1
|
Francis J, Gibeily CR, Smith WV, Petropoulos IS, Anderson M, Heitler WJ, Prinz AA, Pulver SR. Inhibitory circuit motifs in Drosophila larvae generate motor program diversity and variability. PLoS Biol 2025; 23:e3003094. [PMID: 40258087 PMCID: PMC12088524 DOI: 10.1371/journal.pbio.3003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 05/19/2025] [Accepted: 03/03/2025] [Indexed: 04/23/2025] Open
Abstract
How do neural networks generate and regulate diversity and variability in motor outputs with finite cellular components? Here we examine this problem by exploring the role that inhibitory neuron motifs play in generating mixtures of motor programs in the segmentally organised Drosophila larval locomotor system. We developed a computational model that is constrained by experimental calcium imaging data. The model comprises single-compartment cells with a single voltage-gated calcium current, which are interconnected by graded excitatory and inhibitory synapses. Local excitatory and inhibitory neurons form conditional oscillators in each hemisegment. Surrounding architecture reflects key aspects of inter- and intrasegmental connectivity motifs identified in the literature. The model generates metachronal waves of activity that recapitulate key features of fictive forwards and backwards locomotion, as well as bilaterally asymmetric activity in anterior regions that represents fictive head sweeps. The statistics of inputs to competing command-like motifs, coupled with inhibitory motifs that detect activity across multiple segments generate network states that promote diversity in motor outputs, while at the same time preventing maladaptive overlap in motor programs. Overall, the model generates testable predictions for connectomics and physiological studies while providing a platform for uncovering how inhibitory circuit motifs underpin generation of diversity and variability in motor systems.
Collapse
Affiliation(s)
- Jacob Francis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Caius R. Gibeily
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - William V. Smith
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Isabel S. Petropoulos
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Michael Anderson
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - William J. Heitler
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Astrid A. Prinz
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- Institute for Behavioural and Neural Sciences, Centre of Biophotonics, and Centre for Biological Diversity, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
2
|
Noel RMM, Adolfo AR. An antagonist of the neurotransmitter tyramine inhibits the hyperactivating effect of eugenol in the blood-sucking bug, Triatoma infestans. Acta Trop 2024; 260:107455. [PMID: 39510438 DOI: 10.1016/j.actatropica.2024.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Eugenol is a botanical monoterpene found in the essential oils of several aromatic plants. It has shown to have insecticidal activity, modify insect behavior, and its site of action is most probably in the octopaminergic system. The aim of the present study was to explore whether tyramine receptors are involved in the hyperactivity produced by eugenol in Triatoma infestans, one of the main vectors of Chagas disease. Topical application of tyramine and eugenol increased locomotor activity in third instar nymphs of T. infestans in a dose-dependent way. Yohimbine hydrochloride, a tyramine antagonist, did not modify nymph activity. However, nymphs pretreated with yohimbine and then with tyramine or eugenol showed the same locomotor activity as the controls. Therefore, yohimbine hydrochloride inhibited the hyperactivating effect of both tyramine and eugenol. These results suggest that tyramine receptors are involved in the effect of eugenol on the locomotor activity of T. infestans.
Collapse
Affiliation(s)
- Reynoso Mercedes María Noel
- Centro de Investigaciones de Plagas e Insecticidas (UNIDEF-CITEDEF-CONICET-CIPEIN y Ministerio de Defensa), Juan B. de La Salle 4397, (B1603ALO) Villa Martelli, Buenos Aires, Argentina.
| | - Alzogaray Raúl Adolfo
- Centro de Investigaciones de Plagas e Insecticidas (UNIDEF-CITEDEF-CONICET-CIPEIN y Ministerio de Defensa), Juan B. de La Salle 4397, (B1603ALO) Villa Martelli, Buenos Aires, Argentina; Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM), (B1650HMQ) San Martín, Buenos Aires, Argentina
| |
Collapse
|
3
|
Jonaitis J, MacLeod J, Pulver SR. Localization of muscarinic acetylcholine receptor-dependent rhythm-generating modules in the Drosophila larval locomotor network. J Neurophysiol 2022; 127:1098-1116. [PMID: 35294308 PMCID: PMC9018013 DOI: 10.1152/jn.00106.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mechanisms of rhythm generation have been extensively studied in motor systems that control locomotion over terrain in limbed animals; however, much less is known about rhythm generation in soft-bodied terrestrial animals. Here we explored how muscarinic acetylcholine receptor (mAChR)-modulated rhythm-generating networks are distributed in the central nervous system (CNS) of soft-bodied Drosophila larvae. We measured fictive motor patterns in isolated CNS preparations, using a combination of Ca2+ imaging and electrophysiology while manipulating mAChR signaling pharmacologically. Bath application of the mAChR agonist oxotremorine potentiated bilaterally asymmetric activity in anterior thoracic regions and promoted bursting in posterior abdominal regions. Application of the mAChR antagonist scopolamine suppressed rhythm generation in these regions and blocked the effects of oxotremorine. Oxotremorine triggered fictive forward crawling in preparations without brain lobes. Oxotremorine also potentiated rhythmic activity in isolated posterior abdominal CNS segments as well as isolated anterior brain and thoracic regions, but it did not induce rhythmic activity in isolated anterior abdominal segments. Bath application of scopolamine to reduced preparations lowered baseline Ca2+ levels and abolished rhythmic activity. Overall, these results suggest that mAChR signaling plays a role in enabling rhythm generation at multiple sites in the larval CNS. This work furthers our understanding of motor control in soft-bodied locomotion and provides a foundation for study of rhythm-generating networks in an emerging genetically tractable locomotor system.NEW & NOTEWORTHY Using a combination of pharmacology, electrophysiology, and Ca2+ imaging, we find that signaling through mACh receptors plays a critical role in rhythmogenesis in different regions of the Drosophila larval CNS. mAChR-dependent rhythm generators reside in distal regions of the larval CNS and provide functional substrates for central pattern-generating networks (CPGs) underlying headsweep behavior and forward locomotion. This provides new insights into locomotor CPG operation in soft-bodied animals that navigate over terrain.
Collapse
Affiliation(s)
- Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - James MacLeod
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
4
|
David I, Ayali A. From Motor-Output to Connectivity: An In-Depth Study of in-vitro Rhythmic Patterns in the Cockroach Periplaneta americana. FRONTIERS IN INSECT SCIENCE 2021; 1:655933. [PMID: 38468881 PMCID: PMC10926548 DOI: 10.3389/finsc.2021.655933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 03/13/2024]
Abstract
The cockroach is an established model in the study of locomotion control. While previous work has offered important insights into the interplay among brain commands, thoracic central pattern generators, and the sensory feedback that shapes their motor output, there remains a need for a detailed description of the central pattern generators' motor output and their underlying connectivity scheme. To this end, we monitored pilocarpine-induced activity of levator and depressor motoneurons in two types of novel in-vitro cockroach preparations: isolated thoracic ganglia and a whole-chain preparation comprising the thoracic ganglia and the subesophageal ganglion. Our data analyses focused on the motoneuron firing patterns and the coordination among motoneuron types in the network. The burstiness and rhythmicity of the motoneurons were monitored, and phase relations, coherence, coupling strength, and frequency-dependent variability were analyzed. These parameters were all measured and compared among network units both within each preparation and among the preparations. Here, we report differences among the isolated ganglia, including asymmetries in phase and coupling strength, which indicate that they are wired to serve different functions. We also describe the intrinsic default gait and a frequency-dependent coordination. The depressor motoneurons showed mostly similar characteristics throughout the network regardless of interganglia connectivity; whereas the characteristics of the levator motoneurons activity were mostly ganglion-dependent, and influenced by the presence of interganglia connectivity. Asymmetries were also found between the anterior and posterior homolog parts of the thoracic network, as well as between ascending and descending connections. Our analyses further discover a frequency-dependent inversion of the interganglia coordination from alternations between ipsilateral homolog oscillators to simultaneous activity. We present a detailed scheme of the network couplings, formulate coupling rules, and review a previously suggested model of connectivity in light of our new findings. Our data support the notion that the inter-hemiganglia coordination derives from the levator networks and their coupling with local depressor interneurons. Our findings also support a dominant role of the metathoracic ganglion and its ascending output in governing the anterior ganglia motor output during locomotion in the behaving animal.
Collapse
Affiliation(s)
- Izhak David
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Finetti L, Tiedemann L, Zhang X, Civolani S, Bernacchia G, Roeder T. Monoterpenes alter TAR1-driven physiology in Drosophila species. J Exp Biol 2021; 224:jeb232116. [PMID: 33234680 DOI: 10.1242/jeb.232116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022]
Abstract
Monoterpenes are molecules with insecticide properties whose mechanism of action is, however, not completely elucidated. Furthermore, they seem to be able to modulate the monoaminergic system and several behavioural aspects in insects. In particular, tyramine (TA) and octopamine (OA) and their associated receptors orchestrate physiological processes such as feeding, locomotion and metabolism. Here, we show that monoterpenes not only act as biopesticides in Drosophila species but also can cause complex behavioural alterations that require functional type 1 tyramine receptors (TAR1s). Variations in metabolic traits as well as locomotory activity were evaluated in both Drosophila suzukii and Drosophila melanogaster after treatment with three monoterpenes. A TAR1-defective D. melanogaster strain (TAR1PL00408) was used to better understand the relationships between the receptor and monoterpene-related behavioural changes. Immunohistochemistry analysis revealed that, in the D. melanogaster brain, TAR1 appeared to be mainly expressed in the pars intercerebralis, lateral horn, olfactory and optic lobes and suboesophageal ganglion lobes. In comparison to wild-type D. melanogaster, the TAR1PL00408 flies showed a phenotype characterized by higher triglyceride levels and food intake as well as lower locomotory activity. The monoterpenes, tested at sublethal concentrations, were able to induce a downregulation of the TAR1 coding gene in both Drosophila species. Furthermore, monoterpenes also altered the behaviour in wild-type D. suzukii and D. melanogaster 24 h after continuous monoterpene exposure. Interestingly, they were ineffective in modifying the physiological performance of TAR1-defective flies. In conclusion, it appears that monoterpenes not only act as biopesticides for Drosophila but also can interfere with Drosophila behaviour and metabolism in a TAR1-dependent fashion.
Collapse
Affiliation(s)
- Luca Finetti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Lasse Tiedemann
- Laboratory of Molecular Physiology, Department of Zoology, Kiel University, 24098 Kiel, Germany
| | - Xiaoying Zhang
- Laboratory of Molecular Physiology, Department of Zoology, Kiel University, 24098 Kiel, Germany
| | - Stefano Civolani
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- InnovaRicerca s.r.l. Monestirolo, 44124 Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Thomas Roeder
- Laboratory of Molecular Physiology, Department of Zoology, Kiel University, 24098 Kiel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), 24098 Kiel, Germany
| |
Collapse
|
6
|
Pop S, Chen CL, Sproston CJ, Kondo S, Ramdya P, Williams DW. Extensive and diverse patterns of cell death sculpt neural networks in insects. eLife 2020; 9:59566. [PMID: 32894223 PMCID: PMC7535934 DOI: 10.7554/elife.59566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/06/2020] [Indexed: 11/20/2022] Open
Abstract
Changes to the structure and function of neural networks are thought to underlie the evolutionary adaptation of animal behaviours. Among the many developmental phenomena that generate change programmed cell death (PCD) appears to play a key role. We show that cell death occurs continuously throughout insect neurogenesis and happens soon after neurons are born. Mimicking an evolutionary role for increasing cell numbers, we artificially block PCD in the medial neuroblast lineage in Drosophila melanogaster, which results in the production of ‘undead’ neurons with complex arborisations and distinct neurotransmitter identities. Activation of these ‘undead’ neurons and recordings of neural activity in behaving animals demonstrate that they are functional. Focusing on two dipterans which have lost flight during evolution we reveal that reductions in populations of flight interneurons are likely caused by increased cell death during development. Our findings suggest that the evolutionary modulation of death-based patterning could generate novel network configurations. Just like a sculptor chips away at a block of granite to make a statue, the nervous system reaches its mature state by eliminating neurons during development through a process known as programmed cell death. In vertebrates, this mechanism often involves newly born neurons shrivelling away and dying if they fail to connect with others during development. Most studies in insects have focused on the death of neurons that occurs at metamorphosis, during the transition between larva to adult, when cells which are no longer needed in the new life stage are eliminated. Pop et al. harnessed a newly designed genetic probe to point out that, in fruit flies, programmed cell death of neurons at metamorphosis is not the main mechanism through which cells die. Rather, the majority of cell death takes place as soon as neurons are born throughout all larval stages, when most of the adult nervous system is built. To gain further insight into the role of this ‘early’ cell death, the neurons were stopped from dying, showing that these cells were able to reach maturity and function. Together, these results suggest that early cell death may be a mechanism fine-tuned by evolution to shape the many and varied nervous systems of insects. To explore this, Pop et al. looked for hints of early cell death in relatives of fruit flies that are unable to fly: the swift lousefly and the bee lousefly. This analysis showed that early cell death is likely to occur in these two insects, but it follows different patterns than in the fruit fly, potentially targeting the neurons that would have controlled flight in these flies’ ancestors. Brains are the product of evolution: learning how neurons change their connections and adapt could help us understand how the brain works in health and disease. This knowledge may also be relevant to work on artificial intelligence, a discipline that often bases the building blocks and connections in artificial ‘brains’ on how neurons communicate with one another.
Collapse
Affiliation(s)
- Sinziana Pop
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Chin-Lin Chen
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Connor J Sproston
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Neuroethology of acoustic communication in field crickets - from signal generation to song recognition in an insect brain. Prog Neurobiol 2020; 194:101882. [PMID: 32673695 DOI: 10.1016/j.pneurobio.2020.101882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 11/22/2022]
Abstract
Field crickets are best known for the loud calling songs produced by males to attract conspecific females. This review aims to summarize the current knowledge of the neurobiological basis underlying the acoustic communication for mate finding in field crickets with emphasis on the recent research progress to understand the neuronal networks for motor pattern generation and auditory pattern recognition of the calling song in Gryllus bimaculatus. Strong scientific interest into the neural mechanisms underlying intraspecific communication has driven persistently advancing research efforts to study the male singing behaviour and female phonotaxis for mate finding in these insects. The growing neurobiological understanding also inspired many studies testing verifiable hypotheses in sensory ecology, bioacoustics and on the genetics and evolution of behaviour. Over last decades, acoustic communication in field crickets served as a very successful neuroethological model system. It has contributed significantly to the scientific process of establishing, reconsidering and refining fundamental concepts in behavioural neurosciences such as command neurons, central motor pattern generation, corollary discharge processing and pattern recognition by sensory feature detection, which are basic building blocks of our modern understanding on how nervous systems control and generate behaviour in all animals.
Collapse
|
8
|
Mantziaris C, Bockemühl T, Büschges A. Central pattern generating networks in insect locomotion. Dev Neurobiol 2020; 80:16-30. [PMID: 32128970 DOI: 10.1002/dneu.22738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/08/2022]
Abstract
Central pattern generators (CPGs) are neural circuits that based on their connectivity can generate rhythmic and patterned output in the absence of rhythmic external inputs. This property makes CPGs crucial elements in the generation of many kinds of rhythmic motor behaviors in insects, such as flying, walking, swimming, or crawling. Arguably representing the most diverse group of animals, insects utilize at least one of these types of locomotion during one stage of their ontogenesis. Insects have been extensively used to study the neural basis of rhythmic motor behaviors, and particularly the structure and operation of CPGs involved in locomotion. Here, we review insect locomotion with regard to flying, walking, and crawling, and we discuss the contribution of central pattern generation to these three forms of locomotion. In each case, we compare and contrast the topology and structure of the CPGs, and we point out how these factors are involved in the generation of the respective motor pattern. We focus on the importance of sensory information for establishing a functional motor output and we indicate behavior-specific adaptations. Furthermore, we report on the mechanisms underlying coordination between different body parts. Last but not least, by reviewing the state-of-the-art knowledge concerning the role of CPGs in insect locomotion, we endeavor to create a common ground, upon which future research in the field of motor control in insects can build.
Collapse
Affiliation(s)
- Charalampos Mantziaris
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Emanuel S, Kaiser M, Pflueger HJ, Libersat F. On the Role of the Head Ganglia in Posture and Walking in Insects. Front Physiol 2020; 11:135. [PMID: 32153430 PMCID: PMC7047666 DOI: 10.3389/fphys.2020.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/07/2020] [Indexed: 12/04/2022] Open
Abstract
In insects, locomotion is the result of rhythm generating thoracic circuits and their modulation by sensory reflexes and by inputs from the two head ganglia, the cerebral and the gnathal ganglia (GNG), which act as higher order neuronal centers playing different functions in the initiation, goal-direction, and maintenance of movement. Current knowledge on the various roles of major neuropiles of the cerebral ganglia (CRG), such as mushroom bodies (MB) and the central complex (CX), in particular, are discussed as well as the role of the GNG. Thoracic and head ganglia circuitries are connected by ascending and descending neurons. While less is known about the ascending neurons, recent studies in large insects and Drosophila have begun to unravel the identity of descending neurons and their appropriate roles in posture and locomotion. Descending inputs from the head ganglia are most important in initiating and modulating thoracic central pattern generating circuitries to achieve goal directed locomotion. In addition, the review will also deal with some known monoaminergic descending neurons which affect the motor circuits involved in posture and locomotion. In conclusion, we will present a few issues that have, until today, been little explored. For example, how and which descending neurons are selected to engage a specific motor behavior and how feedback from thoracic circuitry modulate the head ganglia circuitries. The review will discuss results from large insects, mainly locusts, crickets, and stick insects but will mostly focus on cockroaches and the fruit fly, Drosophila.
Collapse
Affiliation(s)
- Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maayan Kaiser
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hans-Joachim Pflueger
- Fachbereich Biologie Chemie Pharmazie, Institut für Biologie, Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
10
|
Schöneich S, Hedwig B. Feedforward discharges couple the singing central pattern generator and ventilation central pattern generator in the cricket abdominal central nervous system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:881-895. [PMID: 31691096 PMCID: PMC6863954 DOI: 10.1007/s00359-019-01377-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
We investigated the central nervous coordination between singing motor activity and abdominal ventilatory pumping in crickets. Fictive singing, with sensory feedback removed, was elicited by eserine-microinjection into the brain, and the motor activity underlying singing and abdominal ventilation was recorded with extracellular electrodes. During singing, expiratory abdominal muscle activity is tightly phase coupled to the chirping pattern. Occasional temporary desynchronization of the two motor patterns indicate discrete central pattern generator (CPG) networks that can operate independently. Intracellular recordings revealed a sub-threshold depolarization in phase with the ventilatory cycle in a singing-CPG interneuron, and in a ventilation-CPG interneuron an excitatory input in phase with each syllable of the chirps. Inhibitory synaptic inputs coupled to the syllables of the singing motor pattern were present in another ventilatory interneuron, which is not part of the ventilation-CPG. Our recordings suggest that the two centrally generated motor patterns are coordinated by reciprocal feedforward discharges from the singing-CPG to the ventilation-CPG and vice versa. Consequently, expiratory contraction of the abdomen usually occurs in phase with the chirps and ventilation accelerates during singing due to entrainment by the faster chirp cycle.
Collapse
Affiliation(s)
- Stefan Schöneich
- Department of Zoology, University of Cambridge, Cambridge, UK
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Truong NT, Phan HV, Park HC. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot. BIOINSPIRATION & BIOMIMETICS 2019; 14:036010. [PMID: 30658344 DOI: 10.1088/1748-3190/aafff5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Jumping insects such as fleas, froghoppers, grasshoppers, and locusts take off from the ground using a catapult mechanism to push their legs against the surface of the ground while using their pairs of flapping wings to propel them into the air. Such combination of jumping and flapping is expected as an efficient way to overcome unspecified terrain or avoid large obstacles. In this work, we present the conceptual design and verification of a bio-inspired flapping-wing-assisted jumping robot, named Jump-flapper, which mimics jumping insects' locomotion strategy. The robot, which is powered by only one miniature DC motor to implement the functions of jumping and flapping, is an integration of an inverted slider-crank mechanism for the structure of the legs, a dog-clutch mechanism for the winching system, and a rack-pinion mechanism for the flapping-wing system. A prototype of the robot is fabricated and experimentally tested to evaluate the integration and performance of the Jump-flapper. This 23 g robot with assisted flapping wings operating at approximately 19 Hz is capable of jumping to a height of approximately 0.9 m, showing about 30% improvement in the jumping height compared to that of the robot without assistance of the flapping wings. The benefits of the flapping-wing-assisted jumping system are also discussed throughout the study.
Collapse
Affiliation(s)
- Ngoc Thien Truong
- Department of Advanced Technology Fusion, Konkuk University, Seoul 05029, Republic of Korea. These authors contributed equally to this work as the co-first authors
| | | | | |
Collapse
|
12
|
Manjila SB, Kuruvilla M, Ferveur JF, Sane SP, Hasan G. Extended Flight Bouts Require Disinhibition from GABAergic Mushroom Body Neurons. Curr Biol 2019; 29:283-293.e5. [PMID: 30612904 DOI: 10.1016/j.cub.2018.11.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 11/27/2022]
Abstract
Insect flight is a complex behavior that requires the integration of multiple sensory inputs with flight motor output. Although previous genetic studies identified central brain monoaminergic neurons that modulate Drosophila flight, neuro-modulatory circuits underlying sustained flight bouts remain unexplored. Certain classes of dopaminergic and octopaminergic neurons that project to the mushroom body, a higher integrating center in the insect brain, are known to modify neuronal output based on contextual cues and thereby organismal behavior. This study focuses on how monoaminergic modulation of mushroom body GABAergic output neurons (MBONs) regulates the duration of flight bouts. Octopaminergic neurons in the sub-esophageal zone stimulate central dopaminergic neurons (protocerebral anterior medial, PAM) that project to GABAergic MBONs. Either inhibition of octopaminergic and dopaminergic neurons or activation of GABAergic MBONs reduces the duration of flight bouts. Moreover, activity in the PAM neurons inhibits the GABAergic MBONs. Our data suggest that disinhibition of the identified neural circuit very likely occurs after flight initiation and is required to maintain the "flight state" when searching for distant sites, possibly related to food sources, mating partners, or a suitable egg-laying site. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Steffy B Manjila
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Maria Kuruvilla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jean-Francois Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| |
Collapse
|
13
|
Kononenko NL, Hartfil S, Willer J, Ferch J, Wolfenberg H, Pflüger HJ. A population of descending tyraminergic/octopaminergic projection neurons of the insect deutocerebrum. J Comp Neurol 2018; 527:1027-1038. [PMID: 30444529 DOI: 10.1002/cne.24583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023]
Abstract
In this study, we describe a cluster of tyraminergic/octopaminergic neurons in the lateral dorsal deutocerebrum of desert locusts (Schistocerca gregaria) with descending axons to the abdominal ganglia. In the locust, these neurons synthesize octopamine from tyramine stress-dependently. Electrophysiological recordings in locusts reveal that they respond to mechanosensory touch stimuli delivered to various parts of the body including the antennae. A similar cluster of tyraminergic/octopaminergic neurons was also identified in the American cockroach (Periplaneta americana) and the pink winged stick insect (Sipyloidea sipylus). It is suggested that these neurons release octopamine in the ventral nerve cord ganglia and, most likely, convey information on arousal and/or stressful stimuli to neuronal circuits thus contributing to the many actions of octopamine in the central nervous system.
Collapse
Affiliation(s)
| | - Sergej Hartfil
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - Julia Willer
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - Jessica Ferch
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - Heike Wolfenberg
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | | |
Collapse
|
14
|
Knebel D, Rillich J, Nadler L, Pflüger HJ, Ayali A. The functional connectivity between the locust leg pattern generators and the subesophageal ganglion higher motor center. Neurosci Lett 2018; 692:77-82. [PMID: 30391322 DOI: 10.1016/j.neulet.2018.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 01/07/2023]
Abstract
Higher motor centers and central pattern generators (CPGs) interact in the control of coordinated leg movements during locomotion throughout the animal kingdom. The subesophageal ganglion (SEG) is one of the insect head ganglia reported to have a role in the control of walking behavior. Here we explored the functional relations between the SEG and the thoracic leg CPGs in the desert locust. Backfill staining revealed about 300 SEG descending interneurons (DINs) altogether. Recordings from an in-vitro isolated chain of thoracic ganglia, with intact or severed connections to the SEG, during pharmacological activation were used to determine how the SEG affects the centrally generated motor output to the legs. The SEG was demonstrated to both activate leg CPGs and synchronize their bilateral activity. The role of the SEG in insect locomotion is discussed in light of these findings.
Collapse
Affiliation(s)
- Daniel Knebel
- School of Zoology, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jan Rillich
- School of Zoology, Tel Aviv University, Tel Aviv, Israel; Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Leonard Nadler
- Institut für Neurobiologie, Freie Unversität Berlin, Berlin, Germany
| | | | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg H, Colomb J, Weber C, Ramesh N, Duch C, Biserova NM, Sigrist S, Pflüger HJ. Structural and Molecular Properties of Insect Type II Motor Axon Terminals. Front Syst Neurosci 2018; 12:5. [PMID: 29615874 PMCID: PMC5867341 DOI: 10.3389/fnsys.2018.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts (Schistocerca gregaria) or fruit flies (Drosophila melanogaster) across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ) or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP) only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches (“synaptopods”) but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011). Our starvation experiments of Drosophila-larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in “synaptopods”, the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007).
Collapse
Affiliation(s)
- Bettina Stocker
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Christina Bochow
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Christine Damrau
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Thomas Mathejczyk
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Heike Wolfenberg
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Julien Colomb
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Claudia Weber
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Niraja Ramesh
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Carsten Duch
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Natalia M Biserova
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Stephan Sigrist
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
16
|
Xu L, Jiang HB, Chen XF, Xiong Y, Lu XP, Pei YX, Smagghe G, Wang JJ. How Tyramine β-Hydroxylase Controls the Production of Octopamine, Modulating the Mobility of Beetles. Int J Mol Sci 2018; 19:E846. [PMID: 29538302 PMCID: PMC5877707 DOI: 10.3390/ijms19030846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022] Open
Abstract
Biogenic amines perform many kinds of important physiological functions in the central nervous system (CNS) of insects, acting as neuromodulators, neurotransmitters, and neurohormones. The five most abundant types of biogenic amines in invertebrates are dopamine, histamine, serotonin, tyramine, and octopamine (OA). However, in beetles, an important group of model and pest insects, the role of tyramine β-hydroxylase (TβH) in the OA biosynthesis pathway and the regulation of behavior remains unknown so far. We therefore investigated the molecular characterization and spatiotemporal expression profiles of TβH in red flour beetles (Triboliun castaneum). Most importantly, we detected the production of OA and measured the crawling speed of beetles after dsTcTβH injection. We concluded that TcTβH controls the biosynthesis amount of OA in the CNS, and this in turn modulates the mobility of the beetles. Our new results provided basic information about the key genes in the OA biosynthesis pathway of the beetles, and expanded our knowledge on the physiological functions of OA in insects.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Xiao-Feng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Ying Xiong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Yu-Xia Pei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Ryglewski S, Duch C, Altenhein B. Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase. Front Syst Neurosci 2017; 11:68. [PMID: 29021745 PMCID: PMC5624129 DOI: 10.3389/fnsys.2017.00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | |
Collapse
|
18
|
Antemann V, Pass G, Pflüger HJ. Octopaminergic innervation and a neurohaemal release site in the antennal heart of the locust Schistocerca gregaria. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:131-143. [DOI: 10.1007/s00359-017-1213-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 02/02/2023]
|
19
|
Knebel D, Ayali A, Pflüger HJ, Rillich J. Rigidity and Flexibility: The Central Basis of Inter-Leg Coordination in the Locust. Front Neural Circuits 2017; 10:112. [PMID: 28123358 PMCID: PMC5225121 DOI: 10.3389/fncir.2016.00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Many motor behaviors, and specifically locomotion, are the product of an intricate interplay between neuronal oscillators known as central pattern generators (CPGs), descending central commands, and sensory feedback loops. The relative contribution of each of these components to the final behavior determines the trade-off between fixed movements and those that are carefully adapted to the environment. Here we sought to decipher the endogenous, default, motor output of the CPG network controlling the locust legs, in the absence of any sensory or descending influences. We induced rhythmic activity in the leg CPGs in isolated nervous system preparations, using different application procedures of the muscarinic agonist pilocarpine. We found that the three thoracic ganglia, each controlling a pair of legs, have different inherent bilateral coupling. Furthermore, we found that the pharmacological activation of one ganglion is sufficient to induce activity in the other, untreated, ganglia. Each ganglion was thus capable to impart its own bilateral inherent pattern onto the other ganglia via a tight synchrony among the ipsilateral CPGs. By cutting a connective and severing the lateral-longitudinal connections, we were able to uncouple the oscillators’ activity. While the bilateral connections demonstrated a high modularity, the ipsilateral CPGs maintained a strict synchronized activity. These findings suggest that the central infrastructure behind locust walking features both rigid elements, which presumably support the generation of stereotypic orchestrated leg movements, and flexible elements, which might provide the central basis for adaptations to the environment and to higher motor commands.
Collapse
Affiliation(s)
- Daniel Knebel
- Department of Zoology, Tel Aviv UniversityTel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| | - Amir Ayali
- Department of Zoology, Tel Aviv UniversityTel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| | | | - Jan Rillich
- Department of Zoology, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
20
|
David I, Holmes P, Ayali A. Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres. Biol Open 2016; 5:1229-40. [PMID: 27422902 PMCID: PMC5051644 DOI: 10.1242/bio.018705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cockroaches are rapid and stable runners whose gaits emerge from the intricate, and not fully resolved, interplay between endogenous oscillatory pattern-generating networks and sensory feedback that shapes their rhythmic output. Here we studied the endogenous motor output of a brainless, deafferented preparation. We monitored the pilocarpine-induced rhythmic activity of levator and depressor motor neurons in the mesothoracic and metathoracic segments in order to reveal the oscillatory networks’ architecture and interactions. Data analyses included phase relations, latencies between and overlaps of rhythmic bursts, spike frequencies, and the dependence of these parameters on cycle frequency. We found that, overall, ipsilateral connections are stronger than contralateral ones. Our findings revealed asymmetries in connectivity among the different ganglia, in which meta-to-mesothoracic ascending coupling is stronger than meso-to-metathoracic descending coupling. Within-ganglion coupling between the metathoracic hemiganglia is stronger than that in the mesothoracic ganglion. We also report differences in the role and mode of operation of homologue network units (manifested by levator and depressor nerve activity). Many observed characteristics are similar to those exhibited by intact animals, suggesting a dominant role for feedforward control in cockroach locomotion. Based on these data we posit a connectivity scheme among components of the locomotion pattern generating system. Summary: Detailed analysis of fictive motor patterns unveils endogenous characteristics of the cockroach thoracic locomotion control networks and their interrelations and enables an explanatory connectivity model.
Collapse
Affiliation(s)
- Izhak David
- Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Philip Holmes
- Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Amir Ayali
- Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
21
|
Rillich J, Stevenson PA. Releasing stimuli and aggression in crickets: octopamine promotes escalation and maintenance but not initiation. Front Behav Neurosci 2015; 9:95. [PMID: 25954171 PMCID: PMC4404879 DOI: 10.3389/fnbeh.2015.00095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
Biogenic amines have widespread effects on numerous behaviors, but their natural functions are often unclear. We investigated the role of octopamine (OA), the invertebrate analog of noradrenaline, on initiation and maintenance of aggression in male crickets of different social status. The key-releasing stimulus for aggression is antennal fencing between males, a behavior occurring naturally on initial contact. We show that mechanical antennal stimulation (AS) alone is sufficient to initiate an aggressive response (mandible threat display). The efficacy of AS as an aggression releasing stimulus was augmented in winners of a previous fight, but unaffected in losers. The efficacy of AS was not, however, influenced by OA receptor (OAR) agonists or antagonists, regardless of social status. Additional experiments indicate that the efficacy of AS is also not influenced by dopamine (DA) or serotonin (5HT). In addition to initiating an aggressive response, prior AS enhanced aggression exhibited in subsequent fights, whereby AS with a male antenna was now necessary, indicating a role for male contact pheromones. This priming effect of male-AS on subsequent aggression was dependent on OA since it was blocked by OAR-antagonists, and enhanced by OAR-agonists. Together our data reveal that neither OA, DA nor 5HT are required for initiating aggression in crickets, nor do these amines influence the efficacy of the natural releasing stimulus to initiate aggression. OA's natural function is restricted to promoting escalation and maintenance of aggression once initiated, and this can be invoked by numerous experiences, including prior contact with a male antenna as shown here.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Neurobiology, Free University of Berlin Berlin, Germany
| | | |
Collapse
|
22
|
Sadaf S, Hasan G. Serotonergic neurons of the Drosophila air-puff-stimulated flight circuit. J Biosci 2015; 39:575-83. [PMID: 25116612 DOI: 10.1007/s12038-014-9449-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Monoaminergic modulation of insect flight is well documented. Recently, we demonstrated that synaptic activity is required in serotonergic neurons for Drosophila flight. This requirement is during early pupal development, when the flight circuit is formed, as well as in adults. Using a Ca2+-activity-based GFP reporter, here we show that serotonergic neurons in both prothoracic and mesothoracic segments are activated upon air-puff-stimulated flight. Moreover ectopic activation of the entire serotonergic system by TrpA1, a heat activated cation channel, induces flight, even in the absence of an air-puff stimulus.
Collapse
Affiliation(s)
- Sufia Sadaf
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | | |
Collapse
|
23
|
Ayali A, Couzin-Fuchs E, David I, Gal O, Holmes P, Knebel D. Sensory feedback in cockroach locomotion: current knowledge and open questions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:841-50. [DOI: 10.1007/s00359-014-0968-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
24
|
Rillich J, Stevenson PA. A fighter's comeback: dopamine is necessary for recovery of aggression after social defeat in crickets. Horm Behav 2014; 66:696-704. [PMID: 25268421 DOI: 10.1016/j.yhbeh.2014.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 09/23/2014] [Indexed: 11/22/2022]
Abstract
Social defeat, i.e. losing an agonistic dispute with a conspecific, is followed by a period of suppressed aggressiveness in many animal species, and is generally regarded as a major stressor, which may play a role in psychiatric disorders such as depression and post-traumatic stress disorder. Despite numerous animal models, the mechanisms underlying loser depression and subsequent recovery are largely unknown. This study on crickets is the first to show that a neuromodulator, dopamine (DA), is necessary for recovery of aggression after social defeat. Crickets avoid any conspecific male just after defeat, but regain their aggressiveness over 3 h. This recovery was prohibited after depleting nervous stores of DA and octopamine (OA, the invertebrate analogue of noradrenaline) with α-methyl-tyrosine (AMT). Loser recovery was also prohibited by the insect DA-receptor (DAR) antagonist fluphenazine, but not the OA-receptor (OAR) blocker epinastine, or yohimbine, which blocks receptors for OA's precursor tyramine. Conversely, aggression was restored prematurely in both untreated and amine depleted losers given either chlordimeform (CDM), a tissue permeable OAR-agonist, or the DA-metabolite homovanillyl alcohol (HVA), a component of the honeybee queen mandibular pheromone. As in honeybees, HVA acts in crickets as a DAR-agonist since its aggression promoting effect on losers was selectively blocked by the DAR-antagonist, but not by the OAR-antagonist. Conversely, CDM's aggression promoting effect was selectively blocked by the OAR-antagonist, but not the DAR-antagonist. Hence, only DA is necessary for recovery of aggressiveness after social defeat, although OA can promote loser aggression independently to enable experience dependent adaptive responses.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Neurobiology, Free University of Berlin, Koenigin-Luise-Str. 28-30, 14195 Berlin, Germany
| | - Paul A Stevenson
- Institute for Biology, Leipzig University, Talstr. 33, 04103 Leipzig, Germany.
| |
Collapse
|
25
|
Wong R, Lange AB. Octopamine modulates a central pattern generator associated with egg-laying in the locust, Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:1-8. [PMID: 24530620 DOI: 10.1016/j.jinsphys.2014.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
Egg-laying in Locusta migratoria involves the control of a variety of complex behavioural patterns including those that regulate digging of the oviposition hole and retention of eggs during digging. These two behavioural patterns are under the control of central pattern generators (CPGs). The digging and egg-retention CPGs are coordinated and integrated with overlapping locations of neural substrate within the VIIth and VIIIth abdominal ganglia of the central nervous system (CNS). In fact, the egg-retention CPG of the VIIth abdominal ganglion is involved in both egg-retention and protraction of the abdomen during digging. The biogenic amine, octopamine, has peripheral effects on oviduct muscle, relaxing basal tension of the lateral and upper common oviduct and enabling egg passage. Here we show that octopamine also modulates the pattern of the egg-retention CPG by altering the motor pattern that controls the external ventral protractor of the VIIth abdominal segment. There is no change in the motor pattern that goes to the oviducts. Octopamine decreased the frequency of the largest amplitude action potential and decreased burst duration while leading to an increase in cycle duration and interburst interval. The effects of octopamine were greatly reduced in the presence of the α-adrenergic blocker, phentolamine, indicating that the action of octopamine was via a receptor. Thus, octopamine orchestrates events that can lead to oviposition, centrally inhibiting the digging behavior and peripherally relaxing the lateral and common oviducts to enable egg-laying.
Collapse
Affiliation(s)
- Raymond Wong
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada
| | - Angela B Lange
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|