1
|
Lin PW, Lin ZR, Wang WW, Guo AS, Chen YX. Identification of immune-inflammation targets for intracranial aneurysms: a multiomics and epigenome-wide study integrating summary-data-based Mendelian randomization, single-cell-type expression analysis, and DNA methylation regulation. Int J Surg 2025; 111:346-359. [PMID: 39051921 PMCID: PMC11745758 DOI: 10.1097/js9.0000000000001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dysfunction of the immune system and inflammation plays a vital role in developing intracranial aneurysms (IAs). However, the progress of genetic pathophysiology is complicated and not entirely elaborated. This study aimed to explore the genetic associations of immune-related and inflammation-related genes (IIRGs) with IAs and their subtypes using Mendelian randomization, colocalization test, and integrated multiomics functional analysis. METHODS The authors conducted a summary-data-based Mendelian randomization (SMR) analysis using data from several genome-wide association studies of gene expression (31 684 European individuals) and protein quantitative trait loci (35 559 Icelanders), as well as information on IAs and their subtypes from The International Stroke Genetics Consortium (IGSC) for discovery phase and the FinnGen study for replication. This analysis aimed to determine the causal relationship between IIRGs and the risk of IAs and their subtypes. Further functional analyses, including DNA methylation regulation (1980, European individuals), single-cell-type expression analysis, and protein-protein interaction, were conducted to detect the specific cell type with enriched expression and discover potential drug targets. RESULTS After integrating multiomics evidence from expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL), the authors found that tier 1: RELT [odds ratio (OR): 0.14, 95% CI: 0.04-0.50], TNFSF12 (OR: 1.24, 95% CI: 1.24-1.43), tier 3: ICAM5 (OR: 0.89, 95% CI: 0.82-0.96), and ERAP2 (OR: 1.07, 95% CI: 1.02-1.12) were associated with the risk of IAs; tier 3: RELT (OR: 0.11, 95% CI: 0.02-0.54), ERAP2 (OR: 1.08, 95% CI: 1.02-1.13), and TNFSF12 (OR: 1.24, 95% CI: 1.05-1.47) were associated with the risk of aneurysmal subarachnoid hemorrhage (aSAH); and tier 1: RELT (OR: 0.04, 95% CI: 0.01-0.30) was associated with the risk of unruptured intracranial aneurysms (uIAs). Further functional analyses showed that RELT was regulated by cg06382664 and cg18850434 and ICAM5 was regulated by cg04295144 in IAs; RELT was regulated by cg06382664, cg08770935, cg16533363, and cg18850434 in aSAH; and RELT was regulated by cg06382664 and cg21810604 in uIAs. In addition, the authors found that H6PD (OR: 1.13, 95% CI: 1.01-1.28), NT5M (OR: 1.91, 95% CI: 1.21-3.01), and NPTXR (OR: 1.13, 95% CI: 1.01-1.26) were associated with IAs; NT5M (OR: 2.13, 95% CI: 1.23-3.66) was associated aSAH; and AP4M1 (OR: 0.06, 95% CI: 0.01-0.42) and STX7 (OR: 3.97, 95% CI: 1.41-11.18) were related to uIAs. STX7 and TNFSF12 were mainly enriched in microglial cells, whereas H6PD, STX7 , and TNFSF12 were mainly enriched in astrocytes. CONCLUSIONS After integrating multiomics evidence, the authors eventually identified IIRGs: RELT, TNFSF12, ICAM5 , and ERAP2 were the novel therapy targets for IAs. These new results confirmed a vital role of immune and inflammation in the etiology of IAs, contributing to enhance our understanding of the immune and inflammatory mechanisms in the pathogenesis of IAs and revealing the complex genetic causality of IAs.
Collapse
Affiliation(s)
- Peng-Wei Lin
- The School of Clinical Medicine, Fujian Medical University, Zhangzhou Affiliated Hospital of Fujian Medical University, Fuzhou
| | - Zhen-Rong Lin
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People’s Republic of China
| | - Wei-Wei Wang
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People’s Republic of China
| | - Ai-Shun Guo
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People’s Republic of China
| | - Yu-Xiang Chen
- The School of Clinical Medicine, Fujian Medical University, Zhangzhou Affiliated Hospital of Fujian Medical University, Fuzhou
| |
Collapse
|
2
|
Lander A, Kong Y, Jin Y, Wu C, Luk LYP. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS BIO & MED CHEM AU 2024; 4:68-76. [PMID: 38404743 PMCID: PMC10885103 DOI: 10.1021/acsbiomedchemau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024]
Abstract
Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 μM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.
Collapse
Affiliation(s)
- Alexander
J. Lander
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Yifu Kong
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| | - Chuanliu Wu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Louis Y. P. Luk
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
3
|
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Sarah D Atkinson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.
| |
Collapse
|
4
|
Schoeder C, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA, Sauer MF, Bozhanova NG, Mueller BK, Sangha AK, Bonet J, Sheehan JH, Kuenze G, Marlow B, Smith ST, Woods H, Bender BJ, Martina CE, del Alamo D, Kodali P, Gulsevin A, Schief WR, Correia BE, Crowe JE, Meiler J, Moretti R. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Biochemistry 2021; 60:825-846. [PMID: 33705117 PMCID: PMC7992133 DOI: 10.1021/acs.biochem.0c00912] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Indexed: 01/16/2023]
Abstract
Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University. These tutorials cover antibody structure prediction, docking, and design and antigen design strategies, including the addition of glycans in Rosetta. We expect that these materials will allow novice users to apply Rosetta in their own projects for modeling antibodies and antigens.
Collapse
Affiliation(s)
- Clara
T. Schoeder
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Samuel Schmitz
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Jared Adolf-Bryfogle
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Alexander M. Sevy
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
| | - Jessica A. Finn
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Marion F. Sauer
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
| | - Nina G. Bozhanova
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Benjamin K. Mueller
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Amandeep K. Sangha
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Jaume Bonet
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jonathan H. Sheehan
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Georg Kuenze
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Institute
for Drug Discovery, University Leipzig Medical
School, 04103 Leipzig, Germany
| | - Brennica Marlow
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Shannon T. Smith
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Hope Woods
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Brian J. Bender
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Cristina E. Martina
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Diego del Alamo
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Pranav Kodali
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Alican Gulsevin
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - William R. Schief
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Bruno E. Correia
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - James E. Crowe
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Pediatrics, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Institute
for Drug Discovery, University Leipzig Medical
School, 04103 Leipzig, Germany
| | - Rocco Moretti
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| |
Collapse
|
5
|
Badia-Villanueva M, Defaus S, Foj R, Andreu D, Oliva B, Sierra A, Fernandez-Fuentes N. Evaluation of Computationally Designed Peptides against TWEAK, a Cytokine of the Tumour Necrosis Factor Ligand Family. Int J Mol Sci 2021; 22:ijms22031066. [PMID: 33494438 PMCID: PMC7866087 DOI: 10.3390/ijms22031066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumour necrosis factor ligand family and has been shown to be overexpressed in tumoral cells together with the fibroblast growth factor–inducible 14 (Fn14) receptor. TWEAK-Fn14 interaction triggers a set of intracellular pathways responsible for tumour cell invasion and migration, as well as proliferation and angiogenesis. Hence, modulation of the TWEAK-Fn14 interaction is an important therapeutic goal. The targeting of protein-protein interactions by external agents, e.g., drugs, remains a substantial challenge. Given their intrinsic features, as well as recent advances that improve their pharmacological profiles, peptides have arisen as promising agents in this regard. Here, we report, by in silico structural design validated by cell-based and in vitro assays, the discovery of four peptides able to target TWEAK. Our results show that, when added to TWEAK-dependent cellular cultures, peptides cause a down-regulation of genes that are part of TWEAK-Fn14 signalling pathway. The direct, physical interaction between the peptides and TWEAK was further elucidated in an in vitro assay which confirmed that the bioactivity shown in cell-based assays was due to the targeting of TWEAK. The results presented here are framed within early pre-clinical drug development and therefore these peptide hits represent a starting point for the development of novel therapeutic agents. Our approach exemplifies the powerful combination of in silico and experimental efforts to quickly identify peptides with desirable traits.
Collapse
Affiliation(s)
- Miriam Badia-Villanueva
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.-V.); (R.F.)
| | - Sira Defaus
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Science, Pompeu Fabra University, Barcelona, Biomedical Research Park, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Ruben Foj
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.-V.); (R.F.)
| | - David Andreu
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Science, Pompeu Fabra University, Barcelona, Biomedical Research Park, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Baldo Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, Pompeu Fabra University, Biomedical Research Park, 08003 Barcelona, Spain;
| | - Angels Sierra
- Laboratory of Oncological Neurosurgery, Hospital Clinic de Barcelona—IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (A.S.); (N.F.-F.)
| | - Narcis Fernandez-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Vic 08500 Catalonia, Spain
- Correspondence: (A.S.); (N.F.-F.)
| |
Collapse
|
6
|
Watanabe M. Towards Understanding the Pathophysiological Significance of Cytokine Trapping Mediated by Advanced Glycation End Products. YAKUGAKU ZASSHI 2020; 140:1335-1341. [DOI: 10.1248/yakushi.20-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Tovar MA, Parkhurst A, Matuczinski E, Balenger S, Giancarlo LC. Synthesis of a superparamagnetic iron oxide based nano-complex for targeted cell death of glioblastoma cells. NANOTECHNOLOGY 2019; 30:465101. [PMID: 31323657 DOI: 10.1088/1361-6528/ab33d4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last ten years, there has been little advancement in the treatment of the aggressive brain cancer Glioblastoma Multiforme (GBM). This research describes the synthesis of a superparamagnetic iron oxide (SPION)-based nanotheraputic complex for use in targeting and killing aggressive mesenchymal GBM cells. The average sizes and magnetic properties of the synthesized SPIONs are tailored via a novel time-controlled approach to a previously described electrochemical reaction. Through this synthetic method, the optimal particle size where maximal thermal energy is released upon stimulation with an external magnetic field was determined to be 21 nm. The nano-complex was further modified to selectively target GBM cells by adding a heterobifunctional poly(ethylene) glycol polymer crosslinked to TWEAK (a GBM targeting peptide). Preliminary investigation with FITC Annexin V/propidium iodide fluorescent probes and transmission electron microscopy revealed biochemical and morphological evidence of both SPION internalization and cytotoxic effects over the course of three hours. Thus, these nano-complexes hold promise as a potential treatment agent for an otherwise untreatable disease.
Collapse
Affiliation(s)
- Matthew A Tovar
- Department of Chemistry, University of Mary Washington, Fredericksburg, VA, United States of America
| | | | | | | | | |
Collapse
|
8
|
Bertinelli M, Paesen GC, Grimes JM, Renner M. High-resolution crystal structure of arthropod Eiger TNF suggests a mode of receptor engagement and altered surface charge within endosomes. Commun Biol 2019; 2:293. [PMID: 31396573 PMCID: PMC6684607 DOI: 10.1038/s42003-019-0541-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
The tumour necrosis factor alpha (TNFα) superfamily of proteins are critical in numerous biological processes, such as in development and immunity. Eiger is the sole TNFα member described in arthropods such as in the important model organism Drosophila. To date there are no structural data on any Eiger protein. Here we present the structure of the TNF domain of Eiger from the fall armyworm Spodoptera frugiperda (SfEiger) to 1.7 Å from a serendipitously obtained crystal without prior knowledge of the protein sequence. Our structure confirms that canonical trimerization is conserved from ancestral TNFs and points towards a mode of receptor engagement. Furthermore, we observe numerous surface histidines on SfEiger, potentially acting as pH switches following internalization into endosomes. Our data contributes to the genome annotation of S. frugiperda, a voracious agricultural pest, and can serve as a basis for future structure-function investigations of the TNF system in related arthropods such as Drosophila.
Collapse
Affiliation(s)
- Mattia Bertinelli
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 10 Roosevelt Drive, Oxford, OX3 7BN UK
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 10 Roosevelt Drive, Oxford, OX3 7BN UK
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 10 Roosevelt Drive, Oxford, OX3 7BN UK
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Max Renner
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 10 Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
9
|
Shahid S, Khalid E, Fatima SS, Khan GM. Evaluation of soluble TNF-like weak inducer of apoptosis (sTWEAK) levels to predict preeclampsia in early weeks of pregnancy. Eur J Obstet Gynecol Reprod Biol 2019; 234:165-170. [PMID: 30708268 DOI: 10.1016/j.ejogrb.2019.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) is linked to endothelial dysfunction; a key factor in pre-eclamptic pathogenesis. This study aimed to compare sTWEAK levels during pregnancy to assess for its prognostic ability. MATERIALS AND METHODS Sixty three high risk pregnant women were followed up from 12 weeks of gestation till term. Serum levels of sTWEAK and platelet derived growth factor (PlGF), blood pressure, serum glucose, uric acid, urea/creatinine and liver function tests were measured. Subjects were stratified according to the ACOG criteria as women who developed PE, or PIH or remained normotensive at term. A negative control group of normotensive healthy pregnant women (n = 17) was also recruited for comparison. RESULTS Baseline sTWEAK levels were lower (4.03 ± 0.37 ng/dl) in HR cohort that developed PE and further reduced at term (1.93 ± 0.23 ng/dl) as compared to HR subjects who remained normotensive and negative control group (30.53 ± 0.79 ng/dl; p < 0.01). Likewise PlGF levels were significantly lower (74.22 ± 10.11 pg/ml) in HR cohort that developed PE (p = 0.013). At term 39.68% (n = 22) HR subjects with low sTWEAK developed PIH and 34.92% (n = 24) developed PE. In terms of high risk characteristics observed in the HR group; 73% of the subjects were multiparous, whereas 26.98% reported to have developed PE in previous pregnancies. CONCLUSION sTWEAK levels at early pregnancy weeks were found to be low in high risk females who developed PE at follow up versus normotensive pregnant women. Baseline TWEAK might serve as an independent variable for prediction of pre-eclampsia; however longitudinal studies with larger sample size are required to ascertain the causal relation.
Collapse
Affiliation(s)
- Sana Shahid
- Department of Physiology, Sir Syed College of Medical Sciences for Girls, Karachi, Pakistan
| | - Erum Khalid
- Department of Obstetrics and Gynecology, Taj Medical Complex, Hamdard University, Pakistan
| | - Syeda Sadia Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Ghulam Mustafa Khan
- Department of Physiology, Basic Medical Science Institute, Karachi, Pakistan
| |
Collapse
|
10
|
Watanabe M, Toyomura T, Wake H, Liu K, Teshigawara K, Takahashi H, Nishibori M, Mori S. The C-terminal region of tumor necrosis factor like weak inducer of apoptosis is required for interaction with advanced glycation end products. Biotechnol Appl Biochem 2018; 66:254-260. [PMID: 30403295 DOI: 10.1002/bab.1706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Previously, we found that endogenously produced pro-inflammatory molecules, advanced glycation end products (AGEs), interact with tumor necrosis factor-like weak inducer of apoptosis (TWEAK), and attenuate its immunomodulatory function. In the present study, to elucidate the mechanism by which AGEs attenuate TWEAK function, we searched for regions responsible for TWEAK-AGE interaction using TWEAK deletion mutants. Pull-down assays with the TWEAK mutants and AGEs revealed that the C-terminal half of TWEAK, which is the region essential for receptor stimulation, was required for this interaction. On the other hand, the N-terminal deletion mutants did not exhibit a significant decrease in AGE binding. Moreover, a moderate decrease in the AGE binding by double-deletion in quartered C-terminal half regions and a substantial decrease by triple-deletion in this region were observed. In addition, full-length TWEAK stimulated IL-8 gene expression in endothelial EA.hy.926 cells, whereas the triple-deletion mutant lost much of this activity, suggesting that the TWEAK-AGE interaction sites overlap with the region needed to exert normal function of TWEAK. Our present findings may help to elucidate the pathophysiological roles of the TWEAK-AGE interaction for prevention and treatment of AGE-related inflammatory diseases.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| |
Collapse
|
11
|
Regula JT, Imhof-Jung S, Mølhøj M, Benz J, Ehler A, Bujotzek A, Schaefer W, Klein C. Variable heavy-variable light domain and Fab-arm CrossMabs with charged residue exchanges to enforce correct light chain assembly. Protein Eng Des Sel 2018; 31:289-299. [PMID: 30169707 PMCID: PMC6277175 DOI: 10.1093/protein/gzy021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023] Open
Abstract
Technologies for the production of bispecific antibodies need to overcome two major challenges. The first one is correct heavy chain assembly, which was solved by knobs-into-holes technology or charge interactions in the CH3 domains. The second challenge is correct light chain assembly. This can be solved by engineering the Fab-arm interfaces or applying the immunoglobulin domain crossover approach. There are three different crossovers possible, namely Fab-arm, constant domain and variable domain crossovers. The CrossMabCH1-CL exchange does not lead to the formation of unexpected side products, whereas the CrossMabFab and the CrossMabVH-VL formats result in the formation of typical side products. Thus, CrossMabCH1-CL was initially favored for therapeutic antibody development. Here, we report a novel improved CrossMab design principle making use of site-specific positional exchanges of charged amino acid pairs in the constant domain of these CrossMabs to enable the correct light chain assembly in the CrossMabVH-VL and improvements for the CrossMabFab design.
Collapse
Affiliation(s)
- Joerg Thomas Regula
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Sabine Imhof-Jung
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Michael Mølhøj
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Joerg Benz
- Roche Pharmaceutical Research and Early Development, Chemical Biology, Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas Ehler
- Roche Pharmaceutical Research and Early Development, Chemical Biology, Roche Innovation Center Basel, Basel, Switzerland
| | - Alexander Bujotzek
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang Schaefer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian Klein
- Roche Pharmaceutical Research and Early Development, Discovery Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| |
Collapse
|
12
|
Shinozaki N, Hashimoto R, Fukui K, Uchiyama S. Efficient generation of single domain antibodies with high affinities and enhanced thermal stabilities. Sci Rep 2017; 7:5794. [PMID: 28725057 PMCID: PMC5517631 DOI: 10.1038/s41598-017-06277-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/12/2017] [Indexed: 01/02/2023] Open
Abstract
Single domain antibodies (sdAbs), made of natural single variable regions of camelid or cartilaginous fish antibodies, or unpaired variable regions of mouse or human IgGs, are some of the more promising biologic modalities. However, such conventional sdAbs have difficulties of either using unwieldy animals for immunization or having high affinity deficiencies. Herein, we offer a versatile method to generate rabbit variable domain of heavy chain (rVH) derived sdAbs with high affinities (KD values of single digit nM or less) and enhanced thermal stabilities (equal to or even higher than those of camelid derived sdAbs). It was found that a variety of rVH binders, including those with high affinities, were efficiently acquired using an rVH-displaying phage library produced at a low temperature of 16 °C. By a simple method to introduce an additional disulfide bond, their unfolding temperatures were increased by more than 20 °C without severe loss of binding affinity. Differential scanning calorimetry analysis suggested that this highly efficient thermal stabilization was mainly attributed to the entropic contribution and unique thermodynamic character of the rVHs.
Collapse
Affiliation(s)
- Naoya Shinozaki
- Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Shinagawa R&D Center, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Ryuji Hashimoto
- Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Shinagawa R&D Center, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
13
|
Albone EF, Spidel JL, Cheng X, Park YC, Jacob S, Milinichik AZ, Vaessen B, Butler J, Kline JB, Grasso L. Generation of therapeutic immunoconjugates via Residue-Specific Conjugation Technology (RESPECT) utilizing a native cysteine in the light chain framework of Oryctolagus cuniculus. Cancer Biol Ther 2017; 18:347-357. [PMID: 28394698 DOI: 10.1080/15384047.2017.1312232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The conjugation of toxins, dyes, peptides, or proteins to monoclonal antibodies is often performed via free thiol groups generated by either partial reduction methods or engineering free cysteine residues into the antibody sequence. Antibodies from the rabbit Oryctolagus cuniculus have an additional intrachain disulfide bond, whereby the light chain variable kappa domain is bridged to the constant kappa region between cysteine residues at positions 80 and 171, respectively. Chimerization of rabbit antibodies with human constant domains allows for the generation of a free thiol group at the light chain position 80 (C80) that can be used for site-specific conjugation. An efficient process for the purification and simultaneous removal of cysteinylation at the C80 site was developed. The unpaired C80 was shown to be efficiently conjugated using several different maleimido-based ligands. REsidue SPEcific Conjugation Technology (RESPECT) antibody-drug conjugates prepared using rabbit-human chimeric anti-human mesothelin rabbit antibodies and maleimido-PEG2-auristatin conjugated to C80 were shown to be highly potent and specific in vitro and effective in vivo in reduction of tumor growth in a highly aggressive mesothelin-expressing xenograft tumor model.
Collapse
|
14
|
Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp Mol Med 2017; 49:e305. [PMID: 28336958 PMCID: PMC5382564 DOI: 10.1038/emm.2017.23] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.
Collapse
Affiliation(s)
- Justus Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
15
|
Zhang YF, Ho M. Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples. MAbs 2017; 9:419-429. [PMID: 28165915 DOI: 10.1080/19420862.2017.1289302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rabbit monoclonal antibodies (RabMAbs) can recognize diverse epitopes, including those poorly immunogenic in mice and humans. However, there have been only a few reports on RabMAb humanization, an important antibody engineering step usually done before clinical applications are investigated. To pursue a general method for humanization of RabMAbs, we analyzed the complex structures of 5 RabMAbs with their antigens currently available in the Protein Data Bank, and identified antigen-contacting residues on the rabbit Fv within the 6 Angstrom distance to its antigen. We also analyzed the supporting residues for antigen-contacting residues on the same heavy or light chain. We identified "HV4" and "LV4" in rabbit Fvs, non-complementarity-determining region (CDR) loops that are structurally close to the antigen and located in framework 3 of the heavy chain and light chain, respectively. Based on our structural and sequence analysis, we designed a humanization strategy by grafting the combined Kabat/IMGT/Paratome CDRs, which cover most antigen-contacting residues, into a human germline framework sequence. Using this strategy, we humanized 4 RabMAbs that recognize poorly immunogenic epitopes in the cancer target mesothelin. Three of the 4 humanized rabbit Fvs have similar or improved functional binding affinity for mesothelin-expressing cells. Interestingly, 4 immunotoxins composed of the humanized scFvs fused to a clinically used fragment of Pseudomonas exotoxin (PE38) showed stronger cytotoxicity against tumor cells than the immunotoxins derived from their original rabbit scFvs. Our data suggest that grafting the combined Kabat/IMGT/Paratome CDRs to a stable human germline framework can be a general approach to humanize RabMAbs.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- a Laboratory of Molecular Biology , National Cancer Institute , Bethesda , MD , USA
| | - Mitchell Ho
- a Laboratory of Molecular Biology , National Cancer Institute , Bethesda , MD , USA
| |
Collapse
|
16
|
Choe JY, Kim SK. Serum TWEAK as a biomarker for disease activity of systemic lupus erythematosus. Inflamm Res 2016; 65:479-88. [DOI: 10.1007/s00011-016-0930-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 10/19/2015] [Accepted: 02/16/2016] [Indexed: 01/17/2023] Open
|
17
|
Oliva B, Fernandez-Fuentes N. Knowledge-based modeling of peptides at protein interfaces: PiPreD. Bioinformatics 2014; 31:1405-10. [PMID: 25540186 DOI: 10.1093/bioinformatics/btu838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/14/2014] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Protein-protein interactions (PPIs) underpin virtually all cellular processes both in health and disease. Modulating the interaction between proteins by means of small (chemical) agents is therefore a promising route for future novel therapeutic interventions. In this context, peptides are gaining momentum as emerging agents for the modulation of PPIs. RESULTS We reported a novel computational, structure and knowledge-based approach to model orthosteric peptides to target PPIs: PiPreD. PiPreD relies on a precompiled and bespoken library of structural motifs, iMotifs, extracted from protein complexes and a fast structural modeling algorithm driven by the location of native chemical groups on the interface of the protein target named anchor residues. PiPreD comprehensive and systematically samples the entire interface deriving peptide conformations best suited for the given region on the protein interface. PiPreD complements the existing technologies and provides new solutions for the disruption of selected interactions. AVAILABILITY AND IMPLEMENTATION Database and accessory scripts and programs are available upon request to the authors or at http://www.bioinsilico.org/PIPRED. CONTACT narcis.fernandez@gmail.com.
Collapse
Affiliation(s)
- Baldo Oliva
- Structural Bioinformatics Lab (GRIB), Departament de Ciencies Experimental i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Narcis Fernandez-Fuentes
- Structural Bioinformatics Lab (GRIB), Departament de Ciencies Experimental i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
18
|
Bertin D, Stephan D, Khrestchatisky M, Desplat-Jégo S. Is TWEAK a Biomarker for Autoimmune/Chronic Inflammatory Diseases? Front Immunol 2013; 4:489. [PMID: 24409182 PMCID: PMC3873518 DOI: 10.3389/fimmu.2013.00489] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/13/2013] [Indexed: 01/31/2023] Open
Abstract
The TWEAK/Fn14 pathway is now well-known for its involvement in the modulation of inflammation in various human autoimmune/chronic inflammatory diseases (AICID) including lupus, rheumatoid arthritis, and multiple sclerosis. A panel of data is now available concerning TWEAK expression in tissues or biological fluids of patients suffering from AICID, suggesting that it could be a promising biological marker in these diseases. Evidences from several teams support the hypothesis that blocking TWEAK/Fn14 pathway is an attractive new therapeutic lead in such diseases and clinical trials with anti-TWEAK-blocking antibodies are in progress. In this mini-review we discuss the potential use of TWEAK quantification in AICD management in routine practice and highlight the challenge of standardizing data collection to better estimate the clinical utility of such a biological parameter.
Collapse
Affiliation(s)
- Daniel Bertin
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France ; Service d'Immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille , Marseille , France
| | - Delphine Stephan
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France
| | | | - Sophie Desplat-Jégo
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France ; Service d'Immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille , Marseille , France
| |
Collapse
|
19
|
Cheng E, Armstrong CL, Galisteo R, Winkles JA. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic. Front Immunol 2013; 4:473. [PMID: 24391646 PMCID: PMC3870272 DOI: 10.3389/fimmu.2013.00473] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/06/2013] [Indexed: 01/25/2023] Open
Abstract
The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.
Collapse
Affiliation(s)
- Emily Cheng
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cheryl L. Armstrong
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebeca Galisteo
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A. Winkles
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Dhruv H, Loftus JC, Narang P, Petit JL, Fameree M, Burton J, Tchegho G, Chow D, Yin H, Al-Abed Y, Berens ME, Tran NL, Meurice N. Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis. J Biol Chem 2013; 288:32261-32276. [PMID: 24056367 DOI: 10.1074/jbc.m113.493536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Deregulation of the TNF-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling pathway is observed in many diseases, including inflammation, autoimmune diseases, and cancer. Activation of Fn14 signaling by TWEAK binding triggers cell invasion and survival and therefore represents an attractive pathway for therapeutic intervention. Based on structural studies of the TWEAK-binding cysteine-rich domain of Fn14, several homology models of TWEAK were built to investigate plausible modes of TWEAK-Fn14 interaction. Two promising models, centered on different anchoring residues of TWEAK (tyrosine 176 and tryptophan 231), were prioritized using a data-driven strategy. Site-directed mutagenesis of TWEAK at Tyr(176), but not Trp(231), resulted in the loss of TWEAK binding to Fn14 substantiating Tyr(176) as the anchoring residue. Importantly, mutation of TWEAK at Tyr(176) did not disrupt TWEAK trimerization but failed to induce Fn14-mediated nuclear factor κ-light chain enhancer of activated B cell (NF-κB) signaling. The validated structural models were utilized in a virtual screen to design a targeted library of small molecules predicted to disrupt the TWEAK-Fn14 interaction. 129 small molecules were screened iteratively, with identification of molecules producing up to 37% inhibition of TWEAK-Fn14 binding. In summary, we present a data-driven in silico study revealing key structural elements of the TWEAK-Fn14 interaction, followed by experimental validation, serving as a guide for the design of small molecule inhibitors of the TWEAK-Fn14 ligand-receptor interaction. Our results validate the TWEAK-Fn14 interaction as a chemically tractable target and provide the foundation for further exploration utilizing chemical biology approaches focusing on validating this system as a therapeutic target in invasive cancers.
Collapse
Affiliation(s)
- Harshil Dhruv
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | | | | | | | - Maureen Fameree
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Julien Burton
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Giresse Tchegho
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Donald Chow
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Holly Yin
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Yousef Al-Abed
- the Center for Molecular Innovation, Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - Michael E Berens
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Nhan L Tran
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004,.
| | | |
Collapse
|