
Affiliation(s)
- G. Michael Taylor
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Eileen M. Murphy
- Archaeology and Palaeoecology, School of Natural and Built Environment, Queen’s University Belfast, Belfast, Northern Ireland
- * E-mail:
| | - Tom A. Mendum
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Alistair W. G. Pike
- Department of Archaeology, University of Southampton, Highfield Road, Southampton, United Kingdom
| | - Bethan Linscott
- Department of Archaeology, University of Southampton, Highfield Road, Southampton, United Kingdom
| | - Huihai Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Justin O’Grady
- Norwich Medical School, University of East Anglia, Norwich, England, United Kingdom
| | - Hollian Richardson
- Norwich Medical School, University of East Anglia, Norwich, England, United Kingdom
| | - Edmond O’Donovan
- Edmond O’Donovan & Associates, Archaeological Consultant, Bray, Co. Wicklow, Republic of Ireland
| | - Carmelita Troy
- Rubicon Heritage Services Ltd, Unit 2, Europa Enterprise Park, Midleton, Co. Cork, Republic of Ireland
| | - Graham R. Stewart
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
13
|
Inskip S, Taylor GM, Anderson S, Stewart G. Leprosy in pre-Norman Suffolk, UK: biomolecular and geochemical analysis of the woman from Hoxne. J Med Microbiol 2017; 66:1640-1649. [DOI: 10.1099/jmm.0.000606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sarah Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, CB2 3ER, UK
| | - G. Michael Taylor
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7TE, UK
| | | | - Graham Stewart
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7TE, UK
| |
Collapse
|
14
|
Positive Diagnosis of Ancient Leprosy and Tuberculosis Using Ancient DNA and Lipid Biomarkers. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Staphylococcus aureus Sequences from Osteomyelitic Specimens of a Pathological Bone Collection from Pre-Antibiotic Times. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Rubini M, Zaio P, Spigelman M, Donoghue HD. Leprosy in a Lombard-Avar cemetery in central Italy (Campochiaro, Molise, 6th-8th century AD): ancient DNA evidence and demography. Ann Hum Biol 2017; 44:510-521. [PMID: 28715914 DOI: 10.1080/03014460.2017.1346709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The study of past infectious diseases increases knowledge of the presence, impact and spread of pathogens within ancient populations. AIM Polymerase chain reaction (PCR) was used to examine bones for the presence of Mycobacterium leprae ancient DNA (aDNA) as, even when leprosy is present, bony changes are not always pathognomonic of the disease. This study also examined the demographic profile of this population and compared it with two other populations to investigate any changes in mortality trends between different infectious diseases and between the pre-antibiotic and antibiotic eras. SUBJECTS AND METHODS The individuals were from a site in Central Italy (6th-8th CE) and were examined for the presence of Mycobacterium leprae aDNA. In addition, an abridged life mortality table was constructed. RESULTS Two individuals had typical leprosy palaeopathology, and one was positive for Mycobacterium leprae aDNA. However, the demographic profile shows a mortality curve similar to that of the standard, in contrast to a population that had been subjected to bubonic plague. CONCLUSIONS This study shows that, in the historical population with leprosy, the risk factors for health seem to be constant and distributed across all age classes, similar to what is found today in the antibiotic era. There were no peaks of mortality equivalent to those found in fatal diseases such as the plague, probably due to the long clinical course of leprosy.
Collapse
Affiliation(s)
- Mauro Rubini
- a Department of Archaeology , Foggia University , Foggia , Italy.,b Anthropological Service of S.A.L.E.M. , Ministry of Culture Italy , Rome , Italy
| | - Paola Zaio
- b Anthropological Service of S.A.L.E.M. , Ministry of Culture Italy , Rome , Italy
| | - Mark Spigelman
- c The Kuvin Center for the Study of Infectious and Tropical Diseases and Ancient DNA, Hadassah Medical School, The Hebrew University , Jerusalem , Israel.,d Department of Anatomy and Anthropology Sackler Medical School , Tel Aviv University , Tel Aviv , Israel
| | - Helen D Donoghue
- e Centre for Clinical Microbiology , Division of Infection and Immunity , UCL , London , UK
| |
Collapse
|
17
|
Abstract
The use of paleomicrobiological techniques in leprosy has the potential to assist paleopathologists in many important aspects of their studies on the bones of victims, solving at times diagnostic problems. With Mycobacterium leprae, because of the unique nature of the organism, these techniques can help solve problems of differential diagnosis. In cases of co-infection with Mycobacterium tuberculosis, they can also suggest a cause of death and possibly even trace the migratory patterns of people in antiquity, as well as explain changes in the rates and level of infection within populations in antiquity.
Collapse
|
18
|
Roffey S, Tucker K, Filipek-Ogden K, Montgomery J, Cameron J, O’Connell T, Evans J, Marter P, Taylor GM. Investigation of a Medieval Pilgrim Burial Excavated from the Leprosarium of St Mary Magdalen Winchester, UK. PLoS Negl Trop Dis 2017; 11:e0005186. [PMID: 28125649 PMCID: PMC5268360 DOI: 10.1371/journal.pntd.0005186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/15/2016] [Indexed: 01/10/2023] Open
Abstract
We have examined the remains of a Pilgrim burial from St Mary Magdalen, Winchester. The individual was a young adult male, aged around 18–25 years at the time of death. Radiocarbon dating showed the remains dated to the late 11th–early 12th centuries, a time when pilgrimages were at their height in Europe. Several lines of evidence in connection with the burial suggested this was an individual of some means and prestige. Although buried within the leprosarium cemetery, the skeleton showed only minimal skeletal evidence for leprosy, which was confined to the bones of the feet and legs. Nonetheless, molecular testing of several skeletal elements, including uninvolved bones all showed robust evidence of DNA from Mycobacterium leprae, consistent with the lepromatous or multibacillary form of the disease. We infer that in life, this individual almost certainly suffered with multiple soft tissue lesions. Genotyping of the M.leprae strain showed this belonged to the 2F lineage, today associated with cases from South-Central and Western Asia. During osteological examination it was noted that the cranium and facial features displayed atypical morphology for northern European populations. Subsequently, geochemical isotopic analyses carried out on tooth enamel indicated that this individual was indeed not local to the Winchester region, although it was not possible to be more specific about their geographic origin. This multidisciplinary research article, involving biomolecular analysis, osteology, strontium and oxygen isotopic analyses and archaeology, examines the remains of a Pilgrim burial excavated from the medieval leprosy hospital of St Mary Magdalen, Winchester, UK. Radiocarbon dating showed the remains dated to the late 11th–early 12th centuries, a time when pilgrimages were at their height in Europe. The leprosarium at Winchester is one of the earliest excavated examples from Western Europe and has been the subject of a series of recent academic papers. The site is remarkable for the high number of burials displaying skeletal lesions characteristic of leprosy (86%) and the state of preservation of biomolecular markers of the disease, including mycolipids and DNA. Genotyping of the M.leprae strain showed this belonged to the 2F lineage, today associated with cases from South-Central and Western Asia. Several aspects of the burial and dietary isotope analysis indicated this was an individual of some prestige and means; an unusual cranial morphology pointed to possible origin outside of the British Isles. Strontium and oxygen isotopic analyses confirmed he was not local to the Winchester area but were not able to pinpoint his precise origins. Overall these findings confirm the benefits of a multidisciplinary approach which allows investigation of the wider relationship between leprosy, medieval pilgrimage and M.leprae transmission.
Collapse
Affiliation(s)
- Simon Roffey
- Department of Archaeology, University of Winchester, Winchester, United Kingdom
- * E-mail:
| | - Katie Tucker
- Department of Archaeology, University of Winchester, Winchester, United Kingdom
| | | | - Janet Montgomery
- Department of Archaeology, Durham University, Durham United Kingdom
| | - Jamie Cameron
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, Oxford, United Kingdom
| | - Tamsin O’Connell
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Jane Evans
- NERC Isotope Geosciences Laboratory, Keyworth, Notts, United Kingdom
| | - Phil Marter
- Department of Archaeology, University of Winchester, Winchester, United Kingdom
| | - G. Michael Taylor
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, AX Building, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
19
|
Rivera-Perez JI, Santiago-Rodriguez TM, Toranzos GA. Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. Microbiol Spectr 2016; 4:10.1128/microbiolspec.EMF-0006-2015. [PMID: 27726770 PMCID: PMC5287379 DOI: 10.1128/microbiolspec.emf-0006-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.
Collapse
|
20
|
Cardona-Castro N, Cortés E, Beltrán C, Romero M, Badel-Mogollón JE, Bedoya G. Human Genetic Ancestral Composition Correlates with the Origin of Mycobacterium leprae Strains in a Leprosy Endemic Population. PLoS Negl Trop Dis 2015; 9:e0004045. [PMID: 26360617 PMCID: PMC4567314 DOI: 10.1371/journal.pntd.0004045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean) in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers), Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations. Contemporary Colombian population is an admixture of three ancestries: Native-American, European and African. Genetic studies of human ancestry have found associations with disease, likely due to the fact that microorganisms have accompanied humans during migrations. Taking these facts into account, we studied the effect of human ancestry, Mycobacterium leprae genotype and the geographical origin of our study population, on leprosy. We found correlations between ancestral composition and M. leprae genotype: an African component is higher in the Atlantic region and a European component is higher in Andean populations (p<0.05). An interesting connection was found between the ancestral composition and two principal types of M. leprae isolates: type C54 (of African origin) was more frequent in Atlantic region populations, and type T45 (of European origin) was more frequent in the Andean region, suggesting that human and bacterial genomes have co-existed since leprosy’s origins and that leprosy has circulated with human migration.
Collapse
Affiliation(s)
- Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical—Universidad CES, Sabaneta, Antioquia, Colombia
- * E-mail:
| | - Edwin Cortés
- Grupo GENMOL, Instituto de Biología Universidad de Antioquia, Medellín, Colombia
| | - Camilo Beltrán
- Instituto Colombiano de Medicina Tropical—Universidad CES, Sabaneta, Antioquia, Colombia
| | - Marcela Romero
- Instituto Colombiano de Medicina Tropical—Universidad CES, Sabaneta, Antioquia, Colombia
| | | | - Gabriel Bedoya
- Grupo GENMOL, Instituto de Biología Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
21
|
Witas HW, Donoghue HD, Kubiak D, Lewandowska M, Gładykowska-Rzeczycka JJ. Molecular studies on ancient M. tuberculosis and M. leprae: methods of pathogen and host DNA analysis. Eur J Clin Microbiol Infect Dis 2015. [PMID: 26210385 PMCID: PMC4545183 DOI: 10.1007/s10096-015-2427-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Humans have evolved alongside infectious diseases for millennia. Despite the efforts to reduce their incidence, infectious diseases still pose a tremendous threat to the world population. Fast development of molecular techniques and increasing risk of new epidemics have resulted in several studies that look to the past in order to investigate the origin and evolution of infectious diseases. Tuberculosis and leprosy have become frequent targets of such studies, owing to the persistence of their molecular biomarkers in ancient material and the characteristic skeletal lesions each disease may cause. This review examines the molecular methods used to screen for the presence of M. tuberculosis and M. leprae ancient DNA (aDNA) and their differentiation in ancient human remains. Examples of recent studies, mainly from Europe, that employ the newest techniques of molecular analysis are also described. Moreover, we present a specific approach based on assessing the likely immunological profile of historic populations, in order to further elucidate the influence of M. tuberculosis and M. leprae on historical human populations.
Collapse
Affiliation(s)
- H W Witas
- Department of Molecular Biology, Medical University of Łódź, Łódź, Poland,
| | | | | | | | | |
Collapse
|
22
|
Inskip SA, Taylor GM, Zakrzewski SR, Mays SA, Pike AWG, Llewellyn G, Williams CM, Lee OYC, Wu HHT, Minnikin DE, Besra GS, Stewart GR. Osteological, biomolecular and geochemical examination of an early anglo-saxon case of lepromatous leprosy. PLoS One 2015; 10:e0124282. [PMID: 25970602 PMCID: PMC4430215 DOI: 10.1371/journal.pone.0124282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/12/2015] [Indexed: 11/19/2022] Open
Abstract
We have examined a 5th to 6th century inhumation from Great Chesterford, Essex, UK. The incomplete remains are those of a young male, aged around 21-35 years at death. The remains show osteological evidence of lepromatous leprosy (LL) and this was confirmed by lipid biomarker analysis and ancient DNA (aDNA) analysis, which provided evidence for both multi-copy and single copy loci from the Mycobacterium leprae genome. Genotyping showed the strain belonged to the 3I lineage, but the Great Chesterford isolate appeared to be ancestral to 3I strains found in later medieval cases in southern Britain and also continental Europe. While a number of contemporaneous cases exist, at present, this case of leprosy is the earliest radiocarbon dated case in Britain confirmed by both aDNA and lipid biomarkers. Importantly, Strontium and Oxygen isotope analysis suggest that the individual is likely to have originated from outside Britain. This potentially sheds light on the origins of the strain in Britain and its subsequent spread to other parts of the world, including the Americas where the 3I lineage of M. leprae is still found in some southern states of America.
Collapse
Affiliation(s)
- Sarah A. Inskip
- Faculteit Archaeologie, Universiteit Leiden, 2311 BE, Leiden, The Netherlands
| | - G. Michael Taylor
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7TE, United Kingdom
| | - Sonia R. Zakrzewski
- Department of Archaeology, University of Southampton, Avenue Campus, Highfield, Southampton, SO17 1BF, United Kingdom
| | - Simon A. Mays
- Ancient Monuments Laboratory, English Heritage Centre for Archaeology, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD, United Kingdom
| | - Alistair W. G. Pike
- Department of Archaeology, University of Southampton, Avenue Campus, Highfield, Southampton, SO17 1BF, United Kingdom
| | - Gareth Llewellyn
- EPSRC National Mass Spectrometry Facility, Institute of Mass Spectrometry, College of Medicine, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Christopher M. Williams
- EPSRC National Mass Spectrometry Facility, Institute of Mass Spectrometry, College of Medicine, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Houdini H. T. Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - David E. Minnikin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Graham R. Stewart
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7TE, United Kingdom
| |
Collapse
|
23
|
Donoghue HD, Spigelman M, O'Grady J, Szikossy I, Pap I, Lee OYC, Wu HHT, Besra GS, Minnikin DE. Ancient DNA analysis - An established technique in charting the evolution of tuberculosis and leprosy. Tuberculosis (Edinb) 2015; 95 Suppl 1:S140-4. [PMID: 25773651 DOI: 10.1016/j.tube.2015.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many tuberculosis and leprosy infections are latent or paucibacillary, suggesting a long time-scale for host and pathogen co-existence. Palaeopathology enables recognition of archaeological cases and PCR detects pathogen ancient DNA (aDNA). Mycobacterium tuberculosis and Mycobacterium leprae cell wall lipids are more stable than aDNA and restrict permeability, thereby possibly aiding long-term persistence of pathogen aDNA. Amplification of aDNA, using specific PCR primers designed for short fragments and linked to fluorescent probes, gives good results, especially when designed to target multi-copy loci. Such studies have confirmed tuberculosis and leprosy, including co-infections. Many tuberculosis cases have non-specific or no visible skeletal pathology, consistent with the natural history of this disease. M. tuberculosis and M. leprae are obligate parasites, closely associated with their human host following recent clonal distribution. Therefore genotyping based on single nucleotide polymorphisms (SNPs) can indicate their origins, spread and phylogeny. Knowledge of extant genetic lineages at particular times in past human populations can be obtained from well-preserved specimens where molecular typing is possible, using deletion analysis, microsatellite analysis and whole genome sequencing. Such studies have identified non-bovine tuberculosis from a Pleistocene bison from 17,500 years BP, human tuberculosis from 9000 years ago and leprosy from over 2000 years ago.
Collapse
Affiliation(s)
- Helen D Donoghue
- Centre for Clinical Microbiology, Division of Infection & Immunity, University College London, London, UK; Centre for the History of Medicine, Division of Biosciences, University College London, UK.
| | - Mark Spigelman
- Centre for Clinical Microbiology, Division of Infection & Immunity, University College London, London, UK; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Justin O'Grady
- Centre for Clinical Microbiology, Division of Infection & Immunity, University College London, London, UK.
| | - Ildikó Szikossy
- Department of Anthropology, Hungarian Natural Science Museum, Budapest, Hungary.
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural Science Museum, Budapest, Hungary.
| | - Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - David E Minnikin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
24
|
Donoghue HD, Michael Taylor G, Marcsik A, Molnár E, Pálfi G, Pap I, Teschler-Nicola M, Pinhasi R, Erdal YS, Velemínsky P, Likovsky J, Belcastro MG, Mariotti V, Riga A, Rubini M, Zaio P, Besra GS, Lee OYC, Wu HHT, Minnikin DE, Bull ID, O'Grady J, Spigelman M. A migration-driven model for the historical spread of leprosy in medieval Eastern and Central Europe. INFECTION GENETICS AND EVOLUTION 2015; 31:250-6. [PMID: 25680828 DOI: 10.1016/j.meegid.2015.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 11/26/2022]
Abstract
Leprosy was rare in Europe during the Roman period, yet its prevalence increased dramatically in medieval times. We examined human remains, with paleopathological lesions indicative of leprosy, dated to the 6th-11th century AD, from Central and Eastern Europe and Byzantine Anatolia. Analysis of ancient DNA and bacterial cell wall lipid biomarkers revealed Mycobacterium leprae in skeletal remains from 6th-8th century Northern Italy, 7th-11th century Hungary, 8th-9th century Austria, the Slavic Greater Moravian Empire of the 9th-10th century and 8th-10th century Byzantine samples from Northern Anatolia. These data were analyzed alongside findings published by others. M. leprae is an obligate human pathogen that has undergone an evolutionary bottleneck followed by clonal expansion. Therefore M. leprae genotypes and sub-genotypes give information about the human populations they have infected and their migration. Although data are limited, genotyping demonstrates that historical M. leprae from Byzantine Anatolia, Eastern and Central Europe resembles modern strains in Asia Minor rather than the recently characterized historical strains from North West Europe. The westward migration of peoples from Central Asia in the first millennium may have introduced different M. leprae strains into medieval Europe and certainly would have facilitated the spread of any existing leprosy. The subsequent decline of M. leprae in Europe may be due to increased host resistance. However, molecular evidence of historical leprosy and tuberculosis co-infections suggests that death from tuberculosis in leprosy patients was also a factor.
Collapse
Affiliation(s)
- Helen D Donoghue
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, UK.
| | - G Michael Taylor
- Department of Microbial and Cellular Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Antónia Marcsik
- University of Szeged, Mályva utca 23, H-6771 Szeged, Hungary
| | - Erika Molnár
- Department of Biological Anthropology, University of Szeged, Hungary
| | - Gyorgy Pálfi
- Department of Biological Anthropology, University of Szeged, Hungary
| | - Ildikó Pap
- Department of Anthropology, Natural History Museum, Budapest, Hungary
| | | | - Ron Pinhasi
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Ireland
| | - Yilmaz S Erdal
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Petr Velemínsky
- Department of Anthropology, National Museum, Prague, Czech Republic
| | - Jakub Likovsky
- Department of the Archaeology of Landscape and Archaeobiology, Institute of Archaeology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Maria Giovanna Belcastro
- Laboratorio di Bioarcheologia e Osteologia Forense, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Via Selmi 3, 40126 Bologna, Italy; Centro Fermi, Piazza del Viminale 1, 00184 Rome, Italy
| | - Valentina Mariotti
- Laboratorio di Bioarcheologia e Osteologia Forense, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Via Selmi 3, 40126 Bologna, Italy; ADES, UMR 7268 CNRS/Université de la Méditerranée/EFS, Université de la Méditerranée, CS80011, Bd Pierre Dramard,13344 Marseille Cedex 15, France
| | - Alessandro Riga
- Laboratorio di Bioarcheologia e Osteologia Forense, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Via Selmi 3, 40126 Bologna, Italy
| | - Mauro Rubini
- Department of Archaeology, Foggia University, Tivoli, Italy; Anthropological Service of S.B.A.L. (Ministry of Culture), Rome, Italy
| | - Paola Zaio
- Department of Archaeology, Foggia University, Tivoli, Italy
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - David E Minnikin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ian D Bull
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Justin O'Grady
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, UK
| | - Mark Spigelman
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, UK; Department of Anatomy and Anthropology Sackler Medical School, Tel Aviv University, Israel
| |
Collapse
|
25
|
Ancient pathogen genomics: insights into timing and adaptation. J Hum Evol 2014; 79:137-49. [PMID: 25532802 DOI: 10.1016/j.jhevol.2014.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 09/08/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022]
Abstract
Disease is a major cause of natural selection affecting human evolution, whether through a sudden pandemic or persistent morbidity and mortality. Recent contributions in the field of ancient pathogen genomics have advanced our understanding of the antiquity and nature of human-pathogen interactions through time. Technical advancements have facilitated the recovery, enrichment, and high-throughput sequencing of pathogen and parasite DNA from archived and archaeological remains. These time-stamped genomes are crucial for calibrating molecular clocks to infer the timing of evolutionary events, while providing finer-grain resolution to phylogenetic reconstructions and complex biogeographical patterns. Additionally, genome scale data allow better identification of substitutions linked to adaptations of the pathogen to their human hosts. As methodology continues to improve, ancient genomes of humans and their diverse microbiomes from a range of eras and archaeological contexts will enable population-level ancient analyses in the near future and a better understanding of their co-evolutionary history.
Collapse
|
26
|
Mendum TA, Schuenemann VJ, Roffey S, Taylor GM, Wu H, Singh P, Tucker K, Hinds J, Cole ST, Kierzek AM, Nieselt K, Krause J, Stewart GR. Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics 2014; 15:270. [PMID: 24708363 PMCID: PMC4234520 DOI: 10.1186/1471-2164-15-270] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leprosy has afflicted humankind throughout history leaving evidence in both early texts and the archaeological record. In Britain, leprosy was widespread throughout the Middle Ages until its gradual and unexplained decline between the 14th and 16th centuries. The nature of this ancient endemic leprosy and its relationship to modern strains is only partly understood. Modern leprosy strains are currently divided into 5 phylogenetic groups, types 0 to 4, each with strong geographical links. Until recently, European strains, both ancient and modern, were thought to be exclusively type 3 strains. However, evidence for type 2 strains, a group normally associated with Central Asia and the Middle East, has recently been found in archaeological samples in Scandinavia and from two skeletons from the medieval leprosy hospital (or leprosarium) of St Mary Magdalen, near Winchester, England. RESULTS Here we report the genotypic analysis and whole genome sequencing of two further ancient M. leprae genomes extracted from the remains of two individuals, Sk14 and Sk27, that were excavated from 10th-12th century burials at the leprosarium of St Mary Magdalen. DNA was extracted from the surfaces of bones showing osteological signs of leprosy. Known M. leprae polymorphisms were PCR amplified and Sanger sequenced, while draft genomes were generated by enriching for M. leprae DNA, and Illumina sequencing. SNP-typing and phylogenetic analysis of the draft genomes placed both of these ancient strains in the conserved type 2 group, with very few novel SNPs compared to other ancient or modern strains. CONCLUSIONS The genomes of the two newly sequenced M. leprae strains group firmly with other type 2F strains. Moreover, the M. leprae strain most closely related to one of the strains, Sk14, in the worldwide phylogeny is a contemporaneous ancient St Magdalen skeleton, vividly illustrating the epidemic and clonal nature of leprosy at this site. The prevalence of these type 2 strains indicates that type 2F strains, in contrast to later European and associated North American type 3 isolates, may have been the co-dominant or even the predominant genotype at this location during the 11th century.
Collapse
Affiliation(s)
- Tom A Mendum
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstr 23, 72070 Tübingen, Germany
| | - Simon Roffey
- Department of Archaeology, University of Winchester, Winchester, UK
| | - G Michael Taylor
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| | - Huihai Wu
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| | - Pushpendra Singh
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Katie Tucker
- Department of Archaeology, University of Winchester, Winchester, UK
| | - Jason Hinds
- Bacterial Microarray Group, Division of Cellular and Molecular Medicine, St. George’s, University of London, Cranmer Terrace, London, UK
| | - Stewart T Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrzej M Kierzek
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| | - Kay Nieselt
- Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
| | - Johannes Krause
- Bacterial Microarray Group, Division of Cellular and Molecular Medicine, St. George’s, University of London, Cranmer Terrace, London, UK
| | - Graham R Stewart
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| |
Collapse
|
27
|
Suzuki K, Saso A, Hoshino K, Sakurai J, Tanigawa K, Luo Y, Ishido Y, Mori S, Hirata K, Ishii N. Paleopathological evidence and detection of Mycobacterium leprae DNA from archaeological skeletal remains of Nabe-kaburi (head-covered with iron pots) burials in Japan. PLoS One 2014; 9:e88356. [PMID: 24516638 PMCID: PMC3917912 DOI: 10.1371/journal.pone.0088356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/11/2014] [Indexed: 11/18/2022] Open
Abstract
The Nabe-kaburi is a unique burial method, the purpose of which is shrouded in mystery. The burials were performed during the 15th to 18th centuries in eastern Japan, and involved covering the heads of the deceased with iron pots or mortars. The identification of leprosy-specific osteological lesions among some of the excavated remains has led to the suggestion that Nabe-kaburi burials were a reflection of the social stigma against certain infectious diseases, such as leprosy, tuberculosis or syphilis. However, molecular evidence for the presence of disease has been lacking. The goal of this study was to detect Mycobacterium leprae (M. leprae) DNA in archaeological human skeletal remains from Nabe-kaburi burials. The paleopathological data from three Nabe-kaburi burials were re-evaluated before small samples were taken from affected and control areas. DNA was extracted and used as a template to target the M. leprae-specific DNA using a combination of whole genome amplification, PCR analysis and DNA sequencing. M. leprae DNA fragments were detected in the two sets of skeletal remains that had also shown paleopathological evidence of leprosy. These findings provide definitive evidence that some of the Nabe-kaburi burials were performed for people affected by leprosy. Demonstration of the presence of M. leprae DNA, combined with archeological and anthropological examinations, will aid in solving the mystery of why Nabe-kaburi burials were performed in medieval Japan.
Collapse
Affiliation(s)
- Koichi Suzuki
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| | - Aiko Saso
- The University Museum, The University of Tokyo, Tokyo, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Hoshino
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Junya Sakurai
- Faculty of Policy Management, Shobi University, Kawagoe, Japan
| | - Kazunari Tanigawa
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuqian Luo
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Ishido
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuichi Mori
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuaki Hirata
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
28
|
Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jäger G, Bos KI, Herbig A, Economou C, Benjak A, Busso P, Nebel A, Boldsen JL, Kjellström A, Wu H, Stewart GR, Taylor GM, Bauer P, Lee OYC, Wu HHT, Minnikin DE, Besra GS, Tucker K, Roffey S, Sow SO, Cole ST, Nieselt K, Krause J. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 2013; 341:179-83. [PMID: 23765279 DOI: 10.1126/science.1238286] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly of the ancient bacterial genome could be achieved through shotgun sequencing alone. The ancient M. leprae sequences were compared with those of 11 modern strains, representing diverse genotypes and geographic origins. The comparisons revealed remarkable genomic conservation during the past 1000 years, a European origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human pathogen evolution.
Collapse
Affiliation(s)
- Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|