1
|
Rocca V, Lo Feudo E, Dinatolo F, Lavano SM, Bilotta A, Amato R, D’Antona L, Trapasso F, Baudi F, Colao E, Perrotti N, Paduano F, Iuliano R. Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing. Curr Issues Mol Biol 2024; 46:13003-13020. [PMID: 39590369 PMCID: PMC11592649 DOI: 10.3390/cimb46110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary breast cancer accounts for 5-10% of all cases, with pathogenic variants in BRCA1/2 and other susceptibility genes playing a crucial role. This study elucidates the prevalence and spectrum of germline variants in 13 cancer predisposition genes among high-risk hereditary breast cancer patients from Southern Italy. We employed next-generation sequencing (NGS) to analyze 254 individuals selected through genetic counseling. Pathogenic or likely pathogenic variants were identified in 13% (34/254) of patients, with 54% of these variants occurring in non-BRCA1/2 genes. Notably, we observed a recurrent BRCA1 c.4964_4982del founder mutation, underscoring the importance of population-specific genetic screening. The spectrum of variants extended beyond BRCA1/2 to include PALB2, ATM, TP53, CHEK2, and RAD51C, highlighting the genetic heterogeneity of breast cancer susceptibility. Variants of uncertain significance were detected in 20% of patients, emphasizing the ongoing challenge of variant interpretation in the era of multi-gene panel testing. These findings not only enhance our understanding of the genetic landscape of breast cancer in Southern Italy but also provide a foundation for developing more targeted, population-specific approaches to genetic testing and counseling, ultimately contributing to the advancement of precision medicine in oncology.
Collapse
Affiliation(s)
- Valentina Rocca
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Elisa Lo Feudo
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Serena Marianna Lavano
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Anna Bilotta
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Rosario Amato
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Lucia D’Antona
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Trapasso
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Emma Colao
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Nicola Perrotti
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| |
Collapse
|
2
|
Paduano F, Colao E, Fabiani F, Rocca V, Dinatolo F, Dattola A, D’Antona L, Amato R, Trapasso F, Baudi F, Perrotti N, Iuliano R. Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy. Genes (Basel) 2022; 13:1286. [PMID: 35886069 PMCID: PMC9319682 DOI: 10.3390/genes13071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Fernanda Fabiani
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Valentina Rocca
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Adele Dattola
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Park JH, Jo JH, Jang SI, Chung MJ, Park JY, Bang S, Park SW, Song SY, Lee HS, Cho JH. BRCA 1/2 Germline Mutation Predicts the Treatment Response of FOLFIRINOX with Pancreatic Ductal Adenocarcinoma in Korean Patients. Cancers (Basel) 2022; 14:236. [PMID: 35008403 PMCID: PMC8750183 DOI: 10.3390/cancers14010236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
We evaluated the proportion of BRCA 1/2 germline mutations in Korean patients with sporadic pancreatic ductal adenocarcinoma (PDAC) and its effect on the chemotherapeutic response of FOLFIRINOX. This retrospective study included patients who were treated at two tertiary hospitals between 2012 and 2020, were pathologically confirmed to have PDAC, and had undergone targeted next-generation sequencing-based germline genetic testing. Sixty-six patients were included in the study (24 men; median age 57.5 years). In the germline test, BRCA 1/2 pathogenic mutations were found in nine patients (9/66, 13%, BRCA 1, n = 3; BRCA 2, n = 5; and BRCA 1/2, n = 1). There was no significant difference in the baseline characteristics according to BRCA mutation positivity. Among patients who underwent FOLFIRINOX chemotherapy, patients with a BRCA 1/2 mutation showed a higher overall response rate than those without a BRCA 1/2 mutation (71.4% vs. 13.9%, p = 0.004). Patients with a germline BRCA 1/2 mutation showed longer progression-free survival than those without a BRCA 1/2 mutation, without a significant time difference (18 months vs. 10 months, p = 0.297). Patients with a BRCA 1/2 mutation in the germline blood test had a higher response rate to FOLFIRINOX chemotherapy in PDAC. The high proportion of BRCA 1/2 germline mutations and response rate supports the need for germline testing in order to predict better treatment response.
Collapse
Affiliation(s)
- Ji Hoon Park
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.H.P.); (J.H.J.); (M.J.C.); (J.Y.P.); (S.B.); (S.W.P.); (S.Y.S.)
| | - Jung Hyun Jo
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.H.P.); (J.H.J.); (M.J.C.); (J.Y.P.); (S.B.); (S.W.P.); (S.Y.S.)
| | - Sung Ill Jang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Moon Jae Chung
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.H.P.); (J.H.J.); (M.J.C.); (J.Y.P.); (S.B.); (S.W.P.); (S.Y.S.)
| | - Jeong Youp Park
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.H.P.); (J.H.J.); (M.J.C.); (J.Y.P.); (S.B.); (S.W.P.); (S.Y.S.)
| | - Seungmin Bang
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.H.P.); (J.H.J.); (M.J.C.); (J.Y.P.); (S.B.); (S.W.P.); (S.Y.S.)
| | - Seung Woo Park
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.H.P.); (J.H.J.); (M.J.C.); (J.Y.P.); (S.B.); (S.W.P.); (S.Y.S.)
| | - Si Young Song
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.H.P.); (J.H.J.); (M.J.C.); (J.Y.P.); (S.B.); (S.W.P.); (S.Y.S.)
| | - Hee Seung Lee
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.H.P.); (J.H.J.); (M.J.C.); (J.Y.P.); (S.B.); (S.W.P.); (S.Y.S.)
| | - Jae Hee Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| |
Collapse
|
4
|
Gillyard T, Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:111-137. [PMID: 34507781 DOI: 10.1016/bs.ircmb.2021.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The assessment of DNA damage can be a significant diagnostic for precision medicine. DNA double strand break (DSBs) pathways in cancer are the primary targets in a majority of anticancer therapies, yet the molecular vulnerabilities that underlie each tumor can vary widely making the application of precision medicine challenging. Identifying and understanding these interindividual vulnerabilities enables the design of targeted DSB inhibitors along with evolving precision medicine approaches to selectively kill cancer cells with minimal side effects. A major challenge however, is defining exactly how to target unique differences in DSB repair pathway mechanisms. This review comprises a brief overview of the DSB repair mechanisms in cancer and includes results obtained with revolutionary advances such as CRISPR/Cas9 and machine learning/artificial intelligence, which are rapidly advancing not only our understanding of determinants of DSB repair choice, but also how it can be used to advance precision medicine. Scientific innovation in the methods used to diagnose and treat cancer is converging with advances in basic science and translational research. This revolution will continue to be a critical driver of precision medicine that will enable precise targeting of unique individual mechanisms. This review aims to lay the foundation for achieving this goal.
Collapse
Affiliation(s)
- Taneisha Gillyard
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
5
|
Abu-Helalah M, Azab B, Mubaidin R, Ali D, Jafar H, Alshraideh H, Drou N, Awidi A. BRCA1 and BRCA2 genes mutations among high risk breast cancer patients in Jordan. Sci Rep 2020; 10:17573. [PMID: 33067490 PMCID: PMC7568559 DOI: 10.1038/s41598-020-74250-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Familial breast cancer is estimated to account for 15-20% of all cases of breast cancer. Surveillance for familial breast cancer is well-established world-wide. However, this service does not exist in Jordan, due to the scarcity of information with regard to the genetic profiling of these patients, and therefore lack of recommendations for policy-makers. As such, patients with very strong family history of breast or ovarian cancers are not screened routinely; leading to preventable delay in diagnosis. Whole coding sequencing for BCRA1/BCRA2 using next-generation sequencing (NGS)/Ion PGM System was performed. Sanger sequencing were then used to confirm the pathogenic variants detected by NGS. In this study, 192 breast cancer patients (and 8 ovarian cancer cases) were included. The prevalence of recurrent pathogenic mutations was 14.5%, while the prevalence of newly detected mutations was 3.5%. Two novel pathogenic mutations were identified in BRCA2 genes. The common mutations in the Ashkenazi population used for screening may not apply in the Jordanian population, as previously reported mutations were not prevalent, and other new mutations were identified. These data will aid to establish a specific screening test for BRCA 1/BRCA2 in the Jordanian population.
Collapse
Affiliation(s)
- Munir Abu-Helalah
- Department of Public Health, Faculty of Medicine, Mutah University, Karak, Jordan.,Faculty of Medicine, Al-Faisal University, Riyadh, Kingdom of Saudi Arabia
| | - Belal Azab
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan.,Department of Pathology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Rasmi Mubaidin
- Radiation Therapy Department, Al-Bashir Hospital, Ministry of Health, Amman, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan.,Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Hussam Alshraideh
- Industrial Engineering Department, University of Science and Technology, Irbid, Jordan.,Industrial Engineering Department, American University of Sharjah, Sharjah, UAE
| | - Nizar Drou
- NYU Abu Dhabi Center for Genomics and System Biology, Abu Dhabi, UAE
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan. .,Department of Medicine, School of Medicine, The University of Jordan, Amman, Jordan.
| |
Collapse
|
6
|
K.M. Ip C, Yin J, K.S. Ng P, Lin SY, B. Mills G. Genomic-Glycosylation Aberrations in Tumor Initiation, Progression and Management. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.4.386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Kupriyanova NS, Netchvolodov KK, Sadova AA, Cherepanova MD, Ryskov AP. Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning. Gene 2015; 572:237-42. [PMID: 26164756 DOI: 10.1016/j.gene.2015.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Ribosomal DNA (rDNA) in the human genome is represented by tandem repeats of 43 kb nucleotide sequences that form nucleoli organizers (NORs) on each of five pairs of acrocentric chromosomes. RDNA-similar segments of different lengths are also present on (NOR)(-) chromosomes. Many of these segments contain nucleotide substitutions, supplementary microsatellite clusters, and extended deletions. Recently, it was shown that, in addition to ribosome biogenesis, nucleoli exhibit additional functions, such as cell-cycle regulation and response to stresses. In particular, several stress-inducible loci located in the ribosomal intergenic spacer (rIGS) produce stimuli-specific noncoding nucleolus RNAs. By mapping the 5'/3' ends of the rIGS segments scattered throughout (NOR)(-) chromosomes, we discovered that the bonds in the rIGS that were most often susceptible to disruption in the rIGS were adjacent to, or overlapped with stimuli-specific inducible loci. This suggests the interconnection of the two phenomena - nucleoli functioning and the scattering of rDNA-like sequences on (NOR)(-) chromosomes.
Collapse
Affiliation(s)
| | | | - Anastasia A Sadova
- The Institute of Gene Biology, RAS, 34/5, Vavilov St., Moscow, Russian Federation.
| | - Marina D Cherepanova
- The Institute of Gene Biology, RAS, 34/5, Vavilov St., Moscow, Russian Federation.
| | - Alexei P Ryskov
- The Institute of Gene Biology, RAS, 34/5, Vavilov St., Moscow, Russian Federation.
| |
Collapse
|
8
|
Carvalho RS, Abreu RBV, Velkova A, Marsillac S, Rodarte RS, Suarez-Kurtz G, Iversen ES, Monteiro ANA, Carvalho MA. Probing structure-function relationships in missense variants in the carboxy-terminal region of BRCA1. PLoS One 2014; 9:e97766. [PMID: 24845084 PMCID: PMC4028255 DOI: 10.1371/journal.pone.0097766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022] Open
Abstract
Germline inactivating variants in BRCA1 lead to a significantly increased risk of breast and ovarian cancers in carriers. While the functional effect of many variants can be inferred from the DNA sequence, determining the effect of missense variants present a significant challenge. A series of biochemical and cell biological assays have been successfully used to explore the impact of these variants on the function of BRCA1, which contribute to assessing their likelihood of pathogenicity. It has been determined that variants that co-localize with structural or functional motifs are more likely to disrupt the stability and function of BRCA1. Here we assess the functional impact of 37 variants chosen to probe the functional impact of variants in phosphorylation sites and in the BRCT domains. In addition, we perform a meta-analysis of 170 unique variants tested by the transcription activation assays in the carboxy-terminal domain of BRCA1 using a recently developed computation model to provide assessment for functional impact and their likelihood of pathogenicity.
Collapse
Affiliation(s)
- Renato S Carvalho
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America; Programa de Farmacologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Renata B V Abreu
- Programa de Farmacologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Aneliya Velkova
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Sylvia Marsillac
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | | | | | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina, United States of America
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Marcelo A Carvalho
- Programa de Farmacologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Shirts BH, Jacobson A, Jarvik GP, Browning BL. Large numbers of individuals are required to classify and define risk for rare variants in known cancer risk genes. Genet Med 2013; 16:529-34. [PMID: 24357849 DOI: 10.1038/gim.2013.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/25/2013] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Up to half of unique genetic variants in genomic evaluations of familial cancer risk will be rare variants of uncertain significance. Classification of rare variants will be an ongoing issue as genomic testing becomes more common. METHODS We modified standard power calculations to explore sample sizes necessary to classify and estimate relative disease risk for rare variant frequencies (0.001-0.00001) and varying relative risk (20-1.5), using population-based and family-based designs focusing on breast and colon cancer. We required 80% power and tolerated a 10% false-positive rate because variants tested will be in known genes with high pretest probability. RESULTS Using population-based strategies, hundreds to millions of cases are necessary to classify rare cancer variants. Larger samples are necessary for less frequent and less penetrant variants. Family-based strategies are robust to changes in variant frequency and require between 8 and 1,175 individuals, depending on risk. CONCLUSION It is unlikely that most rare missense variants will be classifiable in the near future, and accurate relative risk estimates may never be available for very rare variants. This knowledge may alter strategies for communicating information about variants of uncertain significance to patients.
Collapse
Affiliation(s)
- Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Angela Jacobson
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Gail P Jarvik
- 1] Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA [2] Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Brian L Browning
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|