1
|
Burma JS, Neill MG, Fletcher EKS, Dennett BE, Johnson NE, Javra R, Griffiths JK, Smirl JD. Examining the upper frequency limit of dynamic cerebral autoregulation: Considerations across the cardiac cycle during eucapnia. Exp Physiol 2024; 109:2100-2121. [PMID: 39382938 DOI: 10.1113/ep091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/21/2024] [Indexed: 10/10/2024]
Abstract
There are differences within the literature regarding the upper frequency cut-off point of the dynamic cerebral autoregulation (CA) high-pass filter. The projection pursuit regression approach has demonstrated that the upper frequency limit is ∼0.07 Hz, whereas another approach [transfer function analysis (TFA) phase approaching zero] indicated a theoretical upper frequency limit for the high-pass filter of 0.24 Hz. We investigated how these limits accurately represent the CA upper frequency limit, in addition to extending earlier findings with respect to biological sexes and across the cardiac cycle. Sixteen participants (nine females and seven males) performed repeated squat-stand manoeuvres at frequencies of 0.05, 0.10, 0.15, 0.20 and 0.25 Hz, with insonation of the middle and posterior cerebral arteries. Linear regression modelling with adjustment for sex and order of squat completion was used to compared TFA gain and phase with 0.25 Hz (above the theoretical limit of CA). The upper frequency limit of CA with TFA gain was within the range of 0.05-0.10 Hz, whereas TFA phase was within the range of 0.20-0.25 Hz, and consistent between vessels, between sexes and across the cardiac cycle. Females displayed greater middle cerebral artery gain compared with males (all P < 0.047), and no phase differences were present (all P > 0.072). Although sex-specific differences were present for specific TFA metrics at a given frequency, the upper frequency limit of autoregulation was similar between cerebral conduit vessels, cardiac cycle phase and biological sex. Future work is warranted to determine whether an upper frequency limit exists with respect to hysteresis analyses.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthew G Neill
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Brooke E Dennett
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Raelyn Javra
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - James K Griffiths
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Almohanna AM, Noble K, Wray S. Extracellular acidification increases uterine contraction in pregnant mouse by increasing intracellular calcium. Acta Physiol (Oxf) 2024; 240:e14147. [PMID: 38650469 DOI: 10.1111/apha.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
AIMS As uterine extracellular pH decreases during the ischemic conditions of labor, but its effects on myometrial contraction are largely unknown, there is a need to elucidate its physiological effects and mechanisms of action. Furthermore, it is not known if any of the effects of extracellular acidification are affected by pregnancy, thus we also determined how gestation affects the response to acidification. METHODS Nonpregnant, mid-, and term-pregnant myometrial strips were obtained from humanely killed mice. Contractions were recorded under spontaneous, depolarized, and oxytocin-stimulated conditions. The extracellular pH of the perfusate was changed from 7.4 to 6.9 or 7.9 in HEPES-buffered physiological saline. Intracellular pH was measured using SNARF, and intracellular calcium was measured using Indo-1. Statistical differences were tested using the appropriate t-test. RESULTS Extracellular acidification significantly increased the frequency and amplitude of spontaneous contractions in pregnant, but not nonpregnant, myometrium, whereas alkalinization decreased contractions. Intracellular acidification, via Na-butyrate, transiently increased force in pregnant tissue. Intracellular pH was gradually acidified when extracellular pH was acidified, but extracellular acidification increased contractility before any significant change in intracellular pH. If myometrial force was driven by oxytocin or high-K depolarization, then extracellular pH did not further increase force. Intracellular calcium changes mirrored those of force in the spontaneously contracting pregnant myometrium, and if calcium entry was prevented by nifedipine, extracellular acidification could not induce a rise in force. CONCLUSION Extracellular acidification increases excitability, calcium entry, and thus force in pregnant mouse myometrium, and this may contribute to increasing contractions during labor when ischemic conditions and acidemia occur.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Karen Noble
- Department of Veterinary Anatomy, Physiology and Pathology Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, UK
| | - Susan Wray
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
pH Modulation in Adhesive Cells with a Protonic Biotransducer. Bioelectrochemistry 2022; 147:108202. [DOI: 10.1016/j.bioelechem.2022.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
|
4
|
The Effects of Acidosis on eNOS in the Systemic Vasculature: A Focus on Early Postnatal Ontogenesis. Int J Mol Sci 2022; 23:ijms23115987. [PMID: 35682667 PMCID: PMC9180972 DOI: 10.3390/ijms23115987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
The activity of many vasomotor signaling pathways strongly depends on extracellular/intracellular pH. Nitric oxide (NO) is one of the most important vasodilators produced by the endothelium. In this review, we present evidence that in most vascular beds of mature mammalian organisms metabolic or respiratory acidosis increases functional endothelial NO-synthase (eNOS) activity, despite the observation that direct effects of low pH on eNOS enzymatic activity are inhibitory. This can be explained by the fact that acidosis increases the activity of signaling pathways that positively regulate eNOS activity. The role of NO in the regulation of vascular tone is greater in early postnatal ontogenesis compared to adulthood. Importantly, in early postnatal ontogenesis acidosis also augments functional eNOS activity and its contribution to the regulation of arterial contractility. Therefore, the effect of acidosis on total peripheral resistance in neonates may be stronger than in adults and can be one of the reasons for an undesirable decrease in blood pressure during neonatal asphyxia. The latter, however, should be proven in future studies.
Collapse
|
5
|
Zhao R, Zhou L, Lei G, Wang S, Li Y, Yang X, Xiong G, Hao L. Dietary Acid Load Is Positively Associated With Risk of Gestational Diabetes Mellitus in a Prospective Cohort of Chinese Pregnant Women. Front Nutr 2022; 9:892698. [PMID: 35694169 PMCID: PMC9184257 DOI: 10.3389/fnut.2022.892698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Growing evidence suggests that dietary acid load plays an important role in the development of type 2 diabetes. However, prospective studies on the relationship between dietary acid load and gestational diabetes mellitus (GDM) are limited in the pregnant population. This study aimed to investigate the effect of dietary acid load during early pregnancy on the risk of GDM in Chinese pregnant women. Methods A total of 1,327 pregnant women were enrolled from an ongoing prospective study of the Tongji Birth cohort (TJBC) in Wuhan, China. Dietary intake was assessed before 20 weeks using a 74-item semiquantitative food frequency questionnaire (FFQ). The dietary acid load was estimated using potential renal acid load (PRAL), net endogenous acid production (NEAP), and animal protein to potassium ratio (A:P ratio). A 75g 2-h oral glucose tolerance test (OGTT) was performed at 24-28 gestational weeks to diagnose GDM. Results The mean (standard deviation) values for PRAL score, NEAP score, and A:P ratio were 0.8 ± 11.3 mEq/day, 45.3 ± 16.5 mEq/day, and 9.8 ± 6.0, respectively. There was a significant positive correlation of dietary acid load with the intake of red meat, poultry, fish, and eggs, and a negative correlation with the intake of vegetables, fruits, nuts, and legumes (all P < 0.05). Compared to the lowest tertile, the highest tertile of dietary acid load, including PRAL score (odds ratio [OR]: 2.26, 95% confidence interval [CI] = 1.38–3.71, P-trend = 0.002), NEAP score (OR: 2.02, 95% CI = 1.25–3.27, P-trend = 0.009), and A:P ratio (2.08, 95% CI = 1.30–3.31, P-trend = 0.005), significantly increased the risk of GDM. In addition, the dietary acid load was also significantly associated with an increase in 1-h and 2-h post-load blood glucose concentrations (all P-trend < 0.05). Conclusion We found a significant positive association between dietary acid load during early pregnancy and the risk of GDM in a Chinese population, suggesting that the reduction of food sources of dietary acid load may be an effective strategy for preventing the risk of GDM.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leilei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Lei
- The Central Hospital of Wuhan, Wuhan, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Xiong
- The Central Hospital of Wuhan, Wuhan, China
- *Correspondence: Guoping Xiong,
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Liping Hao,
| |
Collapse
|
6
|
Mohanty I, Banerjee S, Mahanty A, Mohanty S, Nayak NR, Parija SC, Mohanty BP. Proteomic Profiling and Pathway Analysis of Acid Stress-Induced Vasorelaxation of Mesenteric Arteries In Vitro. Genes (Basel) 2022; 13:801. [PMID: 35627186 PMCID: PMC9140505 DOI: 10.3390/genes13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Although metabolic acidosis is associated with numerous pathophysiological conditions and its vasorelaxation effects have been well described in different animal and culture models, the molecular mechanisms of acidosis-induced vasorelaxation are not fully understood. Mesenteric artery models have been used extensively to examine the vascular response to various pathophysiological conditions. Our previous studies and several other reports have suggested the vascular responses of goat mesenteric arteries and human arteries to various stimuli, including acidic stress, are highly similar. In this study, to further identify the signaling molecules responsible for altered vasoreactivity in response to acidic pH, we examined the proteomic profile of acid stress-induced vasorelaxation using a goat mesenteric artery model. The vascular proteomes under acidic pH were compared using 2D-GE with 7 cm IPG strips and mini gels, LC-MS/MS, and MALDI TOF MS. The unique proteins identified by mass spectroscopy were actin, transgelin, WD repeat-containing protein 1, desmin, tropomyosin, ATP synthase β, Hsp27, aldehyde dehydrogenase, pyruvate kinase, and vitamin K epoxide reductase complex subunit 1-like protein. Out of five protein spots identified as actin, three were upregulated > 2-fold. ATP synthase β was also upregulated (2.14-fold) under acid stress. Other actin-associated proteins upregulated were transgelin, desmin, and WD repeat-containing protein 1. Isometric contraction studies revealed that both receptor-mediated (histamine) and non-receptor-mediated (KCl) vasocontraction were attenuated, whereas acetylcholine-induced vasorelaxation was augmented under acidosis. Overall, the altered vasoreactivity under acidosis observed in the functional studies could possibly be attributed to the increase in expression of actin and ATP synthase β.
Collapse
Affiliation(s)
- Ipsita Mohanty
- ICAR-Central Inland Fisheries Research Institute, Biochemistry Laboratory, Proteomics Unit, Barrackpore, Kolkata 700120, India; (I.M.); (S.B.); (A.M.)
- Department of Pharmacology and Toxicology, College of Veterinary Sciences and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India;
- Departments of Pediatrics, Children’s Hospital of Philadelphia Research Institute, The Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sudeshna Banerjee
- ICAR-Central Inland Fisheries Research Institute, Biochemistry Laboratory, Proteomics Unit, Barrackpore, Kolkata 700120, India; (I.M.); (S.B.); (A.M.)
| | - Arabinda Mahanty
- ICAR-Central Inland Fisheries Research Institute, Biochemistry Laboratory, Proteomics Unit, Barrackpore, Kolkata 700120, India; (I.M.); (S.B.); (A.M.)
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Sasmita Mohanty
- Department of Biotechnology, Faculty of Science & Technology, Rama Devi Women’s University, Bhubaneswar 751022, India;
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Subas Chandra Parija
- Department of Pharmacology and Toxicology, College of Veterinary Sciences and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India;
| | - Bimal Prasanna Mohanty
- ICAR-Central Inland Fisheries Research Institute, Biochemistry Laboratory, Proteomics Unit, Barrackpore, Kolkata 700120, India; (I.M.); (S.B.); (A.M.)
- Indian Council of Agricultural Research (ICAR), ICAR-Fisheries Science Division, Room No. 308, Krishi Anusandhan Bhawan II, New Delhi 110012, India
| |
Collapse
|
7
|
Schremmer C, Steinritz D, Gudermann T, Beech DJ, Dietrich A. An ex vivo perfused ventilated murine lung model suggests lack of acute pulmonary toxicity of the potential novel anticancer agent (-)-englerin A. Arch Toxicol 2022; 96:1055-1063. [PMID: 35165752 PMCID: PMC8921049 DOI: 10.1007/s00204-022-03235-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
(-)-Englerin A (EA), a potential novel anti-cancer drug, is a potent selective activator of classical transient receptor potential 4 and 5 (TRPC4, TRPC5) channels. As TRPC4 channels are expressed and functional in the lung endothelium, possible side effects such as lung edema formation may arise during its administration. Well-established in vivo rodent models for toxicological testing, however, rapidly degrade this compound to its inactive derivative, englerin B. Therefore, we chose an ex vivo isolated perfused and ventilated murine lung (IPVML) model to detect edema formation due to toxicants, which also reduces the number of incriminating animal experiments required. To evaluate the sensitivity of the IPVML model, short-time (10 min) drops of the pH from 7.4 down to 4.0 were applied, which resulted in linear changes of tidal volumes, wet-to-dry weight ratios and incorporation of FITC-coupled dextran particles from the perfusate. As expected, biological activity of EA was preserved after perfusion in the IPVML model. Concentrations of 50-100 nM EA continuously perfused through the IPVML model did not change tidal volumes and lung weights significantly. Wet-to-dry weight ratios were increased after perfusion of 100 nM EA but permeation of FITC-coupled dextran particles from the perfusate to the lung tissues was not significantly different. Therefore, EA shows little or no significant acute pulmonary toxicity after application of doses expected to activate target ion channels and the IPVML is a sensitive powerful ex vivo model for evaluating acute lung toxicity in accordance with the 3R rules for animal experimentation.
Collapse
Affiliation(s)
- Christian Schremmer
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Nussbaum Str. 26, 80336, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Nussbaum Str. 26, 80336, Munich, Germany
| | - David J Beech
- School of Medicine, University of Leeds, LIGHT Building, Clarendon Way, Leeds, LS2 9JT, England, UK
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Nussbaum Str. 26, 80336, Munich, Germany.
| |
Collapse
|
8
|
Association between dietary acid load and clinical features of migraine headaches among Iranian individuals. Sci Rep 2022; 12:2460. [PMID: 35165363 PMCID: PMC8844046 DOI: 10.1038/s41598-022-06515-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
There is limited evidence regarding the possible role of dietary acid load (DAL) in the pathophysiology of migraine headaches. Therefore, we sought to examine DAL in relation to the clinical features of migraine including headache frequency, severity and duration, headache impact test-6 (HIT-6), and serum levels of nitric oxide (NO). In the present cross-sectional study, 262 patients (38 men and 224 women aged 20–50 years) were recruited through a simple random sampling method. Dietary intakes were obtained by using a validated 168-item semi-quantitative food frequency questionnaire (FFQ). DAL was then calculated by two different methods; potential renal acid load (PRAL) and net endogenous acid production (NEAP). In total, 262 patients with a mean (SE) age of 36.1 (0.53) and a BMI of 25.55 (0.21) were included in the current study. After controlling for potential confounders, a higher DAL was positively associated with headache frequency in those with the highest DAL score compared to the lowest (PRAL; β = 2.33; 95% CI 0.78, 3.88; NEAP; β = 1.74; 95% CI 0.13, 3.34). Increasing NEAP from 28.96 to 35.89 resulted in a 3.43 and 2.74 increment in HIT-6 scores in the crude (95% CI 1.35, 5.52) and fully-adjusted models (95% CI 0.40, 5.07), respectively. Moreover, a higher dietary PRAL was significantly associated with migraine-related disability, as shown by HIT-6, in subjects of the third tertile compared to those in the first tertile after controlling for confounders (β = 2.42; 95% CI 0.13, 4.70). In conclusion, our study highlighted the importance of the acid–base properties of a diet in the pathophysiology of migraine headaches. However, further well-designed studies are needed to confirm our findings.
Collapse
|
9
|
FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. BIOSENSORS-BASEL 2021; 11:bios11090340. [PMID: 34562930 PMCID: PMC8468847 DOI: 10.3390/bios11090340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023]
Abstract
The determination of pH in live cells and tissues is of high importance in physiology and cell biology. In this report, we outline the process of the creation of SypHerExtra, a genetically encoded fluorescent sensor that is capable of measuring extracellular media pH in a mildly alkaline range. SypHerExtra is a protein created by fusing the previously described pH sensor SypHer3s with the neurexin transmembrane domain that targets its expression to the cytoplasmic membrane. We showed that with excitation at 445 nm, the fluorescence lifetime of both SypHer3s and SypHerExtra strongly depend on pH. Using FLIM microscopy in live eukaryotic cells, we demonstrated that SypHerExtra can be successfully used to determine extracellular pH, while SypHer3s can be applied to measure intracellular pH. Thus, these two sensors are suitable for quantitative measurements using the FLIM method, to determine intracellular and extracellular pH in a range from pH 7.5 to 9.5 in different biological systems.
Collapse
|
10
|
Salva O, Alasino R, Giller C, Borello J, Doresky A, Karayan G, Beltramo D. Nebulization with alkaline hipertonic ibuprofen induces a rapid increase in platelets circulating in COVID-19 patients but not in healthy subjects. Platelets 2021; 33:471-478. [PMID: 34423724 DOI: 10.1080/09537104.2021.1967918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We analyze changes in circulating platelets in COVID-19 positive patients who received conventional treatment Dexamethasone and Enoxaparin (Dexa-Enoxa) compared to patients treated with conventional therapy plus nebulization with alkaline hypertonic ibuprofenate (AHI). Results show that after 24 h of nebulization with AHI, circulating platelets shows an increase about 40% at 24 h and reach 65% at 96 h. In patients with platelets content below 200,000 by microliter the increase was 49% and 79% at 24 and 96 h respectively. In patients with platelets above 200,000 by microliter the increase was 24% and 31% at 24 and 96 h, respectively. The increase of platelets via AHI was similar in both, men and women.To evaluate whether this action of AHI was related to platelets from COVID-19 positive patients or also for healthy people, two controls were included: one of them with 10 healthy volunteers and another one with COVID-19 positive patients hospitalized and treated only with Dexa-Enoxa. Results show that, in healthy volunteers, the number of circulating platelets remains unchanged even after 7 days of treatment with AHI. In COVID-19 positive patients treated only with Dexa-Enoxa for 4 days, platelets increased only 16%.
Collapse
Affiliation(s)
- Oscar Salva
- Departamento de Clínica Médica, Clínica Independencia, Ciudad de Munro, Provincia de Buenos Aires, Argentina
| | - Roxana Alasino
- Programa de Biociencias, Centro De Excelencias En Productos Y Procesos (CEPROCOR), Ministerio de Ciencia y Tecnología de la Provincia de Córdoba, Cordoba, Argentina.,Consejo Nacional de Investigaciones Científicas (CONICET), Ministerio de Ciencia Tecnología e Innovación de la República Argentina, Provincia de Buenos Aires, Argentina
| | - Celia Giller
- Departamento de Clínica Médica, Clínica Independencia, Ciudad de Munro, Provincia de Buenos Aires, Argentina
| | - Julieta Borello
- Programa de Biociencias, Centro De Excelencias En Productos Y Procesos (CEPROCOR), Ministerio de Ciencia y Tecnología de la Provincia de Córdoba, Cordoba, Argentina
| | - Alexis Doresky
- Departamento de Investiagación Clinica, Fundación Respirar, Ciudad Autónoma de Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Galia Karayan
- Departamento de Investiagación Clinica, Fundación Respirar, Ciudad Autónoma de Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Dante Beltramo
- Programa de Biociencias, Centro De Excelencias En Productos Y Procesos (CEPROCOR), Ministerio de Ciencia y Tecnología de la Provincia de Córdoba, Cordoba, Argentina.,Consejo Nacional de Investigaciones Científicas (CONICET), Ministerio de Ciencia Tecnología e Innovación de la República Argentina, Provincia de Buenos Aires, Argentina
| |
Collapse
|
11
|
Yartsev VN. Paradoxical effects of acidosis on the noradrenaline-induced and neurogenic constriction of the rat tail artery at low temperatures. Can J Physiol Pharmacol 2021; 99:1036-1047. [PMID: 33857387 DOI: 10.1139/cjpp-2020-0740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although vasodilatation evoked by acidosis at normal body temperature is well known, the reports regarding effect of acidosis on the reactivity of the isolated arteries at low temperatures are nonexistent. This study tested the hypothesis that the inhibitory effect of acidosis on the neurogenic vasoconstriction may be increased by cooling. Using wire myography, we recorded the neurogenic contraction of the rat tail artery segments to the electrical field stimulation in the absence and in the presence of 0.03-10.0 µmol/L noradrenaline. The experiments were conducted at 37 °C or 25 °C and pH 7.4 or 6.6 which was decreased by means of CO2. Noradrenaline at concentration of 0.03-0.1 µmol/L significantly potentiated the neurogenic vasoconstriction at 25 °C, and the potentiation was not inhibited by acidosis. Contrary to our hypothesis, acidosis at a low temperature did not affect the noradrenaline-induced tone and significantly increased the neurogenic contraction of the artery segments in the absence and presence of noradrenaline. These effects of acidosis were partly dependent on the endothelium and L-type Ca2+ channels activation. The phenomenon described for the first time might be of importance for the reduction in the heat loss by virtue of decrease in the subcutaneous blood flow at low ambient temperatures.
Collapse
Affiliation(s)
- Vladimir N Yartsev
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.,Laboratory of Physiology of Cardiovascular and Lymphatic Systems, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
12
|
Kakleas K, Basatemur E, Karavanaki K. Association Between Severity of Diabetic Ketoacidosis at Diagnosis and Multiple Autoimmunity in Children With Type 1 Diabetes Mellitus: A Study From a Greek Tertiary Centre. Can J Diabetes 2020; 45:33-38.e2. [PMID: 32800761 DOI: 10.1016/j.jcjd.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Type 1 diabetes mellitus is a chronic disorder associated with development of autoimmunity. In this work, we studied the relationship between severity of acidosis at diagnosis and future risk for autoimmunity development in children with type 1 diabetes. METHODS We investigated the presence of associated autoimmunity in 144 children with type 1 diabetes (mean ± standard deviation: age, 12.44±4.76 years; diabetes duration, 4.41±3.70 years). We identified the presence of thyroid disease, celiac disease, autoimmune gastritis and adrenal autoimmunity, and retrospectively reviewed the files for presence of diabetic ketoacidosis at diagnosis. RESULTS Autoimmunity prevalence was 16.7% for thyroid autoimmunity, 9.5% for celiac disease, 5% for gastric autoimmunity and 8.0% for multiple autoimmunities. There were strong associations between severe acidosis at diabetes diagnosis (pH<7.10) and development of thyroid autoimmunity (odds ratio [OR], 5.34; 95% confidence interval [CI], 1.90‒15.1; p<0.001), celiac disease (OR, 5.83; 95% CI, 1.19‒28.6; p=0.013), gastric autoimmunity (OR, 13.1; 95% CI, 1.22‒140; p=0.006) and multiple autoimmunity (OR, 26.7; 95% CI, 2.36‒301; p<0.01). The associations persisted after adjustment for sex, age at diabetes diagnosis, age at assessment, time since diabetes diagnosis and antiglutamic acid decarboxylase autoantibody status. CONCLUSIONS The severity of acidosis at diagnosis is strongly associated with the development of associated autoimmune diseases in children with type 1 diabetes and could act as a predictive factor for multiple autoimmunity development. This association can be either due to effect of acidosis on immune system or to the presence of a more aggressive diabetes endotype.
Collapse
Affiliation(s)
- Kostas Kakleas
- Paediatric Department, Leicester Royal Infirmary, Leicester, United Kingdom.
| | - Emre Basatemur
- Population, Policy and Practice Programme, Institute of Child Health, University College of London, London, United Kingdom
| | - Kyriaki Karavanaki
- Diabetic Clinic, Second Department of Pediatrics, University of Athens, "P&A Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
13
|
Panerai RB, Robinson TG, Minhas JS. The upper frequency limit of dynamic cerebral autoregulation. J Physiol 2019; 597:5821-5833. [DOI: 10.1113/jp278710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ronney B. Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group, Department of Cardiovascular Sciences University of Leicester Leicester LE2 7LX UK
- National Institute for Health Research Leicester Biomedical Research Centre University of Leicester Leicester LE3 9QP UK
| | - Thompson G. Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group, Department of Cardiovascular Sciences University of Leicester Leicester LE2 7LX UK
- National Institute for Health Research Leicester Biomedical Research Centre University of Leicester Leicester LE3 9QP UK
| | - Jatinder S. Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group, Department of Cardiovascular Sciences University of Leicester Leicester LE2 7LX UK
- National Institute for Health Research Leicester Biomedical Research Centre University of Leicester Leicester LE3 9QP UK
| |
Collapse
|
14
|
Ramírez MA, Beltrán AR, Araya JE, Cornejo M, Toledo F, Fuentes G, Sobrevia L. Involvement of Intracellular pH in Vascular Insulin Resistance. Curr Vasc Pharmacol 2019; 17:440-446. [DOI: 10.2174/1570161116666180911104012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/25/2022]
Abstract
The maintenance of the pH homeostasis is maintained by several mechanisms including the
efflux of protons (H+) via membrane transporters expressed in almost all mammalian cells. Along these
membrane transporters the sodium/H+ exchangers (NHEs), mainly NHE isoform 1 (NHE1), plays a key
role in this phenomenon. NHE1 is under modulation by several environmental conditions (e.g. hyperglycaemia,
protein kinase C activity) as well as hormones, including insulin. NHE1 activation causes
intracellular alkalization in human endothelial cells leading to activation of the endothelial Nitric Oxide
Synthase (eNOS) to generate NO. Intracellular alkalization is a phenomenon that also results in upregulation
of the glucose transporter GLUT4 in cells that are responsive to insulin. A reduction in the removal
of the extracellular D-glucose is seen in states of insulin resistance, such as in diabetes mellitus
and obesity. Since insulin is a potent activator of eNOS in human endothelium, therefore causing vasodilation,
and its vascular effect is reduced in insulin resistance it is likely that a defective signal to activate
NHE1 in insulin target cells is expected. This phenomenon results in lower redistribution and activation
of GLUT4 leading to reduced uptake of D-glucose and hyperglycaemia. The general concept of a
role for NHE1, and perhaps other NHEs isoforms, in insulin resistance in the human vasculature is proposed.
Collapse
Affiliation(s)
- Marco A. Ramírez
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Ana R. Beltrán
- Laboratorio de Fisiologia Celular, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Jorge E. Araya
- Laboratorio de Fisiologia Celular, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Marcelo Cornejo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| |
Collapse
|
15
|
Munteanu R, Stănică L, Gheorghiu M, Gáspár S. Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH. ChemElectroChem 2019. [DOI: 10.1002/celc.201801558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raluca‐Elena Munteanu
- International Centre of Biodynamics 1B Intrarea Portocalelor 060101 Bucharest Romania
| | - Luciana Stănică
- International Centre of Biodynamics 1B Intrarea Portocalelor 060101 Bucharest Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics 1B Intrarea Portocalelor 060101 Bucharest Romania
| | - Szilveszter Gáspár
- International Centre of Biodynamics 1B Intrarea Portocalelor 060101 Bucharest Romania
| |
Collapse
|
16
|
Charter ME, Lamb IR, Murrant CL. Arteriolar and capillary responses to CO2and H+in hamster skeletal muscle microvasculature: Implications for active hyperemia. Microcirculation 2018; 25:e12494. [DOI: 10.1111/micc.12494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Mackenzie E. Charter
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph Ontario Canada
| | - Iain R. Lamb
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph Ontario Canada
| | - Coral L. Murrant
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
17
|
Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1192-1202. [DOI: 10.1016/j.bbadis.2018.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
|
18
|
Abstract
Acid-base alterations in patients with kidney failure and on hemodialysis (HD) treatment contribute to (1) intradialytic hypercapnia and hypoxia, (2) hemodynamic instability and cardiac arrhythmia, (3) systemic inflammation, and (4) a number of associated electrolyte alterations including potentiating effects of hypokalemia, hypocalcemia and, chronically, soft-tissue and vascular calcification, imparting poor prognosis and mortality. This paper discusses acid-base regulation and pathogenesis of dysregulation in patients with kidney failure. Major organ and systemic effects of acid-base perturbations with a specific focus on kidney failure patients on HD are emphasized, and potential mitigating strategies proposed. The high rate of HD-related complications, specifically those that can be accounted for by rapid and steep acid-base perturbations imposed by HD treatment, attests to the pressing need for investigations to establish a better dialysis regimen.
Collapse
Affiliation(s)
- Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
19
|
Mohanty I, Suklabaidya S, Parija SC. Acidosis reduces the function and expression of α 1D-adrenoceptor in superior mesenteric artery of Capra hircus. Indian J Pharmacol 2017; 48:399-406. [PMID: 27756951 PMCID: PMC4980928 DOI: 10.4103/0253-7613.186199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objective: The objective of this study was to characterize the α1-adrenoceptor (α1-AR) subtypes and evaluate the effect of acidosis on α1-AR function and expression in goat superior mesenteric artery (GSMA). Materials and Methods: GSMA rings were mounted in a thermostatically controlled (37.0°C ± 0.5°C) organ bath containing 20 ml of modified Krebs-Henseleit solution, maintained at pHo of 7.4, 6.8, 6.0, 5.5, 5.0, and 4.5. Noradrenaline (NA)- and phenylephrine (PE)-induced contractile response was elicited in the absence or presence of endothelium and prazosin at pHo of 7.4, 6.0, and 5.0. The responses were recorded isometrically by an automatic organ bath connected to PowerLab and analyzed using Labchart 7.1.3 software. Expression of α1D-AR was compared at physiological and acidic pHo using reverse transcription-polymerase chain reaction (RT-PCR). Results: NA- and PE-induced contractile responses were attenuated proportionately with a decrease in extracellular pH (pHo), i.e. 7.4 → 6.8 → 6.0 → 5.5 → 5.0 → 4.5. Endothelium denudation increased the contractile response at both normal and acidic pHo. Prazosin (1 nM, 10 nM, and 0.1 μM) inhibited the NA- and PE-induced contractile response at pHo 7.4 and the blocking effect of prazosin was potentiated at pHo of 6.0 and 5.0. RT-PCR analysis for α1D-AR in GSMA showed that the mRNA expression of α1D-AR was decreased under acidic pHo as compared to physiological pHo. Conclusion: (i) Adrenergic receptor mediates vasoconstriction in GSMA under normal physiological pHo, and α1D is the possible subtype involved in this event (ii) acidosis attenuates the vasocontractile response due to reduced function and expression of α1D-AR and also increased the release of endothelial-relaxing factors.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Department of Pharmacology and Toxicology, Faculty of Veterinary Sciences, Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Sujit Suklabaidya
- Tumor Microenvironment and Animal Models, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Subas Chandra Parija
- Department of Pharmacology and Toxicology, College of Veterinary Sciences and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
20
|
McBride D, Raisis AL, Hosgood G, Smart L. Hydroxyethyl starch 130/0.4 compared with 0.9% NaCl administered to greyhounds with haemorrhagic shock. Vet Anaesth Analg 2017; 44:444-451. [DOI: 10.1016/j.vaa.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
|
21
|
Celis N, Araos J, Sanhueza C, Toledo F, Beltrán AR, Pardo F, Leiva A, Ramírez MA, Sobrevia L. Intracellular acidification increases adenosine transport in human umbilical vein endothelial cells. Placenta 2017; 51:10-17. [DOI: 10.1016/j.placenta.2017.01.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/01/2017] [Accepted: 01/14/2017] [Indexed: 12/16/2022]
|
22
|
The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating production of Interleukin-1β. Biochim Biophys Acta Mol Basis Dis 2017; 1863:712-720. [DOI: 10.1016/j.bbadis.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
|
23
|
Li S, Liu Z, Su C, Chen H, Fei X, Guo Z. Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe. Anal Bioanal Chem 2016; 409:1387-1394. [DOI: 10.1007/s00216-016-0063-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 01/06/2023]
|
24
|
Sanhueza C, Araos J, Naranjo L, Barros E, Subiabre M, Toledo F, Gutiérrez J, Chiarello DI, Pardo F, Leiva A, Sobrevia L. Nitric oxide and pH modulation in gynaecological cancer. J Cell Mol Med 2016; 20:2223-2230. [PMID: 27469435 PMCID: PMC5134382 DOI: 10.1111/jcmm.12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/05/2016] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide plays several roles in cellular physiology, including control of the vascular tone and defence against pathogen infection. Neuronal, inducible and endothelial nitric oxide synthase (NOS) isoforms synthesize nitric oxide. Cells generate acid and base equivalents, whose physiological intracellular concentrations are kept due to membrane transport systems, including Na+/H+ exchangers and Na+/HCO3− transporters, thus maintaining a physiological pH at the intracellular (~7.0) and extracellular (~7.4) medium. In several pathologies, including cancer, cells are exposed to an extracellular acidic microenvironment, and the role for these membrane transport mechanisms in this phenomenon is likely. As altered NOS expression and activity is seen in cancer cells and because this gas promotes a glycolytic phenotype leading to extracellular acidosis in gynaecological cancer cells, a pro‐inflammatory microenvironment increasing inducible NOS expression in this cell type is feasible. However, whether abnormal control of intracellular and extracellular pH by cancer cells regards with their ability to synthesize or respond to nitric oxide is unknown. We, here, discuss a potential link between pH alterations, pH controlling membrane transport systems and NOS function. We propose a potential association between inducible NOS induction and Na+/H+ exchanger expression and activity in human ovary cancer. A potentiation between nitric oxide generation and the maintenance of a low extracellular pH (i.e. acidic) is proposed to establish a sequence of events in ovarian cancer cells, thus preserving a pro‐proliferative acidic tumour extracellular microenvironment. We suggest that pharmacological therapeutic targeting of Na+/H+ exchangers and inducible NOS may have benefits in human epithelial ovarian cancer.
Collapse
Affiliation(s)
- Carlos Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquín Araos
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luciano Naranjo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eric Barros
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, Australia
| |
Collapse
|
25
|
Morphological and microstructural changes of the oral apparatus in two Anuran tadpoles, in regard to pH. Micron 2016; 82:41-51. [PMID: 26774744 DOI: 10.1016/j.micron.2015.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/23/2022]
Abstract
Scanning Electron Microscopy (SEM) and Light Microscopy (LM) of the oral apparatus of Polypedates teraiensis and Hylarana leptoglossa tadpoles revealed a number of morphological and microstructural alterations in the labial tooth rows, jaw sheaths and marginal papillae on exposure to acidic and alkaline pH. These morphological and microstructural alterations observed in the oral apparatus of the tadpole are discussed in the light of available literature. The significance of the study with reference to adverse effects of acidic as well as alkaline pH on oral apparatus of the tadpole is also discussed.
Collapse
|
26
|
Martynov VI, Pakhomov AA, Popova NV, Deyev IE, Petrenko AG. Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Naturae 2016; 8:33-46. [PMID: 28050265 PMCID: PMC5199205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The last decade has witnessed significant advance in the imaging of living systems using fluorescent markers. This progress has been primarily associated with the discovery of different spectral variants of fluorescent proteins. However, the fluorescent protein technology has its own limitations and, in some cases, the use of low-molecular-weight fluorophores is preferable. In this review, we describe the arsenal of synthetic fluorescent tools that are currently in researchers' hands and span virtually the entire spectrum, from the UV to visible and, further, to the near-infrared region. An overview of recent advances in site-directed introduction of synthetic fluorophores into target cellular objects is provided. Application of these fluorescent probes to the solution of a wide range of biological problems, in particular, to the determination of local ion concentrations and pH in living systems, is discussed.
Collapse
Affiliation(s)
- V. I. Martynov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| | - A. A. Pakhomov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| | - N. V. Popova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| | - I. E. Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| | - A. G. Petrenko
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| |
Collapse
|
27
|
Arcanjo DDR, Vasconcelos AG, Comerma-Steffensen SG, Jesus JR, Silva LP, Pires OR, Costa-Neto CM, Oliveira EB, Migliolo L, Franco OL, Restini CBA, Paulo M, Bendhack LM, Bemquerer MP, Oliveira AP, Simonsen U, Leite JRDSDA. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium. PLoS One 2015; 10:e0145071. [PMID: 26661890 PMCID: PMC4682775 DOI: 10.1371/journal.pone.0145071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/29/2015] [Indexed: 01/13/2023] Open
Abstract
Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.
Collapse
Affiliation(s)
- Daniel Dias Rufino Arcanjo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia–BIOTEC, Campus Ministro Reis Velloso–CMRV, Universidade Federal do Piauí –UFPI, Parnaíba, PI, Brazil
- Laboratório de Farmacologia Cardiovascular–LFC, Núcleo de Pesquisas em Plantas Medicinais–NPPM, Universidade Federal do Piauí –UFPI, Teresina, PI, Brazil
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia–BIOTEC, Campus Ministro Reis Velloso–CMRV, Universidade Federal do Piauí –UFPI, Parnaíba, PI, Brazil
| | | | - Joilson Ramos Jesus
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia–BIOTEC, Campus Ministro Reis Velloso–CMRV, Universidade Federal do Piauí –UFPI, Parnaíba, PI, Brazil
| | - Luciano Paulino Silva
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Osmindo Rodrigues Pires
- Laboratório de Toxinologia, Instituto de Ciências Biológicas–ICB, Universidade de Brasília–UnB, Brasília, DF, Brazil
| | - Claudio Miguel Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto–FMRP, Universidade de São Paulo–USP, Ribeirão Preto, SP, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto–FMRP, Universidade de São Paulo–USP, Ribeirão Preto, SP, Brazil
| | - Ludovico Migliolo
- Centro de Análises Proteômicas e Bioquímicas–CAPB, Universidade Católica de Brasília–UCB, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas–CAPB, Universidade Católica de Brasília–UCB, Brasília, DF, Brazil
| | | | - Michele Paulo
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto–FCFRP, Universidade de São Paulo–USP, Ribeirão Preto, SP, Brazil
| | - Lusiane Maria Bendhack
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto–FCFRP, Universidade de São Paulo–USP, Ribeirão Preto, SP, Brazil
| | - Marcelo Porto Bemquerer
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Aldeidia Pereira Oliveira
- Laboratório de Farmacologia Cardiovascular–LFC, Núcleo de Pesquisas em Plantas Medicinais–NPPM, Universidade Federal do Piauí –UFPI, Teresina, PI, Brazil
| | - Ulf Simonsen
- Pulmonary and Cardiovascular Pharmacology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia–BIOTEC, Campus Ministro Reis Velloso–CMRV, Universidade Federal do Piauí –UFPI, Parnaíba, PI, Brazil
- * E-mail:
| |
Collapse
|
28
|
de Nadai TR, de Nadai MN, Cassiano Silveira AP, Celotto AC, Albuquerque AAS, de Carvalho MTR, Scarpelini S, Rodrigues AJ, Evora PRB. In vitro effects of extracellular hypercapnic acidification on the reactivity of rat aorta. Nitric Oxide 2015; 50:79-87. [DOI: 10.1016/j.niox.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
|
29
|
Jaworska A, Jamieson LE, Malek K, Campbell CJ, Choo J, Chlopicki S, Baranska M. SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α. Analyst 2015; 140:2321-9. [PMID: 25485622 DOI: 10.1039/c4an01988a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intracellular pH plays an important role in various cellular processes. In this work, we describe a method for monitoring of the intracellular pH in endothelial cells by using surface enhanced Raman spectroscopy (SERS) and 4-mercaptobenzoic acid (MBA) anchored to gold nanoparticles as pH-sensitive probes. Using the Raman microimaging technique, we analysed changes in intracellular pH induced by buffers with acid or alkaline pH, as well as in endothelial inflammation induced by tumour necrosis factor-α (TNFα). The targeted nanosensor enabled spatial pH measurements revealing distinct changes of the intracellular pH in endosomal compartments of the endothelium. Altogether, SERS-based analysis of intracellular pH proves to be a promising technique for a better understanding of intracellular pH regulation in various subcellular compartments.
Collapse
Affiliation(s)
- Aleksandra Jaworska
- Faculty of Chemistry, Jagiellonian University, 3 Ingardena Str., 30-060 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Baranska M, Kaczor A, Malek K, Jaworska A, Majzner K, Staniszewska-Slezak E, Pacia MZ, Zajac G, Dybas J, Wiercigroch E. Raman microscopy as a novel tool to detect endothelial dysfunction. Pharmacol Rep 2015; 67:736-43. [PMID: 26321275 DOI: 10.1016/j.pharep.2015.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/06/2023]
Abstract
Raman microscopy, a label-free method with high spatial resolution, shows growing potential in various fields of medical diagnostics. Several proof-of-concept studies related to the application of Raman microscopy to detect endothelial dysfunction are summarized in this work. Both ex vivo measurements of the tissues in the murine models of endothelial pathologies, as well as in vitro investigations of the cell cultures in the context of cellular transport, drug action and inflammation processes are discussed. The future directions in application of Raman spectroscopy-based methods in such studies are also described.
Collapse
Affiliation(s)
- Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland.
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Aleksandra Jaworska
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Emilia Staniszewska-Slezak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Marta Z Pacia
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Grzegorz Zajac
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Jakub Dybas
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland; Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Ewelina Wiercigroch
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| |
Collapse
|
31
|
Wu S, Gao X, Yang S, Meng M, Yang X, Ge B. The role of endoplasmic reticulum stress in endothelial dysfunction induced by homocysteine thiolactone. Fundam Clin Pharmacol 2015; 29:252-9. [PMID: 25623775 DOI: 10.1111/fcp.12101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/21/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
Our and other studies have reported that homocysteine thiolactone (HTL) could induce endothelial dysfunction. However, the precise mechanism was largely unknown. In this study, we tested the most possible factor-endoplasmic reticulum (ER) stress, which was demonstrated to be involved in endothelial dysfunction in cardiovascular disease. Acetylcholine (Ach)-induced endothelium-dependent relaxation (EDR) and biochemical parameters were measured in rat isolated aorta. The level of reactive oxygen species (ROS) and NO was designed by specific fluorescent probe DCFH-DA and DAF-FM DA separately. The nuclear translocation of the NF-κB was studied by immune-fluorescence. The mRNA expression and protein expression of GRP78--a key indicator for the induction of ER stress--were assessed by real-time PCR and Western blot. Two ER stress inhibitors-4-PBA (5 mm) and Tudca (500 μg/mL)--significantly prevented HTL-impaired EDR and increased NO release, endothelial nitric oxide synthase (eNOS) and SOD activity, decreased ROS production, NADPH activity, NOX-4 mRNA and MDA level. We also found that 4-PBA and Tudca blocked HTL--induced NF-κB activation thus inhibiting the downstream target gene production including TNF-α and ICAM-1. Simultaneously, HTL increased the mRNA and protein level of GRP78. HTL could induce ER stress leading to a downstream enhancement of oxidative stress and inflammation, which finally caused vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Shujin Wu
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Xiang Gao
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Shehua Yang
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Min Meng
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Xiaolai Yang
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Bin Ge
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| |
Collapse
|
32
|
Kerr JP, Ward CW, Bloch RJ. Dysferlin at transverse tubules regulates Ca(2+) homeostasis in skeletal muscle. Front Physiol 2014; 5:89. [PMID: 24639655 PMCID: PMC3944681 DOI: 10.3389/fphys.2014.00089] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/15/2014] [Indexed: 11/13/2022] Open
Abstract
The class of muscular dystrophies linked to the genetic ablation or mutation of dysferlin, including Limb Girdle Muscular Dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM), are late-onset degenerative diseases. In lieu of a genetic cure, treatments to prevent or slow the progression of dysferlinopathy are of the utmost importance. Recent advances in the study of dysferlinopathy have highlighted the necessity for the maintenance of calcium handling in altering or slowing the progression of muscular degeneration resulting from the loss of dysferlin. This review highlights new evidence for a role for dysferlin at the transverse (t-) tubule of striated muscle, where it is involved in maintaining t-tubule structure and function.
Collapse
Affiliation(s)
- Jaclyn P Kerr
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Christopher W Ward
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|