1
|
Wei Y, Chen T, Yang W, Li H, Fang C, Liu Q, Chen Y, Mei Q. Detection of a novel antigen for Crohn's disease. Scand J Gastroenterol 2021; 56:1427-1433. [PMID: 34487462 DOI: 10.1080/00365521.2021.1973088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Accurate serological assays are desirable for the diagnosis of inflammatory bowel disease (IBD). We identify an antigen-like substance called Crohn's disease (CD) antibody binding polypeptide (CABP). As a serological marker, anti-CABP may contribute to the diagnosis of IBD. The present study aims to evaluate the clinical role of anti-CABP as a serological antibody for IBD. METHODS Using enzyme-linked immunosorbent assay (ELISA), serum anti-CABP, anti-Saccharomyces cerevisiae antibody (ASCA) and perinuclear anti-neutrophil cytoplasmic antibody (pANCA), titers were tested in 168 CD patients, 123 ulcerative colitis (UC) patients and 170 controls. The correlation between serum antibody and clinical characteristics was investigated. The diagnostic potential of the anti-CABP was evaluated by receiver operating characteristic (ROC) analysis. RESULTS The titers of anti-CABP (IgA or IgG) and ASCA IgG of CD patients were significantly higher than non-CD group (all p < .01). In the differential diagnosis of CD and non-CD, anti-CABP IgA revealed an area under the curve (AUC) of 0.706 and anti-CABP IgG demonstrated an AUC of 0.788. As an individual antibody, anti-CABP could effectively distinguish CD from non-CD (AUC 0.816), and the diagnostic efficacy was better than that of ASCA (AUC 0.680). The combined use of anti-CABP, ASCA and pANCA significantly improved the diagnostic value (AUC 0.857). Anti-CABP positive rates were associated with perianal lesions and disease location in CD patients (both p < .05). CONCLUSIONS Our results suggested that anti-CABP could be used as a serological marker to assist the diagnosis of CD. CLINICAL TRIAL REGISTRATION This trial is registered with clinical trial registration unique identifier ChiCTR2000037094.
Collapse
Affiliation(s)
- Yarong Wei
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Wu Yang
- Shanxi Ruihao Biotechnology Co. LTD, Taiyuan, China
| | - Huihui Li
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Fang
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiuyuan Liu
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yonghao Chen
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Bay S, Begg D, Ganneau C, Branger M, Cochard T, Bannantine JP, Köhler H, Moyen JL, Whittington RJ, Biet F. Engineering Synthetic Lipopeptide Antigen for Specific Detection of Mycobacterium avium subsp. paratuberculosis Infection. Front Vet Sci 2021. [DOI: 10.3389/fvets.2021.637841
expr 832343215 + 929968715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Unlike other MAC members, Mycobacterium avium subsp. paratuberculosis (MAP) does not produce glycopeptidolipids (GPL) on the surface of the cell wall but a lipopentapeptide called L5P (also termed Lipopeptide-I or Para-LP-01) characterized in C-type (bovine) strains. This lipopeptide antigen contains a pentapeptide core, D-Phenylalanine-N-methyl-L-Valine-L-Isoleucine-L-Phenylalanine-L-Alanine, in which the N-terminal D-Phenylalanine is amido-linked with a fatty acid (C18–C20). The molecular and genetic characterization of this antigen demonstrated that L5P is unique to MAP. Knowledge of the structure of L5P enabled synthetic production of this lipopeptide in large quantities for immunological evaluation. Various studies described the immune response directed against L5P and confirmed its capability for detection of MAP infection. However, the hydrophobic nature of lipopeptide antigens make their handling and use in organic solvents unsuitable for industrial processes. The objectives of this study were to produce, by chemical synthesis, a water-soluble variant of L5P and to evaluate these compounds for the serological diagnosis of MAP using well-defined serum banks. The native L5P antigen and its hydrosoluble analog were synthesized on solid phase. The pure compounds were evaluated on collections of extensively characterized sera from infected and non-infected cattle. ROC analysis showed that L5P and also its water-soluble derivative are suitable for the development of a serological test for Johne's disease at a population level. However, these compounds used alone in ELISA have lower sensitivity (Se 82% for L5P and Se 62% for the water-soluble variant of L5P) compared to the Se 98% of a commercial test. Advantageously, these pure synthetic MAP specific antigens can be easily produced in non-limiting quantities at low cost and in standardized batches for robust studies. The fact that L5P has not been validated in the context of ovine paratuberculosis highlights the need to better characterize the antigens expressed from the different genetic lineages of MAP to discover new diagnostic antigens. In the context of infections due to other mycobacteria such as M. bovis or the more closely related species M. avium subsp. hominissuis, the L5P did not cross react and therefore may be a valuable antigen to solve ambiguous results in other tests.
Collapse
|
3
|
Bay S, Begg D, Ganneau C, Branger M, Cochard T, Bannantine JP, Köhler H, Moyen JL, Whittington RJ, Biet F. Engineering Synthetic Lipopeptide Antigen for Specific Detection of Mycobacterium avium subsp. paratuberculosis Infection. Front Vet Sci 2021; 8:637841. [PMID: 33969035 PMCID: PMC8103206 DOI: 10.3389/fvets.2021.637841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
Unlike other MAC members, Mycobacterium avium subsp. paratuberculosis (MAP) does not produce glycopeptidolipids (GPL) on the surface of the cell wall but a lipopentapeptide called L5P (also termed Lipopeptide-I or Para-LP-01) characterized in C-type (bovine) strains. This lipopeptide antigen contains a pentapeptide core, D-Phenylalanine-N-methyl-L-Valine-L-Isoleucine-L-Phenylalanine-L-Alanine, in which the N-terminal D-Phenylalanine is amido-linked with a fatty acid (C18-C20). The molecular and genetic characterization of this antigen demonstrated that L5P is unique to MAP. Knowledge of the structure of L5P enabled synthetic production of this lipopeptide in large quantities for immunological evaluation. Various studies described the immune response directed against L5P and confirmed its capability for detection of MAP infection. However, the hydrophobic nature of lipopeptide antigens make their handling and use in organic solvents unsuitable for industrial processes. The objectives of this study were to produce, by chemical synthesis, a water-soluble variant of L5P and to evaluate these compounds for the serological diagnosis of MAP using well-defined serum banks. The native L5P antigen and its hydrosoluble analog were synthesized on solid phase. The pure compounds were evaluated on collections of extensively characterized sera from infected and non-infected cattle. ROC analysis showed that L5P and also its water-soluble derivative are suitable for the development of a serological test for Johne's disease at a population level. However, these compounds used alone in ELISA have lower sensitivity (Se 82% for L5P and Se 62% for the water-soluble variant of L5P) compared to the Se 98% of a commercial test. Advantageously, these pure synthetic MAP specific antigens can be easily produced in non-limiting quantities at low cost and in standardized batches for robust studies. The fact that L5P has not been validated in the context of ovine paratuberculosis highlights the need to better characterize the antigens expressed from the different genetic lineages of MAP to discover new diagnostic antigens. In the context of infections due to other mycobacteria such as M. bovis or the more closely related species M. avium subsp. hominissuis, the L5P did not cross react and therefore may be a valuable antigen to solve ambiguous results in other tests.
Collapse
Affiliation(s)
- Sylvie Bay
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS UMR 3523, Paris, France
| | - Douglas Begg
- School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Christelle Ganneau
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS UMR 3523, Paris, France
| | | | | | - John P. Bannantine
- USDA-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA, United States
| | - Heike Köhler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Jean-Louis Moyen
- Laboratoire Départemental d'Analyse et de Recherche de Dordogne, Coulounieix Chamiers, France
| | | | - Franck Biet
- INRAE, Université de Tours, ISP, Nouzilly, France
| |
Collapse
|
4
|
Bay S, Begg D, Ganneau C, Branger M, Cochard T, Bannantine JP, Köhler H, Moyen JL, Whittington RJ, Biet F. Engineering Synthetic Lipopeptide Antigen for Specific Detection of Mycobacterium avium subsp. paratuberculosis Infection. Front Vet Sci 2021; 8:637841. [PMID: 33969035 PMCID: PMC8103206 DOI: 10.3389/fvets.2021.637841&set/a 848448336+997766693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Unlike other MAC members, Mycobacterium avium subsp. paratuberculosis (MAP) does not produce glycopeptidolipids (GPL) on the surface of the cell wall but a lipopentapeptide called L5P (also termed Lipopeptide-I or Para-LP-01) characterized in C-type (bovine) strains. This lipopeptide antigen contains a pentapeptide core, D-Phenylalanine-N-methyl-L-Valine-L-Isoleucine-L-Phenylalanine-L-Alanine, in which the N-terminal D-Phenylalanine is amido-linked with a fatty acid (C18-C20). The molecular and genetic characterization of this antigen demonstrated that L5P is unique to MAP. Knowledge of the structure of L5P enabled synthetic production of this lipopeptide in large quantities for immunological evaluation. Various studies described the immune response directed against L5P and confirmed its capability for detection of MAP infection. However, the hydrophobic nature of lipopeptide antigens make their handling and use in organic solvents unsuitable for industrial processes. The objectives of this study were to produce, by chemical synthesis, a water-soluble variant of L5P and to evaluate these compounds for the serological diagnosis of MAP using well-defined serum banks. The native L5P antigen and its hydrosoluble analog were synthesized on solid phase. The pure compounds were evaluated on collections of extensively characterized sera from infected and non-infected cattle. ROC analysis showed that L5P and also its water-soluble derivative are suitable for the development of a serological test for Johne's disease at a population level. However, these compounds used alone in ELISA have lower sensitivity (Se 82% for L5P and Se 62% for the water-soluble variant of L5P) compared to the Se 98% of a commercial test. Advantageously, these pure synthetic MAP specific antigens can be easily produced in non-limiting quantities at low cost and in standardized batches for robust studies. The fact that L5P has not been validated in the context of ovine paratuberculosis highlights the need to better characterize the antigens expressed from the different genetic lineages of MAP to discover new diagnostic antigens. In the context of infections due to other mycobacteria such as M. bovis or the more closely related species M. avium subsp. hominissuis, the L5P did not cross react and therefore may be a valuable antigen to solve ambiguous results in other tests.
Collapse
Affiliation(s)
- Sylvie Bay
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France.,CNRS UMR 3523, Paris, France
| | - Douglas Begg
- School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Christelle Ganneau
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France.,CNRS UMR 3523, Paris, France
| | | | | | - John P Bannantine
- USDA-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA, United States
| | - Heike Köhler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Jean-Louis Moyen
- Laboratoire Départemental d'Analyse et de Recherche de Dordogne, Coulounieix Chamiers, France
| | | | - Franck Biet
- INRAE, Université de Tours, ISP, Nouzilly, France
| |
Collapse
|
5
|
Malaisé Y, Menard S, Cartier C, Gaultier E, Lasserre F, Lencina C, Harkat C, Geoffre N, Lakhal L, Castan I, Olier M, Houdeau E, Guzylack-Piriou L. Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to Bisphenol A precede obese phenotype development. Sci Rep 2017; 7:14472. [PMID: 29101397 PMCID: PMC5670173 DOI: 10.1038/s41598-017-15196-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Epidemiology evidenced the Bisphenol A (BPA), a chemical found in daily consumer products, as an environmental contributor to obesity and type II diabetes (T2D) in Humans. However, the BPA-mediated effects supporting these metabolic disorders are still unknown. Knowing that obesity and T2D are associated with low-grade inflammation and gut dysbiosis, we performed a longitudinal study in mice to determine the sequential adverse effects of BPA on immune system and intestinal microbiota that could contribute to the development of metabolic disorders. We observed that perinatal exposure to BPA (50 µg/kg body weight/day) induced intestinal and systemic immune imbalances at PND45, through a decrease of Th1/Th17 cell frequencies in the lamina propria concomitant to an increase of splenic Th1/Th17 immune responses. These early effects are associated with an altered glucose sensitivity, a defect of IgA secretion into faeces and a fall of faecal bifidobacteria relative to control mice. Such BPA-mediated events precede infiltration of pro-inflammatory M1 macrophages in gonadal white adipose tissue appearing with ageing, together with a decreased insulin sensitivity and an increased weight gain. Our findings provide a better understanding of the sequential events provoked by perinatal exposure to BPA that could support metabolic disorder development in later life.
Collapse
Affiliation(s)
- Yann Malaisé
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Menard
- Neuro-Gastroenterology and Nutrition team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Christel Cartier
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Gaultier
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Frédéric Lasserre
- Integrative Toxicology and Metabolism team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Corinne Lencina
- Neuro-Gastroenterology and Nutrition team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cherryl Harkat
- Neuro-Gastroenterology and Nutrition team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nancy Geoffre
- Adipocyte secretions, obesities and related diseases team, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
| | - Laïla Lakhal
- Integrative Toxicology and Metabolism team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle Castan
- Adipocyte secretions, obesities and related diseases team, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
| | - Maïwenn Olier
- Neuro-Gastroenterology and Nutrition team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Houdeau
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Laurence Guzylack-Piriou
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
6
|
Bannantine JP, Etienne G, Laval F, Stabel JR, Lemassu A, Daffé M, Bayles DO, Ganneau C, Bonhomme F, Branger M, Cochard T, Bay S, Biet F. Cell wall peptidolipids of Mycobacterium avium: from genetic prediction to exact structure of a nonribosomal peptide. Mol Microbiol 2017; 105:525-539. [PMID: 28558126 DOI: 10.1111/mmi.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Mycobacteria have a complex cell wall structure that includes many lipids; however, even within a single subspecies of Mycobacterium avium these lipids can differ. Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide (L5P), yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis as well as biochemical and physico-chemical approaches. This strategy showed that a nonribosomal peptide synthase, encoded by mps1, contains three amino acid specifying modules in ovine strains, compared to five modules in bovine strains (C-type). Sequence analysis predicted these modules would produce the tripeptide Phe-N-Methyl-Val-Ala with a lipid moiety, termed lipotripeptide (L3P). Comprehensive physico-chemical analysis of Map S397 extracts confirmed the structural formula of the native L3P as D-Phe-N-Methyl-L-Val-L-Ala-OMe attached in N-ter to a 20-carbon fatty acid chain. These data demonstrate that S-type strains, which are more adapted in sheep, produce a unique lipid. There is a dose-dependent effect observed for L3P on upregulation of CD25+ CD8 T cells from infected cows, while L5P effects were static. In contrast, L5P demonstrated a significantly stronger induction of CD25+ B cells from infected animals compared to L3P.
Collapse
Affiliation(s)
- John P Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Françoise Laval
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Judith R Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Darrell O Bayles
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Christelle Ganneau
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Frédéric Bonhomme
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Maxime Branger
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| | - Thierry Cochard
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| | - Sylvie Bay
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Franck Biet
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| |
Collapse
|
7
|
Cossu D, Yokoyama K, Tomizawa Y, Momotani E, Hattori N. Altered humoral immunity to mycobacterial antigens in Japanese patients affected by inflammatory demyelinating diseases of the central nervous system. Sci Rep 2017; 7:3179. [PMID: 28600575 PMCID: PMC5466620 DOI: 10.1038/s41598-017-03370-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) and Mycobacterium bovis (BCG) have been associated to several human autoimmune diseases such as multiple sclerosis (MS), but there are conflicting evidence on the issue. The objective of this study is to evaluate their role in Japanese patients affected by inflammatory demyelinating disorders of the central nervous system (IDDs). A total of 97 IDDs subjects including 51 MS and 46 neuromyelitis optica spectrum disorder (NMOSD) patients, and 34 healthy controls (HCs) were tested for the detection of IgG, IgM and IgA against mycobacterial antigens by indirect ELISA. The levels of anti-MAP IgG were higher in MS patients compared to NMOSD patients (AUC = 0.59, p = 0.02) and HCs (AUC = 0.67, p = 0.01), and the anti-MAP antibodies were more prevalent in MS patients treated with interferon-beta (OR = 11.9; p = 0.004). Anti-BCG IgG antibodies were detected in 8% of MS, 32% of NMOSD and 18% of HCs, the difference between MS and NMOSD groups was statistically significant (AUC = 0.66, p = 0.005). Competition experiments showed that nonspecific IgM were elicited by common mycobacterial antigens. Our study provided further evidence for a possible association between MAP and MS, while BCG vaccination seemed to be inversely related to the risk of developing MS.
Collapse
Affiliation(s)
- Davide Cossu
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| | - Kazumasa Yokoyama
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan.
| | - Yuji Tomizawa
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| | - Eiichi Momotani
- Tohto College of Health Sciences, Department of Human-care, Saitama, 366-0052, Japan
| | - Nobutaka Hattori
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| |
Collapse
|
8
|
Niegowska M, Rapini N, Biet F, Piccinini S, Bay S, Lidano R, Manca Bitti ML, Sechi LA. Seroreactivity against Specific L5P Antigen from Mycobacterium avium subsp. paratuberculosis in Children at Risk for T1D. PLoS One 2016; 11:e0157962. [PMID: 27336739 PMCID: PMC4919038 DOI: 10.1371/journal.pone.0157962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/07/2016] [Indexed: 01/14/2023] Open
Abstract
Aims/Hypothesis Although numerous environmental agents have been investigated over the years as possible triggers of type 1 diabetes (T1D), its causes remain unclear. We have already demonstrated an increased prevalence of antibodies against peptides derived from Mycobacterium avuim subsp. paratuberculosis (MAP) homologous to human zinc transporter 8 protein (ZnT8) and proinsulin in Italian subjects at risk for or affected by T1D. In this study, we compared titers of the previously detected antibodies with seroreactivity to MAP lipopentapetide (L5P) that recently emerged as a strong immunogenic component able to specifically distinguish MAP from other mycobacteria. Methods Plasma of 32 children and youth at risk for T1D including follow-up samples and 42 age-matched healthy controls (HC) recruited at the Tor Vergata University Hospital in Rome was analyzed by indirect ELISA for the presence of antibodies against MAP-derived epitopes MAP3865c133–141, MAP3865c125-133, MAP2404c70-85 and MAP1,4αgbp157-173 along with their ZnT8 and proinsulin homologs. The data were analyzed through two-tailed Mann-Whitney U test and relation between variables was determined by principal component analysis. Results Responses to L5P were not detectable in subjects whose initial seroreactivity to MAP peptides and their human homologs was lost in follow-up samples, whereas anti-L5P antibodies appeared constantly in individuals with a stable immunity against MAP antigens. The overall coincidence in positivity to L5P and the four MAP epitopes both in children at risk for T1D and HC exceeded 90%. Conclusions MAP-derived homologs may cross-react with ZnT8 and proinsulin peptides inducing immune responses at a young age in subjects predisposed for T1D. Thus, L5P may have a diagnostic value to immediately indicate the presence of anti-MAP seroreactivity when evaluation of a more complex antibody status is not required. Almost complete coincidence in responses to both types of antigens lends support to the involvement of MAP in T1D.
Collapse
Affiliation(s)
- Magdalena Niegowska
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Novella Rapini
- Pediatric Diabetology Unit, Policlinico di Tor Vergata, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Frank Biet
- UMR1282, Infectiologie et Santé Publique (ISP-311), INRA Centre Val de Loire, F-37380, Nouzilly, France
| | - Simona Piccinini
- Pediatric Diabetology Unit, Policlinico di Tor Vergata, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Sylvie Bay
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
| | - Roberta Lidano
- Pediatric Diabetology Unit, Policlinico di Tor Vergata, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Luisa Manca Bitti
- Pediatric Diabetology Unit, Policlinico di Tor Vergata, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- * E-mail:
| |
Collapse
|
9
|
Holbert S, Branger M, Souriau A, Lamoureux B, Ganneau C, Richard G, Cochard T, Tholoniat C, Bay S, Winter N, Moyen JL, Biet F. Interferon gamma response to Mycobacterium avium subsp. paratuberculosis specific lipopentapeptide antigen L5P in cattle. Res Vet Sci 2015; 102:118-21. [PMID: 26412530 DOI: 10.1016/j.rvsc.2015.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/08/2015] [Accepted: 07/26/2015] [Indexed: 10/23/2022]
Abstract
After Mycobacterium avium subsp. paratuberculosis (Map) infection the cell-mediated immune (CMI) response indicative of early Th1 activation may be detected using interferon-gamma release assay (IGRA). Currently, the purified protein derivatives (PPDs), i.e., the total extract of mycobacteria antigens are used to recall CMI responses against Map. This study aimed to assess the ability of the chemically synthesized Map specific cell wall lipopentapeptide L5P to induce CMI response in cows infected by Map compared to PPD. L5P and PPD elicited an IFN-γ response in 12 and 35 animals from two Map infected herds respectively, but IFN-γ was not detected in the 13 cows recruited from a non-infected herd. Levels of IFN-γ detected were higher with PPD than with L5P. There was no correlation between the IFN-γ response and the humoral response to Map or faecal culture.
Collapse
Affiliation(s)
- Sébastien Holbert
- UMR1282, Infectiologie et Santé Publique (ISP-311), INRA Centre Val de Loire, F-37380 Nouzilly, France.
| | - Maxime Branger
- UMR1282, Infectiologie et Santé Publique (ISP-311), INRA Centre Val de Loire, F-37380 Nouzilly, France.
| | - Armel Souriau
- UMR1282, Infectiologie et Santé Publique (ISP-311), INRA Centre Val de Loire, F-37380 Nouzilly, France.
| | - Bérénice Lamoureux
- Groupement de Défense Sanitaire de la Région Centre (GDS Centre), 4 rue Robert Mallet Stevens BP 501, F-36018 Châteauroux, France.
| | - Christelle Ganneau
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, 75015 Paris, France; CNRS UMR 3523, 75015 Paris, France.
| | - Gaëlle Richard
- UMR1282, Infectiologie et Santé Publique (ISP-311), INRA Centre Val de Loire, F-37380 Nouzilly, France.
| | - Thierry Cochard
- UMR1282, Infectiologie et Santé Publique (ISP-311), INRA Centre Val de Loire, F-37380 Nouzilly, France.
| | - Christophe Tholoniat
- Groupement de Défense Sanitaire de la Région Centre (GDS Centre), 4 rue Robert Mallet Stevens BP 501, F-36018 Châteauroux, France.
| | - Sylvie Bay
- Institut Pasteur, Unité de Chimie des Biomolécules, Département de Biologie Structurale et Chimie, 75015 Paris, France; CNRS UMR 3523, 75015 Paris, France.
| | - Nathalie Winter
- UMR1282, Infectiologie et Santé Publique (ISP-311), INRA Centre Val de Loire, F-37380 Nouzilly, France.
| | - Jean Louis Moyen
- Laboratoire Départemental d'Analyse et de Recherche de Dordogne, 161 av Winston Churchill, 24660 Coulounieix Chamiers, France.
| | - Franck Biet
- UMR1282, Infectiologie et Santé Publique (ISP-311), INRA Centre Val de Loire, F-37380 Nouzilly, France.
| |
Collapse
|
10
|
The zoonotic potential of Mycobacterium avium ssp. paratuberculosis: a systematic review and meta-analyses of the evidence. Epidemiol Infect 2015; 143:3135-57. [PMID: 25989710 DOI: 10.1017/s095026881500076x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This systematic review-meta-analysis appraises and summarizes all the available research (128 papers) on the zoonotic potential of Mycobacterium avium ssp. paratuberculosis. The latter has been debated for a century due to pathogenic and clinical similarities between Johne's disease in ruminants and Crohn's disease (108 studies) in humans and recently for involvement in other human diseases; human immunodeficiency virus (HIV) infection (2), sarcoidosis (3), diabetes mellitus type 1 (T1DM) (7) and type 2 (3), multiple sclerosis (5) and Hashimoto's thyroiditis (2). Meta-analytical results indicated a significant positive association, consistently across different laboratory methods for Crohn's disease [odds ratio (OR) range 4·26-8·44], T1DM (OR range 2·91-9·95) and multiple sclerosis (OR range 6·5-7·99). The latter two and the thyroiditis hypothesis require further investigation to confirm the association. Meta-regression of Crohn's disease studies using DNA detection methods indicated that choice of primers and sampling frame (e.g. general population vs. hospital-based sample) explained a significant proportion of heterogeneity. Other epidemiological studies demonstrated a lack of association between high-risk occupations and development of Crohn's disease. Due to knowledge gaps in understanding the role of M. paratuberculosis in the development or progression of human disease, the evidence at present is not strong enough to inform the potential public health impact of M. paratuberculosis exposure.
Collapse
|
11
|
Frehn L, Jansen A, Bennek E, Mandic AD, Temizel I, Tischendorf S, Verdier J, Tacke F, Streetz K, Trautwein C, Sellge G. Distinct patterns of IgG and IgA against food and microbial antigens in serum and feces of patients with inflammatory bowel diseases. PLoS One 2014; 9:e106750. [PMID: 25215528 PMCID: PMC4162554 DOI: 10.1371/journal.pone.0106750] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 12/20/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined. Methods IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn's disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39). Results Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance. Summary In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients.
Collapse
Affiliation(s)
- Lisa Frehn
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Anke Jansen
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Eveline Bennek
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Ana D. Mandic
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Ilknur Temizel
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Stefanie Tischendorf
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Julien Verdier
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
- * E-mail:
| |
Collapse
|
12
|
Atreya R, Bülte M, Gerlach GF, Goethe R, Hornef MW, Köhler H, Meens J, Möbius P, Roeb E, Weiss S. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis. Int J Med Microbiol 2014; 304:858-67. [PMID: 25128370 DOI: 10.1016/j.ijmm.2014.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (Johne's disease [JD]), a chronic granulomatous enteritis in ruminants. JD is one of the most widespread bacterial diseases of domestic animals with significant economic impact. The histopathological picture of JD resembles that of Crohn's disease (CD), a human chronic inflammatory bowel disease of still unresolved aetiology. An aetiological relevance of MAP for CD has been proposed. This and the ambiguity of other published epidemiological findings raise the question whether MAP represents a zoonotic agent. In this review, we will discuss evidence that MAP has zoonotic capacity.
Collapse
Affiliation(s)
- Raja Atreya
- Medical Clinic 1, University of Erlangen-Nuermberg, Ulmenweg 18, D-91054 Erlangen, Germany
| | - Michael Bülte
- Institute of Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University, Frankfurter Straße 92, 35392 Gießen, Germany
| | | | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | - Mathias W Hornef
- Department of Microbiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Petra Möbius
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Elke Roeb
- Justus-Liebig-University Giessen, Department of Gastroenterology, Klinikstr.33, 35392 Giessen, Germany
| | - Siegfried Weiss
- Helmholtz Centre for Infection Research, Molecular Immunology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | | |
Collapse
|