1
|
Heiden N, Broders KA, Hutin M, Castro MO, Roman-Reyna V, Toth H, Jacobs JM. Bacterial Leaf Streak Diseases of Plants: Symptom Convergence in Monocot Plants by Distant Pathogenic Xanthomonas Species. PHYTOPATHOLOGY 2023; 113:2048-2055. [PMID: 37996392 DOI: 10.1094/phyto-05-23-0155-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Bacterial leaf streak (BLS) is a disease of monocot plants caused by Xanthomonas translucens on small grains, X. vasicola on maize and sorghum, and X. oryzae on rice. These three pathogens cause remarkably similar symptomology in their host plants. Despite causing similar symptoms, BLS pathogens are dispersed throughout the larger Xanthomonas phylogeny. Each aforementioned species includes strain groups that do not cause BLS and instead cause vascular disease. In this commentary, we hypothesize that strains of X. translucens, X. vasicola, and X. oryzae convergently evolved to cause BLS due to shared evolutionary pressures. We examined the diversity of secreted effectors, which may be important virulence factors for BLS pathogens and their evolution. We discuss evidence that differences in gene regulation and abilities to manipulate plant hormones may also separate BLS pathogens from other Xanthomonas species or pathovars. BLS is becoming an increasing issue across the three pathosystems. Overall, we hope that a better understanding of conserved mechanisms used by BLS pathogens will enable researchers to translate findings across production systems and guide approaches to control this (re)emerging threat.
Collapse
Affiliation(s)
- Nathaniel Heiden
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Kirk A Broders
- U.S. Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Mathilde Hutin
- Plant Health Institute of Montpellier, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Mary Ortiz Castro
- Horticulture and Extension Programs, Colorado State University, Castle Rock, CO 80106, U.S.A
| | - Verónica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hannah Toth
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
2
|
Jiang YH, Liu T, Shi XC, Herrera-Balandrano DD, Xu MT, Wang SY, Laborda P. p-Aminobenzoic acid inhibits the growth of soybean pathogen Xanthomonas axonopodis pv. glycines by altering outer membrane integrity. PEST MANAGEMENT SCIENCE 2023; 79:4083-4093. [PMID: 37291956 DOI: 10.1002/ps.7608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND p-Aminobenzoic acid (pABA) is an environmentally friendly bioactive metabolite synthesized by Lysobacter antibioticus. This compound showed an unusual antifungal mode of action based on cytokinesis inhibition. However, the potential antibacterial properties of pABA remain unexplored. RESULTS In this study, pABA showed antibacterial activity against Gram-negative bacteria. This metabolite inhibited growth (EC50 = 4.02 mM), and reduced swimming motility, extracellular protease activity, and biofilm formation in the soybean pathogen Xanthomonas axonopodis pv. glycines (Xag). Although pABA was previously reported to inhibit fungal cell division, no apparent effect was observed on Xag cell division genes. Instead, pABA reduced the expression of various membrane integrity-related genes, such as cirA, czcA, czcB, emrE, and tolC. Consistently, scanning electron microscopy observations revealed that pABA caused major alternations in Xag morphology and blocked the formation of bacterial consortiums. In addition, pABA reduced the content and profile of outer membrane proteins and lipopolysaccharides in Xag, which may explain the observed effects. Preventive and curative applications of 10 mM pABA reduced Xag symptoms in soybean plants by 52.1% and 75.2%, respectively. CONCLUSIONS The antibacterial properties of pABA were studied for the first time, revealing new insights into its potential application for the management of bacterial pathogens. Although pABA was previously reported to show an antifungal mode of action based on cytokinesis inhibition, this compound inhibited Xag growth by altering the outer membrane's integrity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Ting Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Mei-Ting Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
3
|
Shahbaz E, Ali M, Shafiq M, Atiq M, Hussain M, Balal RM, Sarkhosh A, Alferez F, Sadiq S, Shahid MA. Citrus Canker Pathogen, Its Mechanism of Infection, Eradication, and Impacts. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010123. [PMID: 36616252 PMCID: PMC9824702 DOI: 10.3390/plants12010123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 05/16/2023]
Abstract
Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters its host through stomata and wounds, from which it invades the intercellular spaces in the apoplast. It produces erumpent corky necrotic lesions often surrounded by a chlorotic halo on the leaves, young stems, and fruits, which causes dark spots, defoliation, reduced photosynthetic rate, rupture of leaf epidermis, dieback, and premature fruit drop in severe cases. Its main pathogenicity determinant gene is pthA, whose variants are present in all citrus canker-causing pathogens. Countries where citrus canker is not endemic adopt different methods to prevent the introduction of the pathogen into the region, eradicate the pathogen, and minimize its dissemination, whereas endemic regions require an integrated management program to control the disease. The main aim of the present manuscript is to shed light on the pathogen profile, its mechanism of infection, and fruitful strategies for disease management. Although an adequate method to completely eradicate citrus canker has not been introduced so far, many new methods are under research to abate the disease.
Collapse
Affiliation(s)
- Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mobeen Ali
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Rashad Mukhtar Balal
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Alferez
- Horticultural Science Department, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142, USA
| | - Saleha Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
- Correspondence:
| |
Collapse
|
4
|
Singh P, Verma RK, Chatterjee S. The diffusible signal factor synthase, RpfF, in Xanthomonas oryzae pv. oryzae is required for the maintenance of membrane integrity and virulence. MOLECULAR PLANT PATHOLOGY 2022; 23:118-132. [PMID: 34704368 PMCID: PMC8659556 DOI: 10.1111/mpp.13148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
The Xanthomonas group of phytopathogens communicate with a fatty acid-like cell-cell signalling molecule, cis-11-2-methyl-dodecenoic acid, also known as diffusible signal factor (DSF). In the pathogen of rice, Xanthomonas oryzae pv. oryzae, DSF is involved in the regulation of several virulence-associated functions, including production and secretion of several cell wall hydrolysing type II secretion effectors. To understand the role of DSF in the secretion of type II effectors, we characterized DSF synthase-deficient (rpfF) and DSF-deficient, type II secretion (xpsE) double mutants. Mutant analysis by expression analysis, secretion assay, fatty acid analysis, and physiological studies indicated that rpfF mutants exhibit hypersecretion of several type II effectors due to a perturbed membrane and DSF is required for maintaining membrane integrity. The rpfF mutants exhibited significantly higher uptake of 1-N-phenylnapthylamine and ethidium bromide, and up-regulation of rpoE (σE ). Increasing the osmolarity of the medium could rescue the hypersecretion phenotype of the rpfF mutant. The rpfF mutant exhibited highly reduced virulence. We report for the first time that in X. oryzae pv. oryzae RpfF is involved in the maintenance of membrane integrity by playing a regulatory role in the fatty acid synthesis pathway.
Collapse
Affiliation(s)
- Prashantee Singh
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
- Graduate StudiesManipal Academy of Higher EducationMangaluruIndia
| | - Raj Kumar Verma
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
| | - Subhadeep Chatterjee
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
| |
Collapse
|
5
|
Botero D, Monk J, Rodríguez Cubillos MJ, Rodríguez Cubillos A, Restrepo M, Bernal-Galeano V, Reyes A, González Barrios A, Palsson BØ, Restrepo S, Bernal A. Genome-Scale Metabolic Model of Xanthomonas phaseoli pv. manihotis: An Approach to Elucidate Pathogenicity at the Metabolic Level. Front Genet 2020; 11:837. [PMID: 32849823 PMCID: PMC7432306 DOI: 10.3389/fgene.2020.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)+ balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Jonathan Monk
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - María Juliana Rodríguez Cubillos
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mariana Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Vivian Bernal-Galeano
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Bernhard Ø. Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
6
|
Mishra S, Yang X, Ray S, Fraceto LF, Singh HB. Antibacterial and biofilm inhibition activity of biofabricated silver nanoparticles against Xanthomonas oryzae pv. oryzae causing blight disease of rice instigates disease suppression. World J Microbiol Biotechnol 2020; 36:55. [PMID: 32180020 DOI: 10.1007/s11274-020-02826-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Antimicrobial activity of silver nanoparticles (AgNPs) has been well documented in earlier studies. As their efficient role in combating phytopathogens has begun recently, there is a huge scope to explore their effectiveness in agriculture. Considering the strong antifungal activity of biosynthesized AgNPs (as reported in our previous study), our main aim is to elucidate their antibacterial activity against bacterial plant pathogens to authenticate their wide range of agricultural applications. The present manuscript highlights the potential role of biosynthesized AgNPs against Xanthomonas oryzae pv. oryzae (Xoo) causing disastrous sheath blight disease of rice worldwide. We observed strong antibacterial activity of biosynthesized AgNPs (size ~ 12 nm) against Xoo at 20, 30 and 50 µg/mL concentrations. The significant inhibitory impact of AgNPs on biofilm formation by Xoo was noted even at the lower dose of 5 µg/mL (p = 0.001). Maximum biofilm inhibition (p = 0.000) was caused at 50 µg/mL concentration of AgNPs in comparison to control. Furthermore, disease suppression by biosynthesized AgNPs was authenticated under greenhouse conditions. Foliar spray of AgNPs significantly reduced the blight symptoms in rice sheaths as shown by 9.25% DLA (% Diseased leaf area) as compared to 33.91% DLA in Xoo inoculated rice plants. Altogether, our data suggest that biosynthesized AgNPs based nanoformulation can be applied for successful management of blight disease of rice. In addition, the antibiofilm strategies instigated by AgNPs can be exploited against a wide range of bacterial phytopathogens. In light of rapidly emerging antibiotic-resistant microbial strains, the current work provides an alternate effective platform for the application of nanoformulation for augmenting sustainability in the agriculture.
Collapse
Affiliation(s)
- Sandhya Mishra
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Shatrupa Ray
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Leonardo Fernandes Fraceto
- Laboratory of Environmental Nanotechnology, Institute of Science and Technology of Sorocaba, São Paulo State University, São Paulo, Brazil
| | - H B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India. .,Somvanshi Research Foundation, 13/21 Vikas Nagar, Lucknow, 226022, India.
| |
Collapse
|
7
|
Park H, Do E, Kim M, Park HJ, Lee J, Han SW. A LysR-Type Transcriptional Regulator LcrX Is Involved in Virulence, Biofilm Formation, Swimming Motility, Siderophore Secretion, and Growth in Sugar Sources in Xanthomonas axonopodis Pv. glycines. FRONTIERS IN PLANT SCIENCE 2020; 10:1657. [PMID: 31998344 PMCID: PMC6965072 DOI: 10.3389/fpls.2019.01657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a Gram-negative bacterium that causes bacterial pustule disease in soybean. To acclimate to new environments, the expression of genes in bacteria is controlled directly or indirectly by diverse transcriptional factors. Among them, LysR type transcriptional regulators are well-characterized and abundant in bacteria. In a previous study, comparative proteomic analysis revealed that LysR type carbohydrate-related transcriptional regulator in Xag (LcrX) was more abundant in XVM2, which is a minimal medium, compared with a rich medium. However, the functions of LcrX in Xag have not been characterized. In this study, we generated an LcrX-overexpressing strain, Xag(LcrX), and the knockout mutant strain, XagΔlcrX(EV), to elucidate the functions of LcrX. Bacterial multiplication of Xag(LcrX) in soybean was significantly impaired, indicating that LcrX is related to virulence. Comparative proteomic analysis revealed that LcrX is mainly involved in carbohydrate metabolism/transport and inorganic ion transport/metabolism. Based on the results of proteomics analysis, diverse phenotypic assays were carried out. A gel electrophoresis mobility shift assay demonstrated that LcrX specifically bound to the putative promoter regions of genes encoding putative fructose 1,6-bisphosphatase and protease. Through a 96-well plate assay under various conditions, we confirmed that the growth of Xag(LcrX) was dramatically affected in the presence of various carbon sources, while the growth of XagΔlcrX(EV) was only slightly changed. Biofilm formation activity was reduced in Xag(LcrX) but enhanced in XagΔlcrX(EV). The production of siderophores was also decreased in Xag(LcrX) but not altered in XagΔlcrX(EV). In contrast, LcrX was not associated with exopolysaccharide production, protease activity, or bacterial motility. These findings provide new insights into the functions of a carbohydrate-related transcriptional regulator in Xag.
Collapse
Affiliation(s)
- Hanbi Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hye-Jee Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
8
|
Islam R, Brown S, Taheri A, Dumenyo CK. The Gene Encoding NAD-Dependent Epimerase/Dehydratase, wcaG, Affects Cell Surface Properties, Virulence, and Extracellular Enzyme Production in the Soft Rot Phytopathogen, Pectobacterium carotovorum. Microorganisms 2019; 7:microorganisms7060172. [PMID: 31200539 PMCID: PMC6616942 DOI: 10.3390/microorganisms7060172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023] Open
Abstract
Pectobacterium carotovorum is a gram-negative bacterium that, together with other soft rot Enterobacteriaceae causes soft rot disease in vegetables, fruits, and ornamental plants through the action of exoproteins including plant cell wall-degrading enzymes (PCWDEs). Although pathogenicity in these bacteria is complex, virulence levels are proportional to the levels of plant cell wall-degrading exoenzymes (PCWDEs) secreted. Two low enzyme-producing transposon Tn5 mutants were isolated, and compared to their parent KD100, the mutants were less virulent on celery petioles and carrot disks. The inactivated gene responsible for the reduced virulence phenotype in both mutants was identified as wcaG. The gene, wcaG (previously denoted fcl) encodes NAD-dependent epimerase/dehydratase, a homologue of GDP-fucose synthetase of Escherichia coli. In Escherichia coli, GDP-fucose synthetase is involved in the biosynthesis of the exopolysaccharide, colanic acid (CA). The wcaG mutants of P. carotovorum formed an enhanced level of biofilm in comparison to their parent. In the hydrophobicity test the mutants showed more hydrophobicity than the parent in hexane and hexadecane as solvents. Complementation of the mutants with extrachromosomal copies of the wild type gene restored these functions to parental levels. These data indicate that NAD-dependent epimerase/dehydratase plays a vital rule in cell surface properties, exoenzyme production, and virulence in P. carotovorum.
Collapse
Affiliation(s)
- Rabiul Islam
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - Shyretha Brown
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - C Korsi Dumenyo
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| |
Collapse
|
9
|
Zhang ZC, Zhao M, Xu LD, Niu XN, Qin HP, Li YM, Li ML, Jiang ZW, Yang X, Huang GH, Jiang W, Tang JL, He YQ. Genome-Wide Screening for Novel Candidate Virulence Related Response Regulator Genes in Xanthomonas oryzae pv. oryzicola. Front Microbiol 2018; 9:1789. [PMID: 30131784 PMCID: PMC6090019 DOI: 10.3389/fmicb.2018.01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Two-component regulatory system (TCS), a major type of cellular signal transduction system, is widely used by bacteria to adapt to different conditions and to colonize certain ecological niches in response to environmental stimuli. TCSs are of distinct functional diversity, genetic diversity, and species specificity (pathovar specificity, even strain specificity) across bacterial groups. Although TCSs have been demonstrated to be crucial to the virulence of Xanthomonas, only a few researches have been reported about the studies of TCSs in Xanthomonas oryzae pathovar oryzicola (hereafter Xoc), the pathogen of rice bacterial streak disease. In the genome of Xoc strain GX01, it has been annotated 110 TCSs genes encoding 54 response regulators (RRs), 36 orthodox histidine kinase (HKs) and 20 hybrid histidine kinase (HyHKs). To evaluate the involvement of TCSs in the stress adaptation and virulence of Xoc, we mutated 50 annotated RR genes in Xoc GX01 by homologous vector integration mutagenesis and assessed their phenotypes in given conditions and tested their virulence on host rice. 17 RR genes were identified to be likely involved in virulence of Xoc, of which 10 RR genes are novel virulence genes in Xanthomonas, including three novel virulence genes for bacteria. Of the novel candidate virulence genes, some of which may be involved in the general stress adaptation, exopolysaccharide production, extracellular protease secretion and swarming motility of Xoc. Our results will facilitate further studies on revealing the biological functions of TCS genes in this phytopathogenic bacterium.
Collapse
Affiliation(s)
- Zheng-Chun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Min Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Li-Dan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiang-Na Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Hong-Ping Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yi-Ming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Mei-Lin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhong-Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xia Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guang-Hui Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Lorenzoni ASG, Dantas GC, Bergsma T, Ferreira H, Scheffers DJ. Xanthomonas citri MinC Oscillates from Pole to Pole to Ensure Proper Cell Division and Shape. Front Microbiol 2017; 8:1352. [PMID: 28769912 PMCID: PMC5515816 DOI: 10.3389/fmicb.2017.01352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023] Open
Abstract
Xanthomonas citri (Xac) is the causal agent of citrus canker, a disease that affects citrus crops and causes economic impact worldwide. To further characterize cell division in this plant pathogen, we investigated the role of the protein MinC in cell division, chromosome segregation, and peptidoglycan incorporation by deleting the gene minC using allele exchange. Xac with minC deleted exhibited the classic Δmin phenotype observed in other bacteria deleted for min components: minicells and short filamentation. In addition we noticed the formation of branches, which is similar to what was previously described for Escherichia coli deleted for either min or for several low molecular weight penicillin-binding proteins (PBPs). The branching phenotype was medium dependent and probably linked to gluconeogenic growth. We complemented the minC gene by integrating gfp-minC into the amy locus. Xac complemented strains displayed a wild-type phenotype. In addition, GFP-MinC oscillated from pole to pole, similar to MinCD oscillations observed in E. coli and more recently in Synechococcus elongatus. Further investigation of the branching phenotype revealed that in branching cells nucleoid organization, divisome formation and peptidoglycan incorporation were disrupted.
Collapse
Affiliation(s)
- André S G Lorenzoni
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Giordanni C Dantas
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual PaulistaRio Claro, Brazil
| | - Tessa Bergsma
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual PaulistaRio Claro, Brazil
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| |
Collapse
|
11
|
Sahebi M, Taheri E, Tarighi S. CitB is required for full virulence of Xanthomonas oryzae pv. oryzae. World J Microbiol Biotechnol 2015; 31:1619-27. [PMID: 26250545 DOI: 10.1007/s11274-015-1914-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/29/2015] [Indexed: 11/28/2022]
Abstract
To identify novel virulence associated genes in Xanthomonas oryzae pv. oryzae (Xoo), a Xoo isolate (XooIR42), obtained from north of Iran, was selected to generate a mini-Tn5 transposon mutation library. One mutant (XooM176) that indicated reduced virulence on rice plants, while grew similar to wild type was selected. This mutant had an insertion in a coding region with 96% amino acid identity to a response regulator of Xoo KACC10331, citB (Xoo_RS12710). Genome analysis of Xoo KACC10331 indicated several genes including a flagelin protein (FlgL) and a chemotaxis protein (Xoo_RS12720) which were identified as virulence genes 4297 and 1403 nucleotides from the citB, respectively. The swarming motility, resistance to hydrogen peroxide, induced a hypersensitive response, in planta growth and pathogenicity were reduced in XooM176 mutant compared to that of wild-type. A plasmid containing the full citB gene of Xoo KACC10331was sufficient to complement the XooM176 mutant for lesion formation and resistance to hydrogen peroxide. We therefore propose that Xoo requires CitB for full pathogenicity in rice plants and also for protection against oxidative stress.
Collapse
Affiliation(s)
- Masood Sahebi
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elaheh Taheri
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Tarighi
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran.
- Laboratory of Plant Pathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
12
|
Norsworthy AN, Visick KL. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol Microbiol 2015; 96:233-48. [PMID: 25586643 DOI: 10.1111/mmi.12932] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 01/20/2023]
Abstract
Cells acclimate to fluctuating environments by utilizing sensory circuits. One common sensory pathway used by bacteria is two-component signaling (TCS), composed of an environmental sensor [the sensor kinase (SK)] and a cognate, intracellular effector [the response regulator (RR)]. The squid symbiont Vibrio fischeri uses an elaborate TCS phosphorelay containing a hybrid SK, RscS, and two RRs, SypE and SypG, to control biofilm formation and host colonization. Here, we found that another hybrid SK, SypF, was essential for biofilms by functioning downstream of RscS to directly control SypE and SypG. Surprisingly, although wild-type SypF functioned as an SK in vitro, this activity was dispensable for colonization. In fact, only a single non-enzymatic domain within SypF, the HPt domain, was critical in vivo. Remarkably, this domain within SypF interacted with RscS to permit a bypass of RscS's own HPt domain and SypF's enzymatic function. This represents the first in vivo example of a functional SK that exploits the enzymatic activity of another SK, an adaptation that demonstrates the elegant plasticity in the arrangement of TCS regulators.
Collapse
Affiliation(s)
- Allison N Norsworthy
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL, 60153, USA
| | | |
Collapse
|
13
|
Liu H, Yang CL, Ge MY, Ibrahim M, Li B, Zhao WJ, Chen GY, Zhu B, Xie GL. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress. Front Microbiol 2014; 5:547. [PMID: 25374564 PMCID: PMC4204640 DOI: 10.3389/fmicb.2014.00547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/01/2014] [Indexed: 01/14/2023] Open
Abstract
Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China ; Department of Plant Pathology, University of California Davis Davis, CA, USA
| | - Chun-Lan Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Meng-Yu Ge
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Muhammad Ibrahim
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China ; Department of Biosciences, COMSATS Institute of Information Technology Sahiwal, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Wen-Jun Zhao
- Chinese Academy of Inspection and Quarantine Beijing, China
| | - Gong-You Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Bo Zhu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|