1
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Zang C, Tian Y, Tang Y, Tang M, Yang D, Chen F, Ghaffarlou M, Tu Y, Ashrafizadeh M, Li Y. Hydrogel-based platforms for site-specific doxorubicin release in cancer therapy. J Transl Med 2024; 22:879. [PMID: 39350207 PMCID: PMC11440768 DOI: 10.1186/s12967-024-05490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024] Open
Abstract
Hydrogels are promising candidates for the delivery of therapeutics in the treatment of human cancers. Regarding to the biocomaptiiblity, high drug and encapsulation efficacy and adjustable physico-chemical features, the hydrogels have been widely utilized for the delivery of chemotherapy drugs. Doxorubicin (DOX) is one of the most common chemotherapy drugs used in cancer therapy through impairing topoisomerase II function and increasing oxidative damage. However, the tumor cells have developed resistance into DOX-mediated cytotoxic impacts, requiring the delivery systems to increase internalization and anti-cancer activity of this drug. The hydrogels can deliver DOX in a sustained manner to maximize its anti-cancer activity, improving cancer elimination and reduction in side effects and drug resistance. The natural-based hydrogels such as chitosan, alginate and gelatin hydrogels have shown favourable biocompatibility and degradability in DOX delivery for tumor suppression. The hydrogels are able to co-deliver DOX with other drugs or genes to enhance drug sensitivity and mediate polychemotherapy, synergistically suppressing cancer progression. The incorporation of nanoparticles in the structure of hydrogels can improve the sustained release of DOX and enhancing intracellular internalization, accelerating DOX's cytotoxicity. Furthermore, the stimuli-responsive hydrogels including pH-, redox- and thermo-sensitive platforms are able to improve the specific release of DOX at the tumor site. The DOX-loaded hydrogels can be further employed in the clinic for the treatment of cancer patients and improving efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chunbao Zang
- Department of Radiation Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yu Tian
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, USA
| | - Yujing Tang
- Department of General Surgery, Southwest Jiaotong University Affiliated Chengdu Third People's Hospital, Chengdu, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Dingyi Yang
- Department of Radiation Oncology, Chonging University Cancer Hospital; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Fangfang Chen
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Mohammadreza Ghaffarlou
- Bioengineering Division, Institute of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| | - Yan Li
- Department of Gastrointestinal Surgery, Changzhou Cancer Hospital, No.1 Huaide North Road, Changzhou, Chin, China.
| |
Collapse
|
3
|
Qureshi S, Anjum S, Hussain M, Sheikh A, Gupta G, Almoyad MAA, Wahab S, Kesharwani P. A recent insight of applications of gold nanoparticles in glioblastoma multiforme therapy. Int J Pharm 2024; 660:124301. [PMID: 38851411 DOI: 10.1016/j.ijpharm.2024.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The application of gold nanoparticles (AuNPs) in cancer therapy, particularly targeted therapy of glioblastoma multiforme (GBM), is an up-and-coming field of research that has gained much interest in recent years. GBM is a life-threatening malignant tumour of the brain that currently has a 95 % death rate with an average of 15 months of survival. AuNPs have proven to have wide clinical implications and compelling therapeutic potential in many researches, specifically in GBM treatment. It was found that the reason why AuNPs were highly desired for GBM treatment was due to their unique properties that diversified the applications of AuNPs further to include imaging, diagnosis, and photothermal therapy. These properties include easy synthesis, biocompatibility, and surface functionalization. Various studies also underscored the ability of AuNPs to cross the blood-brain-barrier and selectively target tumour cells while displaying no major safety concerns which resulted in better therapy results. We attempt to bring together some of these studies in this review and provide a comprehensive overview of safety evaluations and current and potential applications of AuNPs in GBM therapy that may result in AuNP-mediated therapy to be the new gold standard for GBM treatment.
Collapse
Affiliation(s)
- Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Samiah Anjum
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Muzammil Hussain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. https://scholar.google.com/citations?user=DJkvOAQAAAAJ&hl=en
| |
Collapse
|
4
|
Díaz-Galindo CA, Garnica-Garza HM. Gold nanoparticle-enhanced radiotherapy: Dependence of the macroscopic dose enhancement on the microscopic localization of the nanoparticles within the tumor vasculature. PLoS One 2024; 19:e0304670. [PMID: 38968211 PMCID: PMC11226116 DOI: 10.1371/journal.pone.0304670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 07/07/2024] Open
Abstract
In gold nanoparticle-enhanced radiotherapy, intravenously administered nanoparticles tend to accumulate in the tumor tissue by means of the so-called permeability and retention effect and upon irradiation with x-rays, the nanoparticles release a secondary electron field that increases the absorbed dose that would otherwise be obtained from the interaction of the x-rays with tissue alone. The concentration of the nanoparticles in the tumor, number of nanoparticles per unit of mass, which determines the total absorbed dose imparted, can be measured via magnetic resonance or computed tomography images, usually with a resolution of several millimeters. Using a tumor vasculature model with a resolution of 500 nm, we show that for a given concentration of nanoparticles, the dose enhancement that occurs upon irradiation with x-rays greatly depends on whether the nanoparticles are confined to the tumor vasculature or have already extravasated into the surrounding tumor tissue. We show that, compared to the reference irradiation with no nanoparticles present in the tumor model, irradiation with the nanoparticles confined to the tumor vasculature, either in the bloodstream or attached to the inner blood vessel walls, results in a two to three-fold increase in the absorbed dose to the whole tumor model, with respect to an irradiation when the nanoparticles have already extravasated into the tumor tissue. Therefore, it is not enough to measure the concentration of the nanoparticles in a tumor, but the location of the nanoparticles within each volume element of a tumor, be it inside the vasculature or the tumor tissue, needs to be determined as well if an accurate estimation of the resultant absorbed dose distribution, a key element in the success of a radiotherapy treatment, is to be made.
Collapse
Affiliation(s)
- C. A. Díaz-Galindo
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca NL, México
| | - H. M. Garnica-Garza
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca NL, México
| |
Collapse
|
5
|
Alhussan A, Jackson N, Chow N, Gete E, Wretham N, Dos Santos N, Beckham W, Duzenli C, Chithrani DB. In Vitro and In Vivo Synergetic Radiotherapy with Gold Nanoparticles and Docetaxel for Pancreatic Cancer. Pharmaceutics 2024; 16:713. [PMID: 38931837 PMCID: PMC11206706 DOI: 10.3390/pharmaceutics16060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
This research underscores the potential of combining nanotechnology with conventional therapies in cancer treatment, particularly for challenging cases like pancreatic cancer. We aimed to enhance pancreatic cancer treatment by investigating the synergistic effects of gold nanoparticles (GNPs) and docetaxel (DTX) as potential radiosensitizers in radiotherapy (RT) both in vitro and in vivo, utilizing a MIA PaCa-2 monoculture spheroid model and NRG mice subcutaneously implanted with MIA PaCa-2 cells, respectively. Spheroids were treated with GNPs (7.5 μg/mL), DTX (100 nM), and 2 Gy of RT using a 6 MV linear accelerator. In parallel, mice received treatments of GNPs (2 mg/kg), DTX (6 mg/kg), and 5 Gy of RT (6 MV linear accelerator). In vitro results showed that though RT and DTX reduced spheroid size and increased DNA DSBs, the triple combination of DTX/RT/GNPs led to a significant 48% (p = 0.05) decrease in spheroid size and a 45% (p = 0.05) increase in DNA DSBs. In vivo results showed a 20% (p = 0.05) reduction in tumor growth 20 days post-treatment with (GNPs/RT/DTX) and an increase in mice median survival. The triple combination exhibited a synergistic effect, enhancing anticancer efficacy beyond individual treatments, and thus could be employed to improve radiotherapy and potentially reduce adverse effects.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Norman Chow
- Department of Experimental Therapeutics, British Columbia Cancer-Vancouver, Vancouver, BC V5Z IL3, Canada
| | - Ermias Gete
- Radiation Oncology, British Columbia Cancer-Vancouver, Vancouver, BC V5Z 4E6, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Nicole Wretham
- Department of Experimental Therapeutics, British Columbia Cancer-Vancouver, Vancouver, BC V5Z IL3, Canada
| | - Nancy Dos Santos
- Department of Experimental Therapeutics, British Columbia Cancer-Vancouver, Vancouver, BC V5Z IL3, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Cheryl Duzenli
- Radiation Oncology, British Columbia Cancer-Vancouver, Vancouver, BC V5Z 4E6, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
- Center for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
6
|
Antunes J, Pinto CIG, Campello MPC, Santos P, Mendes F, Paulo A, Sampaio JM. Utility of realistic microscopy-based cell models in simulation studies of nanoparticle-enhanced photon radiotherapy. Biomed Phys Eng Express 2024; 10:025015. [PMID: 38237176 DOI: 10.1088/2057-1976/ad2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
To enhance the effect of radiation on the tumor without increasing the dose to the patient, the combination of high-Z nanoparticles with radiotherapy has been proposed. In this work, we investigate the effects of the physical parameters of nanoparticles (NPs) on the Dose Enhancement Factor (DEF), and on the Sensitive Enhancement Ratio (SER) by applying a version of the Linear Quadratic Model. A method for constructing voxelized realistic cell geometries in Monte Carlo simulations from confocal microscopy images was developed and applied to Gliobastoma Multiforme cell lines (U87 and U373). The comparison of simulations with realistic geometry and spherical geometry shows that there is significant impact on the survival curves obtained for the same irradiation conditions. Using this model, the DEF and the SER are determined as a function of the concentration, size and distribution of gold nanoparticles within the cell. For small NPs,dAuNP= 10 nm, no clear trend in the DEF and SER was observed when the number of NPs within the cell increases. Experimentally, the variable number of NPs measured inside the U373 cells (ranging between 1.48 × 105and 1.19 × 106) also did not influence much the observed cell survival upon irradiation of the cells with a Co-60 source. The same lack of trend is obtained when the Au content in the cell is kept constant, 0.897 mg/g, but the size of the NPs is changed. However, if the number of NPs is kept constant (7.91 × 105) and the size changes, there is a critical diameter above which the dose effect increases significantly. Using the realistic geometries, it was verified that the key parameter for the DEF and the SER enhancement is the volume fraction of Au in the cell, with NP size being a more important parameter than the number of NPs.
Collapse
Affiliation(s)
- Joana Antunes
- Laboratório de Instrumentação e Física Experimental de Partículas, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
- Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Rua Ernesto de Vasconcelos, 1749-016 Lisboa, Portugal
| | - Catarina I G Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Jorge M Sampaio
- Laboratório de Instrumentação e Física Experimental de Partículas, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
- Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Rua Ernesto de Vasconcelos, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
8
|
Xiao W, Zhao L, Sun Y, Yang X, Fu Q. Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy. SMALL METHODS 2024; 8:e2301131. [PMID: 37906050 DOI: 10.1002/smtd.202301131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Radiotherapy (RT) has been a classical therapeutic method of cancer for several decades. It attracts tremendous attention for the precise and efficient treatment of local tumors with stimuli-responsive nanomaterials, which enhance RT. However, there are few systematic reviews summarizing the newly emerging stimuli-responsive mechanisms and strategies used for tumor radio-sensitization. Hence, this review provides a comprehensive overview of recently reported studies on stimuli-responsive nanomaterials for radio-sensitization. It includes four different approaches for sensitized RT, namely endogenous response, exogenous response, dual stimuli-response, and multi stimuli-response. Endogenous response involves various stimuli such as pH, hypoxia, GSH, and reactive oxygen species (ROS), and enzymes. On the other hand, exogenous response encompasses X-ray, light, and ultrasound. Dual stimuli-response combines pH/enzyme, pH/ultrasound, and ROS/light. Lastly, multi stimuli-response involves the combination of pH/ROS/GSH and X-ray/ROS/GSH. By elaborating on these responsive mechanisms and applying them to clinical RT diagnosis and treatment, these methods can enhance radiosensitive efficiency and minimize damage to surrounding normal tissues. Finally, this review discusses the additional challenges and perspectives related to stimuli-responsive nanomaterials for tumor radio-sensitization.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Lin Zhao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Sun
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
9
|
Jenkins SV, Jung S, Jamshidi-Parsian A, Borrelli MJ, Dings RPM, Griffin RJ. Morphological Effects and In Vitro Biological Mechanisms of Radiation-Induced Cell Killing by Gold Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58241-58250. [PMID: 38059477 DOI: 10.1021/acsami.3c15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Gold nanomaterials have been shown to augment radiation therapy both in vitro and in vivo. However, studies on these materials are mostly phenomenological due to nanoparticle heterogeneity and the complexity of biological systems. Even accurate quantification of the particle dose still results in bulk average biases; the effect on individual cells is not measured but rather the effect on the overall population. To perform quantitative nanobiology, we coated glass coverslips uniformly at varying densities with Au nanoparticle preparations with different morphologies (45 nm cages, 25 nm spheres, and 30 nm rods). Consequently, the effect of a specific number of particles per unit area in contact with breast cancer cells growing on the coated surfaces was ascertained. Gold nanocages showed the highest degree of radiosensitization on a per particle basis, followed by gold nanospheres and gold nanorods, respectively. All three materials showed little cytotoxic effect at 0 Gy, but clonogenic survival decreased proportionally with the radiation dose and particle coverage density. A similar trend was seen in vivo in the combined treatment antitumor response in 4T1 tumor-bearing animals. The presence of gold affected the type and quantity of reactive oxygen species generated, specifically superoxide and hydroxyl radicals, and the concentration of nanocages correlated with the development of more numerous double-stranded DNA breaks and increased protein oxidation as measured by carbonylation. This work demonstrates the dependence on morphology and concentration of radiation enhancement by gold nanomaterials and may lead to a novel method to differentiate intra- and extracellular functionalities of gold nanomedicine treatment strategies. It further provides insights that can guide the rational development of gold nanomaterial-based radiosensitizers for clinical use.
Collapse
Affiliation(s)
- Samir V Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Seunghyun Jung
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Michael J Borrelli
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
10
|
Chen SF, Kau M, Wang YC, Chen MH, Tung FI, Chen MH, Liu TY. Synergistically Enhancing Immunotherapy Efficacy in Glioblastoma with Gold-Core Silica-Shell Nanoparticles and Radiation. Int J Nanomedicine 2023; 18:7677-7693. [PMID: 38111846 PMCID: PMC10726961 DOI: 10.2147/ijn.s440405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Glioblastoma is a highly aggressive brain tumor with universally poor outcomes. Recent progress in immune checkpoint inhibitors has led to increased interest in their application in glioblastoma. Nonetheless, the unique immune milieu in the brain has posed remarkable challenges to the efficacy of immunotherapy. We aimed to leverage the radiation-induced immunogenic cell death to overcome the immunosuppressive network in glioblastoma. Methods We developed a novel approach using the gold-core silica-shell nanoparticles (Au@SiO2 NPs) in combination with low-dose radiation to enhance the therapeutic efficacy of the immune checkpoint inhibitor (atezolizumab) in brain tumors. The biocompatibility, immune cell recruitment, and antitumor ability of the combinatorial strategy were determined using in vitro assays and in vivo models. Results Our approach successfully induced the migration of macrophages towards brain tumors and promoted cancer cell apoptosis. Subcutaneous tumor models demonstrated favorable safety profiles and significantly enhanced anticancer effects. In orthotopic brain tumor models, the multimodal therapy yielded substantial prognostic benefits over any individual modalities, achieving an impressive 40% survival rate. Conclusion In summary, the combination of Au@SiO2 NPs and low-dose radiation holds the potential to improve the clinical efficacy of immune checkpoint inhibitors. The synergetic strategy modulates tumor microenvironments and enhances systemic antitumor immunity, paving a novel way for glioblastoma treatment.
Collapse
Affiliation(s)
- Shuo-Fu Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Min Kau
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Fu-I Tung
- Department of Orthopedics, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Mei-Hsiu Chen
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Mansouri E, Mesbahi A, Hamishehkar H, Montazersaheb S, Hosseini V, Rajabpour S. The effect of nanoparticle coating on biological, chemical and biophysical parameters influencing radiosensitization in nanoparticle-aided radiation therapy. BMC Chem 2023; 17:180. [PMID: 38082361 PMCID: PMC10712124 DOI: 10.1186/s13065-023-01099-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/04/2023] [Indexed: 04/25/2025] Open
Abstract
Nanoparticle-based composites have the potential to meet requirements for radiosensitization in both therapeutic and diagnostic applications. The radiosensitizing properties of nanoparticles could be reliant on the nature of their coating layer. Any gains in reduced toxicity and aggregation or improved delivery to tumor cells for coated nanoparticles must be weighed against the loss of dose enhancement. The radiosensitization potential of coated NPs is confirmed by numerous studies but in most of them, the coating layer is mostly applied to reduce toxicity of the NPs and for stability and biocompatibility aims. While the direct effects of the coating layer in radiosensitization-were ignored and not considered. This review provides an overview of double-edged impact of nanoparticle coating on the radiosensitization potential of nanostructures and discusses the challenges in choosing appropriate coating material in the aim of achieving improved radioenhancement. Coating layer could affect the radiosensitization processes and thereby the biological outcomes of nanoparticle-based radiation therapy. The physicochemical properties of the coating layer can be altered by the type of the coating material and its thickness. Under low-energy photon irradiation, the coating layer could act as a shield for nanoparticles capable of absorb produced low-energy electrons which are important levers for local and nanoscopic dose enhancement. Also, it seems that the coating layer could mostly affect the chemical process of ROS production rather than the physicochemical process. Based on the reviewed literature, for the irradiated coated nanoparticles, the cell survival and viability of cancer cells are decreased more than normal cells. Also, cell cycle arrest, inhibition of cell proliferation, DNA damage, cell death and apoptosis were shown to be affected by coated metallic nanoparticles under irradiation.
Collapse
Affiliation(s)
- Elham Mansouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Institute of Biomedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Radiation Oncology Department, Olivia Newton-John Cancer, Wellness and Research center, Austin Health, Melbourne, Australia.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Institute of Biomedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Institute of Biomedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Rajabpour
- Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Zhang A, Gao L. The Refined Application and Evolution of Nanotechnology in Enhancing Radiosensitivity During Radiotherapy: Transitioning from Gold Nanoparticles to Multifunctional Nanomaterials. Int J Nanomedicine 2023; 18:6233-6256. [PMID: 37936951 PMCID: PMC10626338 DOI: 10.2147/ijn.s436268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
Radiotherapy is a pivotal method for treating malignant tumors, and enhancing the therapeutic gain ratio of radiotherapy through physical techniques is the direction of modern precision radiotherapy. Due to the inherent physical properties of high-energy radiation, enhancing the therapeutic gain ratio of radiotherapy through radiophysical techniques inevitably encounters challenges. The combination of hyperthermia and radiotherapy can enhance the radiosensitivity of tumor cells, reduce their radioresistance, and holds significant clinical utility in radiotherapy. Multifunctional nanomaterials with excellent biocompatibility and safety have garnered widespread attention in tumor hyperthermia research, demonstrating promising potential. Utilizing nanotechnology as a sensitizing carrier in conjunction with radiotherapy, and high atomic number nanomaterials can also serve independently as radiosensitizing carriers. This synergy between tumor hyperthermia and radiotherapy may overcome many challenges currently limiting tumor radiotherapy, offering new opportunities for its further advancement. In recent years, the continuous progress in the synthesis and design of novel nanomaterials will propel the future development of medical imaging and cancer treatment. This article summarizes the radiosensitizing mechanisms and effects based on gold nanotechnology and provides an overview of the advancements of other nanoparticles (such as bismuth-based nanomaterials, magnetic nanomaterials, selenium nanomaterials, etc.) in the process of radiation therapy.
Collapse
Affiliation(s)
- Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, Hebei, People’s Republic of China
| | - Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, Hebei, People’s Republic of China
| |
Collapse
|
13
|
Najafi A, Keykhaee M, Kazemi MH, Karimi MY, Khorramdelazad H, Aghamohamadi N, Bolouri MR, Ghaffari-Nazari H, Mirsharif ES, Karimi M, Dehghan Manshadi HR, Mahdavi SR, Safari E, Jalali SA, Falak R, Khoobi M. Catalase-gold nanoaggregates manipulate the tumor microenvironment and enhance the effect of low-dose radiation therapy by reducing hypoxia. Biomed Pharmacother 2023; 167:115557. [PMID: 37757491 DOI: 10.1016/j.biopha.2023.115557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Radiotherapy as a standard method for cancer treatment faces tumor recurrence and antitumoral unresponsiveness. Suppressive tumor microenvironment (TME) and hypoxia are significant challenges affecting efficacy of radiotherapy. Herein, a versatile method is introduced for the preparation of pH-sensitive catalase-gold cross-linked nanoaggregate (Au@CAT) having acceptable stability and selective activity in tumor microenvironment. Combining Au@CAT with low-dose radiotherapy enhanced radiotherapy effects via polarizing protumoral immune cells to the antitumoral landscape. This therapeutic approach also attenuated hypoxia, confirmed by downregulating hypoxia hallmarks, such as hypoxia-inducible factor α-subunits (HIF-α), vascular endothelial growth factor (VEGF), and EGF. Catalase stability against protease digestion was improved significantly in Au@CAT compared to the free catalase. Moreover, minimal toxicity of Au@CAT on normal cells and increased reactive oxygen species (ROS) were confirmed in vitro compared with radiotherapy. Using the nanoaggregates combined with radiotherapy led to a significant reduction of immunosuppressive infiltrating cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (T-regs) compared to the other groups. While, this combined therapy could significantly increase the frequency of CD8+ cells as well as M1 to M2 macrophages (MQs) ratio. The combination therapy also reduced the tumor size and increased survival rate in mice models of colorectal cancer (CRC). Our results indicate that this innovative nanocomposite could be an excellent system for catalase delivery, manipulating the TME and providing a potential therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Alireza Najafi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khorramdelazad
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nazanin Aghamohamadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Bolouri
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Milad Karimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seied Rabi Mahdavi
- Radiation Biology Research Center& Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Safari
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Jalali
- Immunology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Moloudi K, Khani A, Najafi M, Azmoonfar R, Azizi M, Nekounam H, Sobhani M, Laurent S, Samadian H. Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1886. [PMID: 36987630 DOI: 10.1002/wnan.1886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/30/2023]
Abstract
Radiotherapy is an inevitable choice for cancer treatment that is applied as combinatorial therapy along with surgery and chemotherapy. Nevertheless, radiotherapy at high doses kills normal and tumor cells at the same time. In addition, some tumor cells are resistant to radiotherapy. Recently, many researchers have focused on high-Z nanomaterials as radiosensitizers for radiotherapy. Among them, gold nanoparticles (GNPs) have shown remarkable potential due to their promising physical, chemical, and biological properties. Although few clinical trial studies have been performed on drug delivery and photosensitization with lasers, GNPs have not yet received Food and Drug Administration approval for use in radiotherapy. The sensitization effects of GNPs are dependent on their concentration in cells and x-ray energy deposition during radiotherapy. Notably, some limitations related to the properties of the GNPs, including their size, shape, surface charge, and ligands, and the radiation source energy should be resolved. At the first, this review focuses on some of the challenges of using GNPs as radiosensitizers and some biases among in vitro/in vivo, Monte Carlo, and clinical studies. Then, we discuss the challenges in the clinical translation of GNPs as radiosensitizers for radiotherapy and proposes feasible solutions. And finally, we suggest that certain areas be considered in future research. This article is categorized under: Therapeutic Approaches and Drug Discovery > NA.
Collapse
Affiliation(s)
- Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Ali Khani
- Department of Radiation Sciences, Alley School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Azmoonfar
- Department of Radiology, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Houra Nekounam
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Sobhani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Dheyab MA, Aziz AA, Rahman AA, Ashour NI, Musa AS, Braim FS, Jameel MS. Monte Carlo simulation of gold nanoparticles for X-ray enhancement application. Biochim Biophys Acta Gen Subj 2023; 1867:130318. [PMID: 36740000 DOI: 10.1016/j.bbagen.2023.130318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies. SCOPE OF REVIEW This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations. MAJOR CONCLUSIONS In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. GENERAL SIGNIFICANCE Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Azhar Abdul Rahman
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | | | - Ahmed Sadeq Musa
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Farhank Saber Braim
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mahmood S Jameel
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
| |
Collapse
|
16
|
Haque M, Shakil MS, Mahmud KM. The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers (Basel) 2023; 15:cancers15061892. [PMID: 36980778 PMCID: PMC10047050 DOI: 10.3390/cancers15061892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Radiation has been utilized for a long time for the treatment of cancer patients. However, radiotherapy (RT) has many constraints, among which non-selectivity is the primary one. The implementation of nanoparticles (NPs) with RT not only localizes radiation in targeted tissue but also provides significant tumoricidal effect(s) compared to radiation alone. NPs can be functionalized with both biomolecules and therapeutic agents, and their combination significantly reduces the side effects of RT. NP-based RT destroys cancer cells through multiple mechanisms, including ROS generation, which in turn damages DNA and other cellular organelles, inhibiting of the DNA double-strand damage-repair system, obstructing of the cell cycle, regulating of the tumor microenvironment, and killing of cancer stem cells. Furthermore, such combined treatments overcome radioresistance and drug resistance to chemotherapy. Additionally, NP-based RT in combined treatments have shown synergistic therapeutic benefit(s) and enhanced the therapeutic window. Furthermore, a combination of phototherapy, i.e., photodynamic therapy and photothermal therapy with NP-based RT, not only reduces phototoxicity but also offers excellent therapeutic benefits. Moreover, using NPs with RT has shown promise in cancer treatment and shown excellent therapeutic outcomes in clinical trials. Therefore, extensive research in this field will pave the way toward improved RT in cancer treatment.
Collapse
Affiliation(s)
- Munima Haque
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
17
|
Huang CH, Chang E, Zheng L, Raj JGJ, Wu W, Pisani LJ, Daldrup-Link HE. Tumor protease-activated theranostic nanoparticles for MRI-guided glioblastoma therapy. Theranostics 2023; 13:1745-1758. [PMID: 37064879 PMCID: PMC10091873 DOI: 10.7150/thno.79342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Rationale: As a cancer, Glioblastoma (GBM) is a highly lethal and difficult-to-treat. With the aim of improving therapies to GBM, we developed novel and target-specific theranostic nanoparticles (TNPs) that can be selectively cleaved by cathepsin B (Cat B) to release the potent toxin monomethyl auristatin E (MMAE). Methods: We synthesized TNPs composed of a ferumoxytol-based nanoparticle carrier and a peptide prodrug with a Cat-B-responsive linker and the tubulin inhibitor MMAE. We hypothesized that intratumoral Cat B can cleave our TNPs and release MMAE to kill GBM cells. The ferumoxytol core enables in vivo drug tracking with magnetic resonance imaging (MRI). We incubated U87-MG GBM cells with TNPs or ferumoxytol and evaluated the TNP content in the cells with transmission electron microscopy and Prussian blue staining. In addition, we stereotaxically implanted 6- to 8-week-old nude mice with U87-MG with U87-MG GBM cells that express a fusion protein of Green Fluorescence Protein and firefly Luciferase (U87-MG/GFP-fLuc). We then treated the animals with an intravenous dose of TNPs (25 mg/kg of ferumoxytol, 0.3 mg/kg of MMAE) or control. We also evaluated the combination of TNP treatment with radiation therapy. We performed MRI before and after TNP injection. We compared the results for tumor and normal brain tissue between the TNP and control groups. We also monitored tumor growth for a period of 21 days. Results: We successfully synthesized TNPs with a hydrodynamic size of 41 ± 5 nm and a zeta potential of 6 ± 3 mV. TNP-treated cells demonstrated a significantly higher iron content than ferumoxytol-treated cells (98 ± 1% vs. 3 ± 1% of cells were iron-positive, respectively). We also found significantly fewer live attached cells in the TNP-treated group (3.8 ± 2.0 px2) than in the ferumoxytol-treated group (80.0 ± 14.5 px2, p < 0001). In vivo MRI studies demonstrated a decline in the tumor signal after TNP (T2= 28 ms) but not control (T2= 32 ms) injections. When TNP injection was combined with radiation therapy, the tumor signals dropped further (T2 = 24 ms). The combination therapy of radiation therapy and TNPs extended the median survival from 14.5 days for the control group to 45 days for the combination therapy group. Conclusion: The new cleavable TNPs reported in this work accumulate in GBM, cause tumor cell death, and have synergistic effects with radiation therapy.
Collapse
Affiliation(s)
- Ching-Hsin Huang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
- Stanford Center for Innovation in In vivo Imaging (SCi 3 ) at Porter, Canary Center for Cancer Early Detection, Stanford University, CA, U.S.A
| | - Li Zheng
- Sarafan Chemistry, Engineering & Medicine for Human Health (Chem-H), Stanford University, Stanford, CA, U.S.A
| | - Joe Gerald Jesu Raj
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Laura J. Pisani
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
- Stanford Center for Innovation in In vivo Imaging (SCi 3 ) at Clark, James H. Clark Center, Stanford University, CA, U.S.A
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| |
Collapse
|
18
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
19
|
Kurawattimath V, Wilson B, Geetha KM. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
20
|
Fluorescent Gold Nanoparticles in Suspension as an Efficient Theranostic Agent for Highly Radio-Resistant Cancer Cells. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gold nanoparticles are a promising candidate for developing new strategies of therapy against cancer. Due to their high atomic number and relative biocompatibility, they are commonly investigated as radiosensitizers to locally increase the dose of radiotherapy. In order to optimize this radiosensitizing effect, it is necessary to control the positioning of the nanoparticles in the cells. The purpose of this study is to investigate, by means of fluorescent gold nanoparticles in suspension, the dose enhancement on highly radio-resistant cancer cells. These nanoparticles were successfully produced using modern click-chemistry methods, first by attaching a chelating agent Diethylenetriamine pentaacetate benzylamine to L-cysteine, bonding the resulting ligand to a gold core, grafting propargylamine and then utilizing copper-catalyzed azide-alkyne cycloaddition (CuAAC) to fuse AlexaFluor 647 to the ligands. The results of this study prove the success of the reactions to produce a minimally cytotoxic and highly stable nanoparticle suspension that increases the radiosensitivity of gliosarcoma 9L tumor cells, with a 35% increase in cell death using 5 Gy kilovoltage radiation. Their fluorescent functionalization allowed for their simple localization within living cells and detection in vivo post-mortem.
Collapse
|
21
|
Wu H, Liu Y, Chen L, Wang S, Liu C, Zhao H, Jin M, Chang S, Quan X, Cui M, Wan H, Gao Z, Huang W. Combined Biomimetic MOF-RVG15 Nanoformulation Efficient Over BBB for Effective Anti-Glioblastoma in Mice Model. Int J Nanomedicine 2022; 17:6377-6398. [PMID: 36545220 PMCID: PMC9762271 DOI: 10.2147/ijn.s387715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The blood-brain barrier (BBB) is a key obstacle to the delivery of drugs into the brain. Therefore, it is essential to develop an advanced drug delivery nanoplatform to solve this problem. We previously screened a small rabies virus glycoprotein 15 (RVG15) peptide with 15 amino acids and observed that most of the RVG15-modified nanoparticles entered the brain within 1 h of administration. The high BBB penetrability gives RVG15 great potential for brain-targeted drug delivery systems. Moreover, a multifunctional integrated nanoplatform with a high drug-loading capacity, tunable functionality, and controlled drug release is crucial for tumor treatment. Zeolitic imidazolate framework (ZIF-8) is a promising nanodrug delivery system. Methods Inspired by the biomimetic concept, we designed RVG15-coated biomimetic ZIF-8 nanoparticles (RVG15-PEG@DTX@ZIF-8) for docetaxel (DTX) delivery to achieve efficient glioblastoma elimination in mice. This bionic nanotherapeutic system was prepared by one-pot encapsulation, followed by coating with RVG15-PEG conjugates. The size, morphology, stability, drug-loading capacity, and release of RVG15-PEG@DTX@ZIF-8 were thoroughly investigated. Additionally, we performed in vitro evaluation, cell uptake capacity, BBB penetration, and anti-migratory ability. We also conducted an in vivo evaluation of the biodistribution and anti-glioma efficacy of this bionic nanotherapeutic system in a mouse mode. Results In vitro studies showed that, this bionic nanotherapeutic system exhibited excellent targeting efficiency and safety in HBMECs and C6 cells and high efficiency in crossing the BBB. Furthermore, the nanoparticles cause rapid DTX accumulation in the brain, allowing deeper penetration into glioma tumors. In vivo antitumor assay results indicated that RVG15-PEG@DTX@ZIF-8 significantly inhibited glioma growth and metastasis, thereby improving the survival of tumor-bearing mice. Conclusion Our study demonstrates that our bionic nanotherapeutic system using RVG15 peptides is a promising and powerful tool for crossing the BBB and treating glioblastoma.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, People’s Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, People’s Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Mingji Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, People’s Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Shuangyan Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Xiuquan Quan
- Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin Province, 133000, People’s Republic of China
| | - Minhu Cui
- Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin Province, 133000, People’s Republic of China
| | - Hongshuang Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin Province, 133000, People’s Republic of China
| | - Zhonggao Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, People’s Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People’s Republic of China
| |
Collapse
|
22
|
Xu JJ, Zhang WC, Guo YW, Chen XY, Zhang YN. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv 2022; 29:664-678. [PMID: 35209786 PMCID: PMC8890514 DOI: 10.1080/10717544.2022.2039804] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Traditional anticancer treatments have several limitations, but cancer is still one of the deadliest diseases. As a result, new anticancer drugs are required for the treatment of cancer. The use of metal nanoparticles (NPs) as alternative chemotherapeutic drugs is on the rise in cancer research. Metal NPs have the potential for use in a wide range of applications. Natural or surface-induced anticancer effects can be found in metals. The focus of this review is on the therapeutic potential of metal-based NPs. The potential of various types of metal NPs for tumor targeting will be discussed for cancer treatment. The in vivo application of metal NPs for solid tumors will be reviewed. Risk factors involved in the clinical application of metal NPs will also be summarized.
Collapse
Affiliation(s)
- Jia-Jie Xu
- Department of Head and Neck Surgery, Otolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Wan-Chen Zhang
- Department of Head and Neck Surgery, Otolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ya-Wen Guo
- Department of Head and Neck Surgery, Otolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| |
Collapse
|
23
|
Gal O, Betzer O, Rousso-Noori L, Sadan T, Motiei M, Nikitin M, Friedmann-Morvinski D, Popovtzer R, Popovtzer A. Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy. JOURNAL OF NANOTHERANOSTICS 2022; 3:177-188. [PMID: 36324626 PMCID: PMC7613745 DOI: 10.3390/jnt3040012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Glioblastoma is the most lethal primary brain malignancy in adults. Standard of care treatment, consisting of temozolomide (TMZ) and adjuvant radiotherapy (RT), mostly does not prevent local recurrence. The inability of drugs to enter the brain, in particular antibody-based drugs and radiosensitizers, is a crucial limitation to effective glioblastoma therapy. Methods Here, we developed a combined strategy using radiosensitizer gold nanoparticles coated with insulin to cross the blood-brain barrier and shuttle tumor-targeting antibodies (cetuximab) into the brain. Results Following intravenous injection to an orthotopic glioblastoma mouse model, the nanoparticles specifically accumulated within the tumor. Combining targeted nanoparticle injection with TMZ and RT standard of care significantly inhibited tumor growth and extended survival, as compared to standard of care alone. Histological analysis of tumors showed that the combined treatment eradicated tumor cells, and decreased tumor vascularization, proliferation, and repair. Conclusions Our findings demonstrate radiosensitizer nanoparticles that effectively deliver antibodies into the brain, target the tumor, and effectively improve standard of care treatment outcome in glioblastoma.
Collapse
Affiliation(s)
- Omer Gal
- Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Oshra Betzer
- Faculty of Engineering, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Liat Rousso-Noori
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamar Sadan
- Faculty of Engineering, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Menachem Motiei
- Faculty of Engineering, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maxim Nikitin
- Moscow Institute of Physics and Technology, MIPT, Dolgoprudny, 141701 Moscow, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dinorah Friedmann-Morvinski
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachela Popovtzer
- Faculty of Engineering, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Aron Popovtzer
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-2-6777825
| |
Collapse
|
24
|
Tabatabaie F, Franich R, Feltis B, Geso M. Oxidative Damage to Mitochondria Enhanced by Ionising Radiation and Gold Nanoparticles in Cancer Cells. Int J Mol Sci 2022; 23:ijms23136887. [PMID: 35805905 PMCID: PMC9266628 DOI: 10.3390/ijms23136887] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 01/19/2023] Open
Abstract
Gold nanoparticles (AuNP) can increase the efficacy of radiation therapy by sensitising tumor cells to radiation damage. When used in combination with radiation, AuNPs enhance the rate of cell killing; hence, they may be of great value in radiotherapy. This study assessed the effects of radiation and AuNPs on mitochondrial reactive oxygen species (ROS) generation in cancer cells as an adjunct therapeutic target in addition to the DNA of the cell. Mitochondria are considered one of the primary sources of cellular ROS. High levels of ROS can result in an intracellular state of oxidative stress, leading to permanent cell damage. In this study, human melanoma and prostate cancer cell lines, with and without AuNPs, were irradiated with 6-Megavolt X-rays at doses of 0–8 Gy. Indicators of mitochondrial stress were quantified using two techniques, and were found to be significantly increased by the inclusion of AuNPs in both cell lines. Radiobiological damage to mitochondria was quantified via increased ROS activity. The ROS production by mitochondria in cells was enhanced by the inclusion of AuNPs, peaking at ~4 Gy and then decreasing at higher doses. This increased mitochondrial stress may lead to more effectively kill of AuNP-treated cells, further enhancing the applicability of functionally-guided nanoparticles.
Collapse
Affiliation(s)
- Farnaz Tabatabaie
- School of Sciences, RMIT University, Melbourne, VIC 3000, Australia;
| | - Rick Franich
- School of Sciences, RMIT University, Melbourne, VIC 3000, Australia;
- Correspondence: (R.F.); (M.G.); Tel.: +61-401-730-320 (R.F.); +61-3-9925-7991 (M.G.)
| | - Bryce Feltis
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Moshi Geso
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
- Correspondence: (R.F.); (M.G.); Tel.: +61-401-730-320 (R.F.); +61-3-9925-7991 (M.G.)
| |
Collapse
|
25
|
Guerra DB, Oliveira EMN, Sonntag AR, Sbaraine P, Fay AP, Morrone FB, Papaléo RM. Intercomparison of radiosensitization induced by gold and iron oxide nanoparticles in human glioblastoma cells irradiated by 6 MV photons. Sci Rep 2022; 12:9602. [PMID: 35688846 PMCID: PMC9187689 DOI: 10.1038/s41598-022-13368-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, an intercomparison of sensitization effects produced by gold (GNP) and dextran-coated iron oxide (SPION-DX) nanoparticles in M059J and U87 human glioblastoma cells was performed using 6 MV-photons. Three variables were mapped: the nanoparticle material, treatment concentration, and cell radiosensitivity. For U87, GNP treatments resulted in high sensitization enhancement ratios (SER[Formula: see text] up to 2.04). More modest effects were induced by SPION-DX, but still significant reductions in survival were achieved (maximum SER[Formula: see text] ). For the radiosensitive M059J, sensitization by both NPs was poor. SER[Formula: see text] increased with the degree of elemental uptake in the cells, but not necessarily with treatment concentration. For GNP, where exposure concentration and elemental uptake were found to be proportional, SER[Formula: see text] increased linearly with concentration in both cell lines. For SPION-DX, saturation of sensitization enhancement and metal uptake occurred at high exposures. Fold change in the [Formula: see text] ratios extracted from survival curves are reduced by the presence of SPION-DX but strongly increased by GNPs , suggesting that sensitization by GNPs occurs mainly via promotion of lethal damage, while for SPION-DX repairable damage dominates. The NPs were more effective in eliminating the radioresistant glioblastoma cells, an interesting finding, as resistant cells are key targets to improve treatment outcome.
Collapse
Affiliation(s)
- Danieli B Guerra
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil.
| | - Elisa M N Oliveira
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Amanda R Sonntag
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Patricia Sbaraine
- Division of Radiotherapy, São Lucas Hospital of PUCRS, Porto Alegre, 90610-000, Brazil
| | - Andre P Fay
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Fernanda B Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Ricardo M Papaléo
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| |
Collapse
|
26
|
Shabani L, Abbasi M, Amini M, Amani AM, Vaez A. The brilliance of nanoscience over cancer therapy: Novel promising nanotechnology-based methods for eradicating glioblastoma. J Neurol Sci 2022; 440:120316. [DOI: 10.1016/j.jns.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
27
|
Mochizuki C, Kayabe Y, Nakamura J, Igase M, Mizuno T, Nakamura M. Surface Functionalization of Organosilica Nanoparticles With Au Nanoparticles Inhibits Cell Proliferation and Induces Cell Death in 4T1 Mouse Mammary Tumor Cells for DNA and Mitochondrial-Synergized Damage in Radiotherapy. Front Chem 2022; 10:907642. [PMID: 35620651 PMCID: PMC9127317 DOI: 10.3389/fchem.2022.907642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective cancer treatments. Au nanoparticles (NPs) are one of the most used X-ray sensitizing materials however the effective small sub-nm size of Au NPs used for X-ray sensitizers is disadvantageous for cellular uptake. Here, we propose the surface functionalization of organosilica NPs (OS) with Au NPs (OS/Au), which combined the 100 nm size of OS and the sub-nm size of Au NPs, and synthesized effective Au materials as an X-ray sensitizer. The X-ray sensitizing potential for 4T1 mouse mammary tumor cells was revealed using a multifaceted evaluation combined with a fluorescence microscopic cell imaging assay. The number of polyethyleneimine (PEI)-modified OS (OS/PEI) and OS/Au (OS/Au/PEI) uptake per 4T1 mouse mammary tumor cell was the same; however, 4T1 cells treated with OS/Au/PEI exhibited significant inhibition of cell proliferation and increases in cell death by X-ray irradiation at 8Gy. The non-apoptotic death of OS/Au/PEI-treated 4T1 cells was increased by DNA and mitochondrial-synergized damage increase and showed potential applications in radiotherapy.
Collapse
Affiliation(s)
- Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| | - Yukihito Kayabe
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
28
|
Fiorito S, Soni N, Silvestri N, Brescia R, Gavilán H, Conteh JS, Mai BT, Pellegrino T. Fe 3 O 4 @Au@Cu 2-x S Heterostructures Designed for Tri-Modal Therapy: Photo- Magnetic Hyperthermia and 64 Cu Radio-Insertion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200174. [PMID: 35294104 DOI: 10.1002/smll.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Here, the synthesis and proof of exploitation of three-material inorganic heterostructures made of iron oxide-gold-copper sulfide (Fe3 O4 @Au@Cu2-x S) are reported. Starting with Fe3 O4 -Au dumbbell heterostructure as seeds, a third Cu2-x S domain is selectively grown on the Au domain. The as-synthesized trimers are transferred to water by a two-step ligand exchange procedure exploiting thiol-polyethylene glycol to coordinate Au and Cu2-x S surfaces and polycatechol-polyethylene glycol to bind the Fe3 O4 surface. The saline stable trimers possess multi-functional properties: the Fe3 O4 domain, of appropriate size and crystallinity, guarantees optimal heating losses in magnetic hyperthermia (MHT) under magnetic field conditions of clinical use. These trimers have indeed record values of specific adsorption rate among the inorganic-heterostructures so far reported. The presence of Au and Cu2-x S domains ensures a large adsorption which falls in the first near-infrared (NIR) biological window and is here exploited, under laser excitation at 808 nm, to produce photo-thermal heat alone or in combination with MHT obtained from the Fe3 O4 domain. Finally, an intercalation protocol with radioactive 64 Cu ions is developed on the Cu2-x S domain, reaching high radiochemical yield and specific activity making the Fe3 O4 @Au@Cu2-x S trimers suitable as carriers for 64 Cu in internal radiotherapy (iRT) and traceable by positron emission tomography (PET).
Collapse
Affiliation(s)
- Sergio Fiorito
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Nisarg Soni
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Niccolo' Silvestri
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Helena Gavilán
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - John S Conteh
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Binh T Mai
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| |
Collapse
|
29
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
30
|
Wang Z, Wang L, Liu S, Zhang M, Li Y, Rong L, Liu Y, Zhang H. Z-Scheme heterostructures for glucose oxidase-sensitized radiocatalysis and starvation therapy of tumors. NANOSCALE 2022; 14:2186-2198. [PMID: 34951616 DOI: 10.1039/d1nr07096g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although many semiconductor heterojunctions have been prepared to promote radiation-generated exciton separation for radiocatalysis therapy (RCT), most of them inevitably sacrifice the redox ability of radiation-generated electrons and holes. Herein, we design and construct BiOI/Bi2S3@polydopamine nanosheets modified by amine-polyethylene glycol-folic acid and glucose oxidase for glucose oxidase-sensitized RCT and starvation therapy (ST) synergistic therapy of tumors. The unique Z-scheme energy level arrangement between BiOI and Bi2S3 can elevate the charge separation efficiency, as well as maximize the redox ability of radiation-generated electrons and holes, leading to the enhancement of the therapeutic efficacy of RCT. Since glucose oxidase can supply excess H2O2 for RCT to produce ˙OH on one hand, but efficiently cut off the energy supply of tumor cells via ST, on the other hand, our nanosheets exhibit superior tumor therapeutic efficacy to any single treatment benefiting from the cascade and synergy effects between RCT and ST.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Lu Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Shuwei Liu
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Mengsi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Li Rong
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
31
|
Essa N, O'Connell F, Prina-Mello A, O'Sullivan J, Marcone S. Gold nanoparticles and obese adipose tissue microenvironment in cancer treatment. Cancer Lett 2022; 525:1-8. [PMID: 34662546 DOI: 10.1016/j.canlet.2021.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
The epidemiological correlation between obesity and cancer is well characterized, but the biological mechanisms which regulate tumor development and response to therapy in obese cancer patients remain unclear. The tumor microenvironment plays an important role in protecting cancer cells by altering the delivery of anticancer therapy to the tumor tissue, reducing the efficacy of treatment. Obese tumor microenvironment provides additional benefits to the survival of tumor cells against anticancer therapies by altering the extracellular matrix composition, angiogenesis processes and the immune cells profile. Nanotechnology, and in particular gold nanoparticles, are being researched as a theranostic strategy for cancer treatment due to their ability to sensitize cancer cells to radiation and photodynamic therapy, enhance delivery of drugs to tumor cells, and in diagnostic applications. Adipose tissue and the obese tumor microenvironment may alter the activity of nanotherapeutics. In this article, we reviewed the current state of our understanding about the mechanisms by which the obese tumor microenvironment may alter the delivery and efficacy of anti-cancer treatments, and why the use of gold nanoparticles may represent an interesting strategy for cancer treatment in the obesity setting.
Collapse
Affiliation(s)
- Noor Essa
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Master in Science Degree in Translational Oncology, Trinity College Dublin, Dublin, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM) and Nanomedicine Group, Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
32
|
Seo S, Kim EH, Chang WS, Lee WS, Kim KH, Kim JK. Enhanced proton treatment with a LDLR-ligand peptide-conjugated gold nanoparticles targeting the tumor microenvironment in an infiltrative brain tumor model. Am J Cancer Res 2022; 12:198-209. [PMID: 35141013 PMCID: PMC8822294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023] Open
Abstract
The tumor microenvironment (TME) of glioblastoma malforms (GBMs) contains tumor invasiveness factors, microvascular proliferation, migratory cancer stem cells and infiltrative tumor cells, which leads to tumor recurrence in the absence of effective drug delivery in a Blood Brain Barrier (BBB)-intact TME and radiological invisibility. Low-density lipoprotein receptor (LDLR) is abundant in the blood brain barrier and overexpressed in malignant glioma cells. This study aimed to treat the TME with transmitted proton sensitization of LDLR ligand-functionalized gold nanoparticles (ApoB@AuNPs) in an infiltrative F98 glioma rat model. BBB-crossing ApoB@AuNPs were selectively taken up in microvascular endothelial cells proliferation and pericyte invasion, which are therapeutic targets in the glioma TME. Proton sensitization treated the TME and bulk tumor volume with enhanced therapeutic efficacy by 67-75% compared to that with protons alone. Immunohistochemistry demonstrated efficient treatment of endothelial cell proliferation and migratory tumor cells of invasive microvessels in the TME with saving normal tissues. Taken together, these data indicate that the use of LDLR ligand-functionalized gold nanoparticles is a promising strategy to treat infiltrative malignant glioma while overcoming BBB crossing.
Collapse
Affiliation(s)
- Seungjun Seo
- Biomedical Engineering, School of Medicine, Daegu Catholic UniversityDaegu, South Korea
| | - Eun Ho Kim
- Biochemistry, School of Medicine, Daegu Catholic UniversityDaegu, South Korea
| | - Won-Seok Chang
- Biomedical Engineering, School of Medicine, Daegu Catholic UniversityDaegu, South Korea
| | - Won-Seok Lee
- Biochemistry, School of Medicine, Daegu Catholic UniversityDaegu, South Korea
| | - Ki-Hwan Kim
- Radiation Oncology, College of Medicine, Chungnam National UniversityDaejeon, South Korea
| | - Jong-Ki Kim
- Biomedical Engineering, School of Medicine, Daegu Catholic UniversityDaegu, South Korea
| |
Collapse
|
33
|
Guido C, Baldari C, Maiorano G, Mastronuzzi A, Carai A, Quintarelli C, De Angelis B, Cortese B, Gigli G, Palamà IE. Nanoparticles for Diagnosis and Target Therapy in Pediatric Brain Cancers. Diagnostics (Basel) 2022; 12:diagnostics12010173. [PMID: 35054340 PMCID: PMC8774904 DOI: 10.3390/diagnostics12010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pediatric brain tumors represent the most common types of childhood cancer and novel diagnostic and therapeutic solutions are urgently needed. The gold standard treatment option for brain cancers in children, as in adults, is tumor resection followed by radio- and chemotherapy, but with discouraging therapeutic results. In particular, the last two treatments are often associated to significant neurotoxicity in the developing brain of a child, with resulting disabilities such as cognitive problems, neuroendocrine, and neurosensory dysfunctions/deficits. Nanoparticles have been increasingly and thoroughly investigated as they show great promises as diagnostic tools and vectors for gene/drug therapy for pediatric brain cancer due to their ability to cross the blood–brain barrier. In this review we will discuss the developments of nanoparticle-based strategies as novel precision nanomedicine tools for diagnosis and therapy in pediatric brain cancers, with a particular focus on targeting strategies to overcome the main physiological obstacles that are represented by blood–brain barrier.
Collapse
Affiliation(s)
- Clara Guido
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
| | - Clara Baldari
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
| | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
| | - Angela Mastronuzzi
- Neuro-Oncology Unit, Department of Onco-Haematology, Cell Therapy, Gene Therapy and Haemopoietic Transplant, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.Q.); (B.D.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.Q.); (B.D.A.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-NANOTEC, c/o La Sapienza University, Piazzale A. Moro, 00165 Rome, Italy;
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
| | - Ilaria Elena Palamà
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
- Correspondence:
| |
Collapse
|
34
|
Silva F, D’Onofrio A, Mendes C, Pinto C, Marques A, Campello MPC, Oliveira MC, Raposinho P, Belchior A, Di Maria S, Marques F, Cruz C, Carvalho J, Paulo A. Radiolabeled Gold Nanoseeds Decorated with Substance P Peptides: Synthesis, Characterization and In Vitro Evaluation in Glioblastoma Cellular Models. Int J Mol Sci 2022; 23:ijms23020617. [PMID: 35054798 PMCID: PMC8775581 DOI: 10.3390/ijms23020617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite some progress, the overall survival of patients with glioblastoma (GBM) remains extremely poor. In this context, there is a pressing need to develop innovative therapy strategies for GBM, namely those based on nanomedicine approaches. Towards this goal, we have focused on nanoparticles (AuNP-SP and AuNP-SPTyr8) with a small gold core (ca. 4 nm), carrying DOTA chelators and substance P (SP) peptides. These new SP-containing AuNPs were characterized by a variety of analytical techniques, including TEM and DLS measurements and UV-vis and CD spectroscopy, which proved their high in vitro stability and poor tendency to interact with plasma proteins. Their labeling with diagnostic and therapeutic radionuclides was efficiently performed by DOTA complexation with the trivalent radiometals 67Ga and 177Lu or by electrophilic radioiodination with 125I of the tyrosyl residue in AuNP-SPTyr8. Cellular studies of the resulting radiolabeled AuNPs in NKR1-positive GBM cells (U87, T98G and U373) have shown that the presence of the SP peptides has a crucial and positive impact on their internalization by the tumor cells. Consistently, 177Lu-AuNP-SPTyr8 showed more pronounced radiobiological effects in U373 cells when compared with the non-targeted congener 177Lu-AuNP-TDOTA, as assessed by cell viability and clonogenic assays and corroborated by Monte Carlo microdosimetry simulations.
Collapse
Affiliation(s)
- Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Correspondence: (F.S.); (A.P.)
| | - Alice D’Onofrio
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Carolina Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Catarina Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Ana Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.C.); (J.C.)
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.C.); (J.C.)
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Correspondence: (F.S.); (A.P.)
| |
Collapse
|
35
|
Li R, Wang H, Liang Q, Chen L, Ren J. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies. Biomater Sci 2022; 10:892-908. [PMID: 34989724 DOI: 10.1039/d1bm01401c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults with poor prognosis. Despite the current state of knowledge on its genetic characteristics, relatively little progress has been made in improving the treatment of patients with this fatal disease. Radiotherapy (RT) has been identified as a crucial treatment for GBM following surgical resection to improve both local control and survival. Unfortunately, radiotherapy resistance is frequently observed in GBM patients, which is the major reason for the high mortality rate of cancer patients. Radioresistance of GBM is often multifactorial and heterogeneous, and associated with the recurrence of GBM after surgery. Nanotechnology has gained increasing attention and has already been investigated for optimization of radiosensitization due to the unique properties of nanobiomaterials, such as photoelectric decay characteristics or potential as carriers for drug delivery to the central nervous system. A large body of preclinical data has accumulated over the past several years, in which nanotechnology-based strategies exhibit promising potential to enhance the radiosensitivity of GBM, both in cellular and animal models. In this review, we summarize the mechanisms of GBM radioresistance, including tumor cell-intrinsic factors as well as tumor microenvironment (TME). We further discuss current nano-biotechnology-based radiosensitizer in the treatment of GBM, summarize the latest findings, highlight challenges, and put forward prospects for the future of nano-radiosensitizers. These data suggest that nanotechnology has the potential to address many of the clinical challenges and nanobiomaterials would become promising next-generation radiotherapy sensitizers for GBM treatment.
Collapse
Affiliation(s)
- Ruiqi Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Qing Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Lian Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| |
Collapse
|
36
|
Pickford Scienti OLP, Darambara DG. An Overview of X-ray Photon Counting Spectral Imaging (x-CSI) with a Focus on Gold Nanoparticle Quantification in Oncology. J Imaging 2021; 8:4. [PMID: 35049845 PMCID: PMC8778032 DOI: 10.3390/jimaging8010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
This review article offers an overview of the differences between traditional energy integrating (EI) X-ray imaging and the new technique of X-ray photon counting spectral imaging (x-CSI). The review is motivated by the need to image gold nanoparticles (AuNP) in vivo if they are to be used clinically to deliver a radiotherapy dose-enhancing effect (RDEE). The aim of this work is to familiarise the reader with x-CSI as a technique and to draw attention to how this technique will need to develop to be of clinical use for the described oncological applications. This article covers the conceptual differences between x-CSI and EI approaches, the advantages of x-CSI, constraints on x-CSI system design, and the achievements of x-CSI in AuNP quantification. The results of the review show there are still approximately two orders of magnitude between the AuNP concentrations used in RDEE applications and the demonstrated detection limits of x-CSI. Two approaches to overcome this were suggested: changing AuNP design or changing x-CSI system design. Optimal system parameters for AuNP detection and general spectral performance as determined by simulation studies were different to those used in the current x-CSI systems, indicating potential gains that may be made with this approach.
Collapse
Affiliation(s)
- Oliver L. P. Pickford Scienti
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London SM2 5NG, UK;
| | | |
Collapse
|
37
|
Kaynak A, Davis HW, Vallabhapurapu SD, Pak KY, Gray BD, Qi X. SapC-DOPS as a Novel Therapeutic and Diagnostic Agent for Glioblastoma Therapy and Detection: Alternative to Old Drugs and Agents. Pharmaceuticals (Basel) 2021; 14:1193. [PMID: 34832975 PMCID: PMC8619974 DOI: 10.3390/ph14111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common type of brain cancer, is extremely aggressive and has a dreadful prognosis. GBM comprises 60% of adult brain tumors and the 5 year survival rate of GBM patients is only 4.3%. Standard-of-care treatment includes maximal surgical removal of the tumor in combination with radiation and temozolomide (TMZ) chemotherapy. TMZ is the "gold-standard" chemotherapy for patients suffering from GBM. However, the median survival is only about 12 to 18 months with this protocol. Consequently, there is a critical need to develop new therapeutic options for treatment of GBM. Nanomaterials have unique properties as multifunctional platforms for brain tumor therapy and diagnosis. As one of the nanomaterials, lipid-based nanocarriers are capable of delivering chemotherapeutics and imaging agents to tumor sites by enhancing the permeability of the compound through the blood-brain barrier, which makes them ideal for GBM therapy and imaging. Nanocarriers also can be used for delivery of radiosensitizers to the tumor to enhance the efficacy of the radiation therapy. Previously, high-atomic-number element-containing particles such as gold nanoparticles and liposomes have been used as radiosensitizers. SapC-DOPS, a protein-based liposomal drug comprising the lipid, dioleoylphosphatidylserine (DOPS), and the protein, saposin C (SapC), has been shown to be effective for treatment of a variety of cancers in small animals, including GBM. SapC-DOPS also has the unique ability to be used as a carrier for delivery of radiotheranostic agents for nuclear imaging and radiotherapeutic purposes. These unique properties make tumor-targeting proteo-liposome nanocarriers novel therapeutic and diagnostic alternatives to traditional chemotherapeutics and imaging agents. This article reviews various treatment modalities including nanolipid-based delivery and therapeutic systems used in preclinical and clinical trial settings for GBM treatment and detection.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Harold W. Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
| | - Subrahmanya D. Vallabhapurapu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
| | - Koon Y. Pak
- Molecular Targeting Technologies, Inc., West Chester, PA 19380, USA; (K.Y.P.); (B.D.G.)
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc., West Chester, PA 19380, USA; (K.Y.P.); (B.D.G.)
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
38
|
Ruiz-Garcia H, Ramirez-Loera C, Malouff TD, Seneviratne DS, Palmer JD, Trifiletti DM. Novel Strategies for Nanoparticle-Based Radiosensitization in Glioblastoma. Int J Mol Sci 2021; 22:9673. [PMID: 34575840 PMCID: PMC8465220 DOI: 10.3390/ijms22189673] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Radiotherapy (RT) is one of the cornerstones in the current treatment paradigm for glioblastoma (GBM). However, little has changed in the management of GBM since the establishment of the current protocol in 2005, and the prognosis remains grim. Radioresistance is one of the hallmarks for treatment failure, and different therapeutic strategies are aimed at overcoming it. Among these strategies, nanomedicine has advantages over conventional tumor therapeutics, including improvements in drug delivery and enhanced antitumor properties. Radiosensitizing strategies using nanoparticles (NP) are actively under study and hold promise to improve the treatment response. We aim to describe the basis of nanomedicine for GBM treatment, current evidence in radiosensitization efforts using nanoparticles, and novel strategies, such as preoperative radiation, that could be synergized with nanoradiosensitizers.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | | | - Timothy D. Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
| | - Danushka S. Seneviratne
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA;
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
39
|
Tagde P, Tagde P, Tagde S, Bhattacharya T, Garg V, Akter R, Rahman MH, Najda A, Albadrani GM, Sayed AA, Akhtar MF, Saleem A, Altyar AE, Kaushik D, Abdel-Daim MM. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme. Biomed Pharmacother 2021; 141:111928. [PMID: 34323701 DOI: 10.1016/j.biopha.2021.111928] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme is one of the most deadly malignant tumors, with more than 10,000 cases recorded annually in the United States. Various clinical analyses and studies show that certain chronic diseases, including cancer, interact between cell-reactive radicals rise and pathogenesis. Reactive oxygen and nitrogenous sources include endogenous (physiological processes), and exogenous sources contain reactive oxygen and nitrogen (xenobiotic interaction). The cellular oxidation/reduction shifts to oxidative stress when the regulation mechanisms of antioxidants are surpassed, and this raises the ability to damage cellular lipids, proteins, and nucleic acids. OBJECTIVE: This review is focused on how phytochemicals play crucial role against glioblastoma multiforme and to combat these, bioactive molecules and their derivatives are either used alone, in combination with anticancer drugs or as nanomedicine formulations for better cancer theranostics over the conventional approach. CONCLUSION: Bioactive molecules found in seeds, vegetables, and fruits have antioxidant, anti-inflammatory, and anticancer properties that may help cancer survivors feel better throughout chemotherapy or treatment. However, incorporating them into the nanocarrier-based drug delivery for the treatment of GBMs, which could be a promising therapeutic strategy for this tumor entity, increasing targeting effectiveness, increasing bioavailability, and reducing side effects with this target-specificity, drug internalization into cells is significantly improved, and off-target organ aggregation is reduced.
Collapse
Affiliation(s)
- Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, Madhya Pradesh, India; PRISAL Foundation (Pharmaceutical Royal International Society), India.
| | - Pooja Tagde
- Practice of Medicine Department, Govt. Homeopathy College, Bhopal, Madhya Pradesh, India
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), India
| | - Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan, China; Department of Science & Engineering, Novel Global Community Educational Foundation, Australia
| | - Vishal Garg
- Jaipur School of Pharmacy, Maharaj Vinayak Global University, Jaipur, Rajasthan, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, South Korea
| | - Md Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, South Korea; Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
40
|
Bouché M, Dong YC, Sheikh S, Taing K, Saxena D, Hsu JC, Chen MH, Salinas RD, Song H, Burdick JA, Dorsey J, Cormode DP. Novel Treatment for Glioblastoma Delivered by a Radiation Responsive and Radiopaque Hydrogel. ACS Biomater Sci Eng 2021; 7:3209-3220. [PMID: 34160196 PMCID: PMC8411482 DOI: 10.1021/acsbiomaterials.1c00385] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Successful treatment of glioblastoma (GBM) is hampered by primary tumor recurrence after surgical resection and poor prognosis, despite adjuvant radiotherapy and chemotherapy. In search of improved outcomes for this disease, quisinostat appeared as a lead compound in drug screening. A delivery system was devised for this drug and to exploit current clinical methodology: an injectable hydrogel, loaded with both the quisinostat drug and radiopaque gold nanoparticles (AuNP) as contrast agent, that can release these payloads as a response to radiation. This hydrogel grants high local drug concentrations, overcoming issues with current standards of care. Significant hydrogel degradation and quisinostat release were observed due to the radiation trigger, providing high in vitro anticancer activity. In vivo, the combination of radiotherapy and the radiation-induced delivery of quisinostat from the hydrogel, successfully inhibited tumor growth in a mice model bearing xenografted human GBM tumors with a total response rate of 67%. Long-term tolerability was observed after intratumoral injection of the quisinostat loaded hydrogel. The AuNP payload enabled precise image-guided radiation delivery and the monitoring of hydrogel degradation using computed tomography (CT). These exciting results highlight this hydrogel as a versatile imageable drug delivery platform that can be activated simultaneously to radiation therapy and potentially offers improved treatment for GBM.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
| | - Yuxi C Dong
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Saad Sheikh
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Philadelphia, Pennsylvania 19104, United States
| | - Kimberly Taing
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
| | - Deeksha Saxena
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Minna H Chen
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Ryan D Salinas
- Department of Neurosurgery, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Hongjun Song
- Department of Neuroscience, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Jay Dorsey
- Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
Russell E, Dunne V, Russell B, Mohamud H, Ghita M, McMahon SJ, Butterworth KT, Schettino G, McGarry CK, Prise KM. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat Oncol 2021; 16:104. [PMID: 34118963 PMCID: PMC8199842 DOI: 10.1186/s13014-021-01829-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The recent implementation of MR-Linacs has highlighted theranostic opportunities of contrast agents in both imaging and radiotherapy. There is a lack of data exploring the potential of superparamagnetic iron oxide nanoparticles (SPIONs) as radiosensitisers. Through preclinical 225 kVp exposures, this study aimed to characterise the uptake and radiobiological effects of SPIONs in tumour cell models in vitro and to provide proof-of-principle application in a xenograft tumour model. METHODS SPIONs were also characterised to determine their hydrodynamic radius using dynamic light scattering and uptake was measured using ICP-MS in 6 cancer cell lines; H460, MiaPaCa2, DU145, MCF7, U87 and HEPG2. The impact of SPIONs on radiobiological response was determined by measuring DNA damage using 53BP1 immunofluorescence and cell survival. Sensitisation Enhancement Ratios (SERs) were compared with the predicted Dose Enhancement Ratios (DEFs) based on physical absorption estimations. In vivo efficacy was demonstrated using a subcutaneous H460 xenograft tumour model in SCID mice by following intra-tumoural injection of SPIONs. RESULTS The hydrodynamic radius was found to be between 110 and 130 nm, with evidence of being monodisperse in nature. SPIONs significantly increased DNA damage in all cell lines with the exception of U87 cells at a dose of 1 Gy, 1 h post-irradiation. Levels of DNA damage correlated with the cell survival, in which all cell lines except U87 cells showed an increased sensitivity (P < 0.05) in the linear quadratic curve fit for 1 h exposure to 23.5 μg/ml SPIONs. There was also a 30.1% increase in the number of DNA damage foci found for HEPG2 cells at 2 Gy. No strong correlation was found between SPION uptake and DNA damage at any dose, yet the biological consequences of SPIONs on radiosensitisation were found to be much greater, with SERs up to 1.28 ± 0.03, compared with predicted physical dose enhancement levels of 1.0001. In vivo, intra-tumoural injection of SPIONs combined with radiation showed significant tumour growth delay compared to animals treated with radiation or SPIONs alone (P < 0.05). CONCLUSIONS SPIONs showed radiosensitising effects in 5 out of 6 cancer cell lines. No correlation was found between the cell-specific uptake of SPIONs into the cells and DNA damage levels. The in vivo study found a significant decrease in the tumour growth rate.
Collapse
Affiliation(s)
- Emily Russell
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK.
- National Physical Laboratory, London, UK.
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals, NHS Trust, Leeds, UK.
| | - Victoria Dunne
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | | | | | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Stephen J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Giuseppe Schettino
- National Physical Laboratory, London, UK
- Department of Physics, University of Surrey, Guildford, UK
| | - Conor K McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
- Northern Ireland Cancer Centre, Belfast, UK
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
42
|
Moin A, Rizvi SMD, Hussain T, Gowda DV, Subaiea GM, Elsayed MMA, Ansari M, Alanazi AS, Yadav H. Current Status of Brain Tumor in the Kingdom of Saudi Arabia and Application of Nanobiotechnology for Its Treatment: A Comprehensive Review. Life (Basel) 2021; 11:421. [PMID: 34063122 PMCID: PMC8148129 DOI: 10.3390/life11050421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Brain tumors are the most challenging of all tumors and accounts for about 3% of all cancer allied deaths. The aim of the present review is to examine the brain tumor prevalence and treatment modalities available in the Kingdom of Saudi Arabia. It also provides a comprehensive analysis of the application of various nanotechnology-based products for brain cancer treatments along with their prospective future advancements. METHODS A literature review was performed to identify and summarize the current status of brain cancer in Saudi Arabia and the scope of nanobiotechnology in its treatment. RESULTS Depending upon the study population data analysis, gliomas, astrocytoma, meningioma, and metastatic cancer have a higher incidence rate in Saudi Arabia than in other countries, and are mostly treated in accordance with conventional treatment modalities for brain cancer. Due to the poor prognosis of cancer, it has an average survival rate of 2 years. Conventional therapy includes surgery, radiotherapy, chemotherapy, and a combination thereof, but these do not control the disease's recurrence. Among the various nanomaterials discussed, liposomes and polymeric nanoformulations have demonstrated encouraging outcomes for facilitated brain cancer treatment. CONCLUSIONS Nanomaterials possess the capacity to overcome the shortcomings of conventional therapies. Polymer-based nanomaterials have shown encouraging outcomes against brain cancer when amalgamated with other nano-based therapies. Nonetheless, nanomaterials could be devised that possess minimal toxicity towards normal cells or that specifically target tumor cells. In addition, rigorous clinical investigations are warranted to prepare them as an efficient and safe modality for brain cancer therapy.
Collapse
Affiliation(s)
- Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - D. V. Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, Mysuru 570015, India;
| | - Gehad M. Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Mustafa M. A. Elsayed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Mukhtar Ansari
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (M.A.); (A.S.A.)
| | - Abulrahman Sattam Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (M.A.); (A.S.A.)
| | - Hemant Yadav
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| |
Collapse
|
43
|
Shah A, Aftab S, Nisar J, Ashiq MN, Iftikhar FJ. Nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102426] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Ngowi EE, Wang YZ, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang ES, Duan SF, Wei JS, Wu DD, Ji XY. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol 2021; 9:629832. [PMID: 33738278 PMCID: PMC7960921 DOI: 10.3389/fbioe.2021.629832] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Bright Anyomi
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Nursing and Health, Institutes of Nursing and Health, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
45
|
Ibarra LE. Cellular Trojan horses for delivery of nanomedicines to brain tumors: where do we stand and what is next? Nanomedicine (Lond) 2021; 16:517-522. [PMID: 33634710 DOI: 10.2217/nnm-2021-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Córdoba 5800, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, UNRC, Río Cuarto, Córdoba 5800, Argentina
| |
Collapse
|
46
|
A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale. Appl Radiat Isot 2021; 171:109638. [PMID: 33631502 DOI: 10.1016/j.apradiso.2021.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Dose enhancement due to gold nanoparticles (GNPs) has been quantified experimentally and through Monte Carlo simulations for external beam radiation therapy energies of 6 and 18 MV. The highest enhancement was observed for the 18 MV beam at the highest GNP concentration tested, amounting to a DEF of 1.02. DEF is shown to increase with increasing concentration of gold and increasing energy in the megavoltage energy range. The largest difference in measured vs. simulated DEF across all data sets was 0.3%, showing good agreement.
Collapse
|
47
|
Tapia-Arellano A, Gallardo-Toledo E, Ortiz C, Henríquez J, Feijóo CG, Araya E, Sierpe R, Kogan MJ. Functionalization with PEG/Angiopep-2 peptide to improve the delivery of gold nanoprisms to central nervous system: in vitro and in vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111785. [DOI: 10.1016/j.msec.2020.111785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
|
48
|
Janic B, Brown SL, Neff R, Liu F, Mao G, Chen Y, Jackson L, Chetty IJ, Movsas B, Wen N. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol Ther 2021; 22:124-135. [PMID: 33459132 PMCID: PMC7928016 DOI: 10.1080/15384047.2020.1861923] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been shown to enhance cancer radiotherapy (RT) gain by localizing the absorption of radiation energy in the tumor while sparing surrounding normal tissue from radiation toxicity. Previously, we showed that AuNPs enhanced RT induced DNA damage and cytotoxicity in MCF7 breast cancer cells. Interestingly, we found that cancer cells exhibited a size-dependent AuNPs intracellular localization (4 nm preferentially in the cytoplasm and 14 nm in the nucleus). We extended those studies to an in vivo model and examined the AuNPs effects on RT cytotoxicity, survival and immunomodulation of tumor microenvironment (TME) in human triple negative breast cancer (TNBC) xenograft mouse model. We also explored the significance of nanoparticle size in these AuNPs’ effects. Mice treated with RT and RT plus 4 nm or 14 nm AuNPs showed a significant tumor growth delay, compared to untreated animals, while dual RT plus AuNPs treatment exhibited additive effect compared to either RT or AuNPs treatment alone. Survival log-rank test showed significant RT enhancement with 14 nm AuNP alone; however, 4 nm AuNPs did not exhibit RT enhancement. Both sizes of AuNPs enhanced RT induced immunogenic cell death (ICD) that was coupled with significant macrophage infiltration in mice pretreated with 14 nm AuNPs. These results showing significant AuNP size-dependent RT enhancement, as evident by both tumor growth delay and overall survival, reveal additional underlying immunological mechanisms and provide a platform for studying RT multimodal approaches for TNBC that may be combined with immunotherapies, enhancing their effect.
Collapse
Affiliation(s)
| | - Stephen L Brown
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ryan Neff
- University of Notre Dame, South Bend, Indiana, USA
| | - Fangchao Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, USA
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, USA.,School of Chemical Engineering, Unsw Sydney, Kensington, Australia
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, USA
| | - Latoya Jackson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, USA
| | - Indrin J Chetty
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Benjamin Movsas
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ning Wen
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
49
|
Gao L, Shi X, Wu X. Applications and challenges of low temperature plasma in pharmaceutical field. J Pharm Anal 2021; 11:28-36. [PMID: 33717609 PMCID: PMC7930796 DOI: 10.1016/j.jpha.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 01/20/2023] Open
Abstract
Low temperature plasma (LTP) technology has shown an outstanding application value in the pharmaceutical filed in recent ten years. This paper reviews the research advances in LTP, including its effects on enhancing or inhibiting drug activity, its combined use with drugs to treat cancers, its effects on the improvement of drug delivery system, its use in preparation of new inactivated virus vaccines, its use with mass spectrometry for rapid detection of drug quality, and the anti-tumor and sterilization effects of plasma-activated liquids. The paper also analyzes the challenges of LTP in the pharmaceutical filed, hoping to promote related research.
Collapse
Affiliation(s)
- Lingge Gao
- School of Public Health, Medical Science Center, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Xingmin Shi
- School of Public Health, Medical Science Center, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Xili Wu
- Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, 710004, China
| |
Collapse
|
50
|
Silva VDCJD, Silva RDNO, Colli LG, Carvalho MHCD, Rodrigues SF. Gold nanoparticles carrying or not anti-VEGF antibody do not change glioblastoma multiforme tumor progression in mice. Heliyon 2020; 6:e05591. [PMID: 33294714 PMCID: PMC7701192 DOI: 10.1016/j.heliyon.2020.e05591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Glioblastoma multiforme (GBM) is the most devastating malignant primary brain tumor known. Life expectance is around 15 months after diagnosis. Several events contribute to the GBM progression such as uncontrolled genetic cancer cells proliferation, angiogenesis (mostly vascular endothelial growth factor (VEGF)-mediated), tissue invasion, glioma stem cell activity, immune system failure, and a hypoxic and inflammatory tumor microenvironment. Tumor cells antiproliferative effect of 20 nm citrate-covered gold nanoparticles (cit-AuNP) has been reported, along with anti-inflammatory and anti-oxidative effects. We aimed to test whether either chronic treatment with 20 nm cit-AuNP or anti-VEGF antibody (Ig)-covered AuNP could reduce GBM progression in mice. Main methods Effect of the gold nanoparticles on the GL261 glioblastoma cells proliferation in vitro, and on the GL261-induced glioblastoma cell growth in C57BL/6 mice in vivo were tested. Besides, fluorophore-conjugated gold nanoparticles penetration through the GL261 plasma cell membrane, gold labelling in brain parenchyma of glioblastoma-carrying mice, and VEGF expression into the tumor were evaluated. Key findings We observed cit-AuNP did no change the GL261 cells proliferation. Similarly, we demonstrated chronic treatment with either cit-AuNP or anti-VEGF Ig-covered AuNP did not modify the GL261 cells-induced GBM progression in mice. By the end, we showed AuNPs did not trespass in appreciable amount both the GL261 plasma cell membrane and the tumoral blood brain barrier (BBB), and did not change the VEGF expression into the tumor. Significance 20 nm cit-AuNP or anti-VEGF Ig covered-AuNP are not good tools to reduce GBM in mice, probably because they do not penetrate both tumor cells and BBB in enough amount to reduce tumor growing.
Collapse
Affiliation(s)
- Viviane de Cassia Jesus da Silva
- Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Renee de Nazare O Silva
- Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Lucas Giglio Colli
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Helena Catelli de Carvalho
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Stephen Fernandes Rodrigues
- Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|