1
|
Castro-Quintas A, Palma-Gudiel H, Eixarch E, San Martín González N, Röh S, Sauer S, Rex-Haffner M, Monteserin-Garcia JL, de la Fuente-Tomás L, Crispi F, Garcia Portilla MP, Binder EB, Fañanas L. Placental epigenetic signatures of maternal distress in glucocorticoid-related genes and newborn outcomes: A study of Spanish primiparous women. Eur Neuropsychopharmacol 2025; 90:36-47. [PMID: 39504602 DOI: 10.1016/j.euroneuro.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Maternal stress during pregnancy can impact offspring health, increasing the risk of neuropsychiatric disorders. The human placenta plays a crucial role in understanding this effect, influencing fetal programming as it connects maternal and fetal circulation. Our hypothesis centers on maternal stress influencing children's outcomes through placental DNA methylation, targeting three cortisol-regulating genes: NR3C1, FKBP5, and HSD11B2. In this pilot study, chorionic villi and maternal decidua placental layers from 45 mother-infant dyads (divided into two groups based on high/low maternal stress exposure) were analyzed for DNA methylation at the genes of interest via targeted bisulfite sequencing. Pregnant women provided four saliva samples throughout a day for cortisol determinations and were assessed for the presence of depressive symptoms at each of the three trimesters of pregnancy. Newborns underwent neurodevelopmental assessments and salivary cortisol evaluations at 7 weeks. Increased maternal diurnal cortisol levels in the first trimester of pregnancy was significantly associated with elevated DNA methylation at exon 1D of the NR3C1 gene and lower DNA methylation at intron 7 of the FKBP5 gene, both in chorionic villi samples. Elevated DNA methylation at introns 1 and 7 of FKBP5 in the maternal decidua were strongly linked to an anticipated delivery. DNA methylation at the HSD11B2 promoter region was uniformly low across all placental samples. No associations with newborn neurodevelopment were found. These results emphasize the importance of exploring layer-specific methylation differences at distinct pregnancy stages, highlighting the complex interplay between maternal stress, placental epigenetic modifications, and fetal development throughout the prenatal period.
Collapse
Affiliation(s)
- Agueda Castro-Quintas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain
| | - Helena Palma-Gudiel
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain
| | - Elisenda Eixarch
- Department of Surgery and Surgical specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research on Rare Diseases (CIBER of Rare Diseases, CIBERER), Madrid, Spain
| | - Nerea San Martín González
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain
| | - Simone Röh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jose Luis Monteserin-Garcia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain
| | - Lorena de la Fuente-Tomás
- Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain; Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Fatima Crispi
- Department of Surgery and Surgical specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research on Rare Diseases (CIBER of Rare Diseases, CIBERER), Madrid, Spain
| | - Maria Paz Garcia Portilla
- Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain; Department of Psychiatry, University of Oviedo, Oviedo, Spain; Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lourdes Fañanas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain.
| |
Collapse
|
2
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|
3
|
Svigkou A, Katsi V, Kordalis VG, Tsioufis K. The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy. Int J Mol Sci 2024; 25:5455. [PMID: 38791492 PMCID: PMC11121482 DOI: 10.3390/ijms25105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The review examines the impact of maternal preeclampsia (PE) on the cardiometabolic and cardiovascular health of offspring. PE, a hypertensive disorder of pregnancy, is responsible for 2 to 8% of pregnancy-related complications. It significantly contributes to adverse outcomes for their infants, affecting the time of birth, the birth weight, and cardiometabolic risk factors such as blood pressure, body mass index (BMI), abdominal obesity, lipid profiles, glucose, and insulin. Exposure to PE in utero predisposes offspring to an increased risk of cardiometabolic diseases (CMD) and cardiovascular diseases (CVD) through mechanisms that are not fully understood. The incidence of CMD and CVD is constantly increasing, whereas CVD is the main cause of morbidity and mortality globally. A complex interplay of genes, environment, and developmental programming is a plausible explanation for the development of endothelial dysfunction, which leads to atherosclerosis and CVD. The underlying molecular mechanisms are angiogenic imbalance, inflammation, alterations in the renin-angiotensin-aldosterone system (RAAS), endothelium-derived components, serotonin dysregulation, oxidative stress, and activation of both the hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis. Moreover, the potential role of epigenetic factors, such as DNA methylation and microRNAs as mediators of these effects is emphasized, suggesting avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
| | - Vasiliki Katsi
- Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Vasilios G. Kordalis
- School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Konstantinos Tsioufis
- Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| |
Collapse
|
4
|
Flowers AE, Gonzalez TL, Wang Y, Santiskulvong C, Clark EL, Novoa A, Jefferies CA, Lawrenson K, Chan JL, Joshi NV, Zhu Y, Tseng HR, Wang ET, Ishimori M, Karumanchi SA, Williams J, Pisarska MD. High-throughput mRNA sequencing of human placenta shows sex differences across gestation. Placenta 2024; 150:8-21. [PMID: 38537412 PMCID: PMC11262790 DOI: 10.1016/j.placenta.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION Fetal sex affects fetal and maternal health outcomes in pregnancy, but this connection remains poorly understood. As the placenta is the route of fetomaternal communication and derives from the fetal genome, placental gene expression sex differences may explain these outcomes. OBJECTIVES We utilized next generation sequencing to study the normal human placenta in both sexes in first and third trimester to generate a normative transcriptome based on sex and gestation. STUDY DESIGN We analyzed 124 first trimester (T1, 59 female and 65 male) and 43 third trimester (T3, 18 female and 25 male) samples for sex differences within each trimester and sex-specific gestational differences. RESULTS Placenta shows more significant sexual dimorphism in T1, with 94 T1 and 26 T3 differentially expressed genes (DEGs). The sex chromosomes contributed 60.6% of DEGs in T1 and 80.8% of DEGs in T3, excluding X/Y pseudoautosomal regions. There were 6 DEGs from the pseudoautosomal regions, only significant in T1 and all upregulated in males. The distribution of DEGs on the X chromosome suggests genes on Xp (the short arm) may be particularly important in placental sex differences. Dosage compensation analysis of X/Y homolog genes shows expression is primarily contributed by the X chromosome. In sex-specific analyses of first versus third trimester, there were 2815 DEGs common to both sexes upregulated in T1, and 3263 common DEGs upregulated in T3. There were 7 female-exclusive DEGs upregulated in T1, 15 female-exclusive DEGs upregulated in T3, 10 male-exclusive DEGs upregulated in T1, and 20 male-exclusive DEGs upregulated in T3. DISCUSSION This is the largest cohort of placentas across gestation from healthy pregnancies defining the normative sex dimorphic gene expression and sex common, sex specific and sex exclusive gene expression across gestation. The first trimester has the most sexually dimorphic transcripts, and the majority were upregulated in females compared to males in both trimesters. The short arm of the X chromosome and the pseudoautosomal region is particularly critical in defining sex differences in the first trimester placenta. As pregnancy is a dynamic state, sex specific DEGs across gestation may contribute to sex dimorphic changes in overall outcomes.
Collapse
Affiliation(s)
- Amy E Flowers
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Tania L Gonzalez
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yizhou Wang
- Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ekaterina L Clark
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Allynson Novoa
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Caroline A Jefferies
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Kate Lawrenson
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nikhil V Joshi
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yazhen Zhu
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA; California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mariko Ishimori
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - John Williams
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Fan W, Mao Y, Wu L, Feng P, Zhang X, Hu J, Jin Y, Yang X, Li H, Liu Q, Peng H. Association between CORIN promoter methylation and hypertensive disorders of pregnancy - A nested case-control study. Placenta 2024; 148:77-83. [PMID: 38417305 DOI: 10.1016/j.placenta.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
INTRODUCTION Corin protein and its coding gene variants have been associated with hypertensive disorders of pregnancy (HDP), but the underlying mechanisms are unclear. As a mediator linking fixed genome with the dynamic environment, DNA methylation at the CORIN gene may link corin with HDP but not has been studied. This study aimed to examine whether CORIN promoter methylation and HDP in Chinese pregnant women. METHODS Based on a cohort of Chinese pregnant women, we designed a nested case-control study including 196 cases with HDP and 200 healthy controls. DNA methylation levels in the CORIN promoter were quantified by pyrosequencing using peripheral blood before 20 gestational weeks. The association between DNA methylation in CORIN promoter and HDP was systemically examined by single CpG association analysis, followed by gene-based analysis. Multiple testing was controlled by the false discovery rate (FDR) method. RESULTS The single CpG association analysis found that, among the 5 CpG sites assayed, hypermethylation at one CpG site (Chr4:47839945) was significantly associated with HDP (OR = 1.94, raw P = 0.020), but the significance did not survive for multiple testing correction (FDR-P = 0.100). The gene-based association analysis found that DNA methylation of the 5 CpG sites was jointly associated with HDP (raw P = 0.003). In addition to HDP, CORIN promoter methylation was also significantly associated with dynamic blood pressure during pregnancy (raw P < 0.05). DISCUSSION Hypermethylation in CORIN promoter at early pregnancy was associated with the risk of HDP during late pregnancy in Chinese women. However, further evidence is required to establish the causality between CORIN promoter methylation and HDP.
Collapse
Affiliation(s)
- Wenxiu Fan
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Mao
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Obstetrics and Gynecology, The First People's Hospital of Kunshan, Suzhou, China
| | - Lei Wu
- Department of Maternal and Child Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - Pei Feng
- Department of Community Health Care, Maternal and Child Health Bureau of Kunshan, Suzhou, China
| | - Xueyang Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianwei Hu
- Department of Community Health Care, Maternal and Child Health Bureau of Kunshan, Suzhou, China
| | - Yibing Jin
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiangdong Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongmei Li
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qin Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Obstetrics and Gynecology, The First People's Hospital of Kunshan, Suzhou, China.
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Stylianou N, Sebina I, Matigian N, Monkman J, Doehler H, Röhl J, Allenby M, Nam A, Pan L, Rockstroh A, Sadeghirad H, Chung K, Sobanski T, O'Byrne K, Almeida ACSF, Rebutini PZ, Machado‐Souza C, Stonoga ETS, Warkiani ME, Salomon C, Short K, McClements L, de Noronha L, Huang R, Belz GT, Souza‐Fonseca‐Guimaraes F, Clifton V, Kulasinghe A. Whole transcriptome profiling of placental pathobiology in SARS-CoV-2 pregnancies identifies placental dysfunction signatures. Clin Transl Immunology 2024; 13:e1488. [PMID: 38322491 PMCID: PMC10846628 DOI: 10.1002/cti2.1488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Objectives Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus infection in pregnancy is associated with higher incidence of placental dysfunction, referred to by a few studies as a 'preeclampsia-like syndrome'. However, the mechanisms underpinning SARS-CoV-2-induced placental malfunction are still unclear. Here, we investigated whether the transcriptional architecture of the placenta is altered in response to SARS-CoV-2 infection. Methods We utilised whole-transcriptome, digital spatial profiling, to examine gene expression patterns in placental tissues from participants who contracted SARS-CoV-2 in the third trimester of their pregnancy (n = 7) and those collected prior to the start of the coronavirus disease 2019 (COVID-19) pandemic (n = 9). Results Through comprehensive spatial transcriptomic analyses of the trophoblast and villous core stromal cell subpopulations in the placenta, we identified SARS-CoV-2 to promote signatures associated with hypoxia and placental dysfunction. Notably, genes associated with vasodilation (NOS3), oxidative stress (GDF15, CRH) and preeclampsia (FLT1, EGFR, KISS1, PAPPA2) were enriched with SARS-CoV-2. Pathways related to increased nutrient uptake, vascular tension, hypertension and inflammation were also enriched in SARS-CoV-2 samples compared to uninfected controls. Conclusions Our findings demonstrate the utility of spatially resolved transcriptomic analysis in defining the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy, particularly its role in placental dysfunction. Furthermore, this study highlights the significance of digital spatial profiling in mapping the intricate crosstalk between trophoblasts and villous core stromal cells, thus shedding light on pathways associated with placental dysfunction in pregnancies with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nataly Stylianou
- Australian Prostate Cancer Research Centre – Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Ismail Sebina
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | | | - James Monkman
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Hadeel Doehler
- Australian Prostate Cancer Research Centre – Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Joan Röhl
- Faculty of Health Sciences and MedicineBond UniversityRobinaQLDAustralia
| | - Mark Allenby
- BioMimetic Systems Engineering Lab, School of Chemical EngineeringUniversity of Queensland (UQ)St LuciaQLDAustralia
| | - Andy Nam
- Nanostring Technologies, Inc.SeattleWAUSA
| | - Liuliu Pan
- Nanostring Technologies, Inc.SeattleWAUSA
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre – Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Kimberly Chung
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Thais Sobanski
- Australian Prostate Cancer Research Centre – Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Ken O'Byrne
- Princess Alexandra HospitalWoolloongabbaQLDAustralia
| | | | - Patricia Zadorosnei Rebutini
- Postgraduate Program of Health Sciences, School of MedicinePontifícia Universidade Católica do Paraná ´ –PUCPRCuritibaBrazil
| | - Cleber Machado‐Souza
- Postgraduate Program in Biotechnology Applied in Health of Children and AdolescentInstituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno PríncipeCuritibaBrazil
| | | | - Majid E Warkiani
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Kirsty Short
- School of Chemistry and Molecular Biosciences, Faculty of ScienceThe University of QueenslandSt LuciaQLDAustralia
| | - Lana McClements
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Lucia de Noronha
- Postgraduate Program of Health Sciences, School of MedicinePontifícia Universidade Católica do Paraná ´ –PUCPRCuritibaBrazil
| | - Ruby Huang
- School of Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Gabrielle T Belz
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | | | - Vicki Clifton
- Mater Medical Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
7
|
Zhang H, Zha X, Zhang B, Zheng Y, Liu X, Elsabagh M, Ma Y, Wang H, Shu G, Wang M. Dietary rumen-protected L-arginine or N-carbamylglutamate enhances placental amino acid transport and suppresses angiogenesis and steroid anabolism in underfed pregnant ewes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:149-158. [PMID: 38023379 PMCID: PMC10679858 DOI: 10.1016/j.aninu.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023]
Abstract
This study aimed to investigate the effects of dietary supplementation of underfed Hu ewes from d 35 to 110 of gestation with either rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) on placental amino acid (AA) transport, angiogenic gene expression, and steroid anabolism. On d 35 of gestation, 32 Hu ewes carrying twin fetuses were randomly divided into four treatment groups, each consisting of eight ewes, and were fed the following diets: A diet providing 100% of NRC's nutrient requirements for pregnant ewes (CON); A diet providing 50% of NRC's nutrient requirements for pregnant ewes (RES); RES diet plus 5 g/d NCG (RES + NCG); or RES diet plus 20 g/d RP-Arg (RES + ARG). On the d 110 of pregnancy, blood samples were taken from the mother, and samples were collected from type A cotyledons (COT; the fetal portions of the placenta). The levels of 17β-estradiol and progesterone in the maternal serum and both the capillary area density (CAD) and capillary surface density (CSD) in type A COT were decreased in response to Arg or NCG supplementation when compared to the RES group. The concentrations of arginine, leucine, putrescine and spermidine in type A COT were higher (P < 0.05) in the RES + ARG or RES + NCG group than in the RES group. The mRNA expression levels of inducible nitric oxide synthase (iNOS) and solute carrier family 15, member 1 (SLC15A1) were increased (P < 0.05) while those of progesterone receptor (PGR) and fibroblast growth factor 2 (FGF2) were decreased in type A COT by supplementation with either NCG or RP-Arg compared to the RES group. The results suggest that providing underfed pregnant ewes from d 35 to 110 of gestation with a diet supplemented with NCG or RP-Arg improves placental AA transport, and reduces the expression of angiogenic growth factor genes and steroid anabolism, leading to better fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guihua Shu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Bian J, Zhao J, Zhao Y, Hao X, He S, Li Y, Huang L. Impact of individual factors on DNA methylation of drug metabolism genes: A systematic review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:401-415. [PMID: 37522536 DOI: 10.1002/em.22567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Individual differences in drug response have always existed in clinical treatment. Many non-genetic factors show non-negligible impacts on personalized medicine. Emerging studies have demonstrated epigenetic could connect non-genetic factors and individual treatment differences. We used systematic retrieval methods and reviewed studies that showed individual factors' impact on DNA methylation of drug metabolism genes. In total, 68 studies were included, and half (n = 36) were cohort studies. Six aspects of individual factors were summarized from the perspective of personalized medicine: parental exposure, environmental pollutants exposure, obesity and diet, drugs, gender and others. The most research (n = 11) focused on ABCG1 methylation. The majority of studies showed non-genetic factors could result in a significant DNA methylation alteration in drug metabolism genes, which subsequently affects the pharmacokinetic processes. However, the underlying mechanism remained unknown. Finally, some viewpoints were presented for future research.
Collapse
Affiliation(s)
- Jialu Bian
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Jinxia Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Shiyu He
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yuanyuan Li
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Lin Huang
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| |
Collapse
|
9
|
Jiang L, Chang R, Liu J, Xin H. Methylation-based epigenetic studies and gene integration analysis of preeclampsia. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1342. [PMID: 36660680 PMCID: PMC9843334 DOI: 10.21037/atm-22-5556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Background Preeclampsia (PE) is a multi-factor and multi-mechanism disease, which may jeopardize the life safety of affected pregnant women and fetuses. Our study aimed to detect the potential molecular indicators of PE that might be helpful for its diagnosis and treatment. Methods Methylation assay of PE and normal pregnancies placental biopsies was analyzed using the Illumina Human Methylation-27 Assay. Differentially expressed genes (DEGs) were analyzed using R-DESeq2 software. Subsequently, the relationship between DNA methylation genes and DEGs were evaluated. Furthermore, immunohistochemical (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation analyses were conducted for the hub genes. Results These hub genes (including PLXNB1, PMCH, PPARG, GOPC, CD79A, and MME) were found to be differentially methylated genes and DEGs. Further analysis revealed that PPARG, CD79A, and PLXNB1 may be diagnostic gene markers for PE; down-regulation of PPARG expression was closely correlated with the development of PE. The IHC analysis demonstrated that the expression levels of PLXNB1, PMCH, GOPC, CD79A, and MME genes were increased, whereas that of PPARG was decreased in PE tissues. The PCR results showed that PLXNB1, PMCH, GOPC, CD79a, and MME were upregulated, whereas PPARG was downregulated. The results of the 2 experiments were consistent with those of bioinformatics analysis. Conclusions The molecular indicators identified in this study could facilitate the development of potential biomarkers and therapeutic targets for PE.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China;,Department of Obstetrics, Shijiazhuang Maternity and Child Health Care Hospital, Shijiazhuang, China
| | - Ruijing Chang
- Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Liu
- Department of Obstetrics, Shijiazhuang Maternity and Child Health Care Hospital, Shijiazhuang, China
| | - Hong Xin
- Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Feng Y, Lian X, Guo K, Zhang G, Huang X. A comprehensive analysis of metabolomics and transcriptomics to reveal major metabolic pathways and potential biomarkers of human preeclampsia placenta. Front Genet 2022; 13:1010657. [PMID: 36263435 PMCID: PMC9574103 DOI: 10.3389/fgene.2022.1010657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The etiology of preeclampsia (PE) remains unclear. With the utilization of metabolomics, dysregulated production of several metabolic components in human plasma, such as lipids, amino acids, androgens and estrogens, was found to be important in the pathogenesis of PE. Transcriptomics adds more in-depth information, and the integration of transcriptomics and metabolomics may yield further insight into PE pathogenesis than either one alone.Objectives: We investigated the placental metabolomics and transcriptomics of PE patients to identify affected metabolic pathways and potential biological targets for exploring the disease pathogenesis.Methods: Integrated transcriptomics and metabolomics were used to analyze five paired human placentas from patients with severe PE and normal pregnancies. This was followed by further validation of our findings in a publicly available dataset of 173 PE vs. 157 control placentas. In addition, weighted gene coexpression network construction was performed to assess the correlation between genetic alterations and diseases.Results: We identified 66 and 41 differentially altered metabolites in negative and positive ion modes, respectively, in the PE group compared to the control group, and found 2,560 differentially expressed genes. Several pathways were aberrantly altered in the PE placenta at both the metabolic and transcriptional levels, including steroid hormone biosynthesis, the cAMP signaling pathway, neuroactive ligand–receptor interactions, taste transduction and prion diseases. Additionally, we found 11 differential metabolites and 11 differentially expressed genes involved in the steroid hormone biosynthesis pathway, indicating impaired metabolism of steroid hormones in the PE placenta. Furthermore, we found that CYP11A1, HSD3B2, and HSD17B6 are highly correlated with diseases.Conclusion: Our findings provide a profile of the dysregulated steroid hormone biosynthesis in PE placenta, we observed a dysregulated cortisol-to-cortisone ratio, testosterone accumulation, decreased testosterone downstream metabolites, impaired production of estrone and estriol, and aberrant hydroxylation and methylation of estradiol. Disorders of placental steroid hormone metabolism might be a consequence or a compensatory change in pathological placentation in PE, which underscores the need to investigate the physiology of steroid hormone metabolites in the etiology of PE.
Collapse
Affiliation(s)
- Yan Feng
- Fetal Care Center, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinlei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Kaimin Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guanglan Zhang
- Fetal Care Center, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuan Huang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xuan Huang,
| |
Collapse
|
11
|
Meshchaninov VN, Tsyvian PB, Myakotnykh VS, Kovtun OP, Shcherbakov DL, Blagodareva MS. Ontogenetic Principles of Accelerated Aging and the Prospects for Its Prevention and Treatment. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Placental dysfunction: The core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta 2022; 126:224-232. [PMID: 35872512 DOI: 10.1016/j.placenta.2022.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Preeclampsia (PE) is a leading condition threatening pregnant women and their offspring. The offspring of PE pregnancies have a high risk of poor neurodevelopmental outcomes and neuropsychological diseases later in life. However, the pathophysiology and pathogenesis of poor neurodevelopment remain undetermined. Abnormal placental functions are at the core of most PE cases, and recent research evidence supports that the placenta plays an important role in fetal brain development. Here, we summarize the relationship between abnormal fetal brain development and placental dysfunction in PE conditions, which include the dysfunction of nutrient and gas-waste exchange, impaired angiogenesis stimulation, abnormal neurotransmitter regulation, disrupted special protectors, and immune disorders. All these factors could lead to poor neurodevelopmental outcomes.
Collapse
|
13
|
Carpenter JR, Jablonski KA, Koncinsky J, Varner MW, Gyamfi-Bannerman C, Joss-Moore LA. Antenatal Steroids and Cord Blood T-cell Glucocorticoid Receptor DNA Methylation and Exon 1 Splicing. Reprod Sci 2022; 29:1513-1523. [PMID: 35146694 PMCID: PMC9010373 DOI: 10.1007/s43032-022-00859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/18/2022] [Indexed: 02/03/2023]
Abstract
Antenatal administration of glucocorticoids such as betamethasone (BMZ) during the late preterm period improves neonatal respiratory outcomes. However, glucocorticoids may elicit programming effects on immune function and gene regulation. Here, we test the hypothesis that exposure to antenatal BMZ alters cord blood immune cell composition in association with altered DNA methylation and alternatively expressed Exon 1 transcripts of the glucocorticoid receptor (GR) gene in cord blood CD4+ T-cells. Cord blood was collected from 51 subjects in the Antenatal Late Preterm Steroids Trial: 27 BMZ, 24 placebo. Proportions of leukocytes were compared between BMZ and placebo. In CD4+ T-cells, methylation at CpG sites in the GR promoter regions and expression of GR mRNA exon 1 variants were compared between BMZ and placebo. BMZ was associated with an increase in granulocytes (51.6% vs. 44.7% p = 0.03) and a decrease in lymphocytes (36.8% vs. 43.0% p = 0.04) as a percent of the leukocyte population vs. placebo. Neither GR methylation nor exon 1 transcript levels differed between groups. BMZ is associated with altered cord blood leukocyte proportions, although no associated alterations in GR methylation were observed.
Collapse
Affiliation(s)
| | - Kathleen A. Jablonski
- Milken School of Public Health, Biostatistics Center, George Washington University, Washington, D.C, USA
| | | | - Michael W. Varner
- Obstetrics & Gynecology, University of Utah, Salt Lake City, Utah, USA
| | | | - Lisa A. Joss-Moore
- Pediatrics, University of Utah, Salt Lake City, Utah, USA,Corresponding author: Lisa Joss-Moore, Ph.D., University of Utah, Department of Pediatrics, 295 Chipeta Way, Salt Lake City, Utah, 84108, USA, Ph: 1-801-213-3494,
| | | |
Collapse
|
14
|
Barrett ES, Corsetti M, Day D, Thurston SW, Loftus CT, Karr CJ, Kannan K, LeWinn KZ, Smith AK, Smith R, Tylavsky FA, Bush NR, Sathyanarayana S. Prenatal phthalate exposure in relation to placental corticotropin releasing hormone (pCRH) in the CANDLE cohort. ENVIRONMENT INTERNATIONAL 2022; 160:107078. [PMID: 35007898 PMCID: PMC8821329 DOI: 10.1016/j.envint.2022.107078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 06/05/2023]
Abstract
CONTEXT Phthalates may disrupt maternal-fetal-placental endocrine pathways, affecting pregnancy outcomes and child development. Placental corticotropin releasing hormone (pCRH) is critical for healthy pregnancy and child development, but understudied as a target of endocrine disruption. OBJECTIVE To examine phthalate metabolite concentrations (as mixtures and individually) in relation to pCRH. DESIGN Secondary data analysis from a prospective cohort study. SETTING Prenatal clinics in Tennessee, USA. PATIENTS 1018 pregnant women (61.4% non-Hispanic Black, 32% non-Hispanic White, 6.6% other) participated in the CANDLE study and provided data. Inclusion criteria included: low-medical-risk singleton pregnancy, age 16-40, and gestational weeks 16-29. INTERVENTION None. MAIN OUTCOME MEASURES Plasma pCRH at two visits (mean gestational ages 23.0 and 31.8 weeks) and change in pCRH between visits (ΔpCRH). RESULTS In weighted quantile sums (WQS) regression models, phthalate mixtures were associated with higher pCRH at Visit 1 (β = 0.07, 95 %CI: 0.02, 0.11) but lower pCRH at Visit 2 (β = -0.08, 95 %CI: -0.14, -0.02). In stratified analyses, among women with gestational diabetes (n = 59), phthalate mixtures were associated with lower pCRH at Visit 1 (β = -0.17, 95 %CI: -0.35, 0.0006) and Visit 2 (β = -0.35, 95 %CI: -0.50, -0.19), as well as greater ΔpCRH (β = 0.16, 95 %CI: 0.07, 0.25). Among women with gestational hypertension (n = 102), phthalate mixtures were associated with higher pCRH at Visit 1 (β = 0.20, 95 %CI: 0.03, 0.36) and Visit 2 (β = 0.42; 95 %CI: 0.19, 0.64) and lower ΔpCRH (β = -0.17, 95 %CI: -0.29, -0.06). Significant interactions between individual phthalate metabolites and pregnancy complications were observed. CONCLUSIONS Phthalates may impact placental CRH secretion, with differing effects across pregnancy. Differences in results between women with and without gestational diabetes and gestational hypertension suggest a need for further research examining whether women with pregnancy complications may be more vulnerable to endocrine-disrupting effects of phthalates.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Matthew Corsetti
- Department of Biostatistics and Computational Biology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Drew Day
- Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98104, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Roger Smith
- Hunter Medical Research Institute, University of Newcastle, Newcastle 2300, Australia
| | - Frances A Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sheela Sathyanarayana
- Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
15
|
Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond) 2021; 135:2307-2327. [PMID: 34643675 DOI: 10.1042/cs20190070] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.
Collapse
|
16
|
Wojczakowski W, Kimber-Trojnar Ż, Dziwisz F, Słodzińska M, Słodziński H, Leszczyńska-Gorzelak B. Preeclampsia and Cardiovascular Risk for Offspring. J Clin Med 2021; 10:jcm10143154. [PMID: 34300320 PMCID: PMC8306208 DOI: 10.3390/jcm10143154] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence of long-term cardiovascular sequelae in children after in utero exposure to preeclampsia. Maternal hypertension and/or placental ischaemia during pregnancy increase the risk of hypertension, stroke, diabetes, and cardiovascular disease (CVD) in the offspring later in life. The mechanisms associated with CVD seem to be a combination of genetic, molecular, and environmental factors which can be defined as fetal and postnatal programming. The aim of this paper is to discuss the relationship between pregnancy complicated by preeclampsia and possibility of CVD in the offspring. Unfortunately, due to its multifactorial nature, a clear dependency mechanism between preeclampsia and CVD is difficult to establish.
Collapse
Affiliation(s)
- Wiktor Wojczakowski
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (W.W.); (M.S.); (B.L.-G.)
| | - Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (W.W.); (M.S.); (B.L.-G.)
- Correspondence: ; Tel.: +48-81-7244-769
| | - Filip Dziwisz
- Department of Interventional Cardiology and Cardiac Arrhythmias, Medical University of Lodz, 90-549 Łódź, Poland;
| | - Magdalena Słodzińska
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (W.W.); (M.S.); (B.L.-G.)
| | - Hubert Słodziński
- Institute of Medical Sciences, State School of Higher Education in Chełm, 22-100 Chełm, Poland;
| | - Bożena Leszczyńska-Gorzelak
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (W.W.); (M.S.); (B.L.-G.)
| |
Collapse
|
17
|
Almomani SN, Alsaleh AA, Weeks RJ, Chatterjee A, Day RC, Honda I, Homma H, Fukuzawa R, Slatter TL, Hung NA, Devenish C, Morison IM, Macaulay EC. Identification and validation of DNA methylation changes in pre-eclampsia. Placenta 2021; 110:16-23. [PMID: 34098319 DOI: 10.1016/j.placenta.2021.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pre-eclampsia (PE) is a dangerous placental condition that can lead to premature labour, seizures and death of mother and infant. Several studies have identified altered placental DNA methylation in PE; however, there is widespread inconsistency between studies and most findings have not been replicated. This study aimed to identify and validate consistent differences in methylation across multiple PE cohorts. METHODS Seven publicly available 450K methylation array datasets were analysed to identify consistent differentially methylated positions (DMPs) in PE. DMPs were identified based on methylation difference (≥10%) and significance (p-value ≤ 1 × 10-7). Targeted deep bisulfite sequencing was then performed to validate a subset of DMPs in an additional independent PE cohort. RESULTS Stringent analysis of the seven 450K datasets identified 25 DMPs (associated with 11 genes) in only one dataset. Using more relaxed criteria confirmed 19 of the stringent 25 DMPs in at least four of the remaining six datasets. Targeted deep bisulfite sequencing of eight DMPs (associated with three genes; CMIP, ST3GAL1 and DAPK3) in an independent PE cohort validated two DMPs in the CMIP gene. Seven additional CpG sites in CMIP were found to be significantly differentially methylated in PE. DISCUSSION The identification and validation of significant differential methylation in CMIP suggests that the altered DNA methylation of this gene may be associated with the pathogenesis of PE, and may have the potential to serve as diagnostic biomarkers for this dangerous condition of pregnancy.
Collapse
Affiliation(s)
- Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Abdulmonem A Alsaleh
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Clinical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Izumi Honda
- Department of Gynecology and Obstetrics, Tokyo Metropolitan Tama Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8524, Japan
| | - Hidekazu Homma
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Ryuji Fukuzawa
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Pathology, International University of Health and Welfare, School of Medicine, Narita, Japan
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Noelyn A Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Celia Devenish
- Women's and Children's Health, Otago Medical School Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
18
|
Berretta E, Guida E, Forni D, Provenzi L. Glucocorticoid receptor gene (NR3C1) methylation during the first thousand days: Environmental exposures and developmental outcomes. Neurosci Biobehav Rev 2021; 125:493-502. [PMID: 33689802 DOI: 10.1016/j.neubiorev.2021.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
The first 1000 days from conception are a sensitive period for human development programming. During this period, environmental exposures may result in long-lasting epigenetic imprints that contribute to future developmental trajectories. The present review reports on the effects of adverse and protective environmental conditions occurring during the first 1000 days on glucocorticoid receptor gene (NR3C1) regulation in humans. Thirty-four studies were included. Wide variations emerged for biological tissues, number and position of analyzed CpG sites, and age at methylation and outcomes assessment. Increased NR3C1 methylation associated with first 1000 days stress exposures. Maternal caregiving behaviors significantly buffered precocious stress exposures. A less robust pattern of findings emerged for the association of NR3C1 methylation with physical health, neurobehavioral and neuroendocrine outcomes. Although drawing comprehensive conclusions is partially hindered by methodological limitations, the present review underlines the relevance of the first 1000 days from conception as a time window for developmental plasticity. Prospective cohort studies and epigenome-wide approaches may increase our understanding of dynamics epigenetic changes and their consequences for child development.
Collapse
Affiliation(s)
- Erica Berretta
- Experimental and Behavioral Neurophysiology Lab, Scientific Institute IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Elena Guida
- 0-3 Center for the At-Risk Infant, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Livio Provenzi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
19
|
Wang X, Li M, Zhang X, Li Y, He G, Dinnyés A, Sun Q, Xu W. CYP11A1 Upregulation Leads to Trophoblast Oxidative Stress and Fetal Neurodevelopmental Toxicity That can be Rescued by Vitamin D. Front Mol Biosci 2021; 7:608447. [PMID: 33659272 PMCID: PMC7917044 DOI: 10.3389/fmolb.2020.608447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022] Open
Abstract
During normal pregnancy, the placental trophoblast secretes a variety of steroid hormones and participates in the regulation of maternal physiological functions and fetal development. The CYP11A1 gene encodes the cholesterol side-chain cleavage enzyme P450scc, which catalyzes the production of pregnenolone from cholesterol, which is the first step in the synthesis of all steroid hormones. Under the influence of genetic susceptibility and certain environmental factors, such as drugs and toxins, the expression of CYP11A1 can be upregulated, thereby affecting steroid metabolism and physiological functions in trophoblast cells, as well as fetal development. Here, we demonstrate that upregulation of CYP11A1 in the BeWo cell line triggers excessive mitochondrial oxidative stress, leads to mitochondrial damage and interleukin-6 release, and contributes to the inhibition of proliferation and DNA damage in neuronal stem cells (NSCs). Furthermore, oxidative stress and inflammation can be ameliorated by vitamin D3 in a dose-dependent manner, thereby facilitating the rescue of NSC impairment. Our findings reveal the underlying mechanism in which upregulation of CYP11A1 is detrimental to the physiological function of trophoblasts and demonstrate the beneficial effects of vitamin D supplementation in preventing placental and neurodevelopmental damage associated with CYP11A1 upregulation during pregnancy.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mengxue Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yaqian Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, GödöllőChengdu, Hungary
| | - Guolin He
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, GödöllőChengdu, Hungary
| | - Andras Dinnyés
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,BioTalentum Ltd.,, Gödöllő, Hungary
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Abstract
Early life adversity (ELA) has been associated with inflammation and immunosenescence, as well as hyporeactivity of the HPA axis. Because the immune system and the HPA axis are tightly intertwined around the glucocorticoid receptor (GR), we examined peripheral GR functionality in the EpiPath cohort among participants who either had been exposed to ELA (separation from parents and/or institutionalization followed by adoption; n = 40) or had been reared by their biological parents (n = 72).Expression of the strict GR target genes FKBP5 and GILZ as well as total and 1F and 1H GR transcripts were similar between groups. Furthermore, there were no differences in GR sensitivity, examined by the effects of dexamethasone on IL6 production in LPS-stimulated whole blood. Although we did not find differences in methylation at the GR 1F exon or promoter region, we identified a region of the GR 1H promoter (CpG 1-9) that showed lower methylation levels in ELA.Our results suggest that peripheral GR signaling was unperturbed in our cohort and the observed immune phenotype does not appear to be secondary to an altered GR response to the perturbed HPA axis and glucocorticoid (GC) profile, although we are limited in our measures of GR activity and time points.
Collapse
|
21
|
Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmun Rev 2020; 19:102685. [PMID: 33115633 DOI: 10.1016/j.autrev.2020.102685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
Autoimmune rheumatic diseases (ARDs) are chronic conditions with a striking female predominance, frequently affecting women of childbearing age. Sex hormones and gender dimorphism of immune response are major determinants in the multifactorial pathogenesis of ARDs, with significant implications throughout reproductive life. Particularly, pregnancy represents a challenging condition in the context of autoimmunity, baring profound hormonal and immunologic changes, which are responsible for the bi-directional interaction between ARDs outcome and pregnancy course. In the latest years epigenetics has proven to be an important player in ARDs pathogenesis, finely modulating major immune functions and variably tuning the significant gender effects in autoimmunity. Additionally, epigenetics is a recognised influencer of the physiological dynamic modifications occurring during pregnancy. Still, there is currently little evidence on the pregnancy-related epigenetic modulation of immune response in ARDs patients. This review aims to overview the current knowledge of the role of epigenetics in the context of autoimmunity, as well as during physiologic and pathologic pregnancy, discussing under-regarded aspects in the interplay between ARDs and pregnancy pathology. The outline of a new ongoing European project will be presented.
Collapse
|
22
|
Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165961. [PMID: 32916282 DOI: 10.1016/j.bbadis.2020.165961] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome with multisystem involvement which leads to foetal, neonatal, and maternal morbidity and mortality. This syndrome is characterized by the onset of clinical signs and symptoms and delivery before (early-onset preeclampsia, eoPE), or after (late-onset preeclampsia, loPE), the 34 weeks of gestation. Preeclampsia is a mitochondrial disorder where its differential involvement in eoPE and loPE is unclear. Mitochondria regulate cell metabolism and are a significant source of reactive oxygen species (ROS). The syncytiotrophoblast in eoPE and loPE show altered mitochondrial structure and function resulting in ROS overproduction, oxidative stress, and cell damage and death. Mitochondrial dysfunction in eoPE may result from altered expression of several molecules, including dynamin-related protein 1 and mitofusins, compared with loPE where these factors are either reduced or unaltered. Equally, mitochondrial fusion/fission dynamics seem differentially modulated in eoPE and loPE. It is unclear whether the electron transport chain and oxidative phosphorylation are differentially altered in these two subgroups of preeclampsia. However, the activity of complex IV (cytochrome c oxidase) and the expression of essential proteins involved in the electron transport chain are reduced, leading to lower oxidative phosphorylation and mitochondrial respiration in the preeclamptic placenta. Interventional studies in patients with preeclampsia using the coenzyme Q10, a key molecule in the electron transport chain, suggest that agents that increase the antioxidative capacity of the placenta may be protective against preeclampsia development. In this review, the mitochondrial dysfunction in both eoPE and loPE is summarized. Therapeutic approaches are discussed in the context of contributing to the understanding of mitochondrial dysfunction in eoPE and loPE.
Collapse
|
23
|
Cruz JDO, Conceição IMCA, Tosatti JAG, Gomes KB, Luizon MR. Global DNA methylation in placental tissues from pregnant with preeclampsia: A systematic review and pathway analysis. Placenta 2020; 101:97-107. [PMID: 32942147 DOI: 10.1016/j.placenta.2020.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Pre-eclampsia (PE) is the major cause of fetal and maternal mortality and can be classified according to gestational age of onset into early-onset (EOPE, <34 weeks of gestation) and late- (LOPE, ≥34 weeks of gestation). DNA methylation (DNAm) may help to understand the abnormal placentation in PE. Therefore, we performed a systematic review to assess the role of global DNAm on pathophysiology of PE, focused on fetal and maternal tissues of placenta from pregnant with PE, including EOPE and LOPE. We searched the databases EMBASE, Medline/PubMed, Cochrane Central Register of Controlled Trials, Scopus, Lilacs, Scielo and Google Scholar, and followed the MOOSE guidelines. Moreover, we performed pathway analysis with the overlapping genes from the included studies. Twelve out of 24 included studies in the qualitative analysis considered the classification into EOPE and LOPE. We did not found heterogeneity in the criteria used for diagnosis of PE, and a few studies evaluated whether confounding factors would influence placental DNAm. Fourteen out of 24 included studies showed hypomethylation in placental tissue from pregnant with PE compared to controls. The differences in DNAm are specific to genes or differentially methylated regions, and more evident in EOPE and preterm PE compared to controls, rather than LOPE and term PE. The overlapping genes from included studies revealed pathways relevant to pathophysiology of PE. Our findings highlighted the heterogeneous results of the included studies, mainly focused on North America and China. Replication studies in different populations should use the same placental tissues, techniques to assess DNAm and pipelines for bioinformatic analysis.
Collapse
Affiliation(s)
- Juliana de O Cruz
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Izabela M C A Conceição
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Jéssica A G Tosatti
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Karina B Gomes
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
24
|
Cirkovic A, Garovic V, Milin Lazovic J, Milicevic O, Savic M, Rajovic N, Aleksic N, Weissgerber T, Stefanovic A, Stanisavljevic D, Milic N. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. Biol Sex Differ 2020; 11:36. [PMID: 32631423 PMCID: PMC7336649 DOI: 10.1186/s13293-020-00313-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies have recently examined the role of epigenetic mechanisms in preeclampsia pathophysiology. One commonly examined epigenetic process is DNA methylation. This heritable epigenetic marker is involved in many important cellular functions. The aim of this study was to establish the association between DNA methylation and preeclampsia and to critically appraise the roles of major study characteristics that can significantly impact the association between DNA methylation and preeclampsia. MAIN BODY A systematic review was performed by searching PubMed, Web of Science, and EMBASE for original research articles published over time, until May 31, 2019 in English. Eligible studies compared DNA methylation levels in pregnant women with vs. without preeclampsia. Ninety articles were included. Epigenome-wide studies identified hundreds of differentially methylated places/regions in preeclamptic patients. Hypomethylation was the predominant finding in studies analyzing placental tissue (14/19), while hypermethylation was detected in three studies that analyzed maternal white blood cells (3/3). In candidate gene studies, methylation alterations for a number of genes were found to be associated with preeclampsia. A greater number of differentially methylated genes was found when analyzing more severe preeclampsia (70/82), compared to studies analyzing less severe preeclampsia vs. controls (13/27). A high degree of heterogeneity existed among the studies in terms of methodological study characteristics including design (study design, definition of preeclampsia, control group, sample size, confounders), implementation (biological sample, DNA methylation method, purification of DNA extraction, and validation of methylation), analysis (analytical method, batch effect, genotyping, and gene expression), and data presentation (methylation quantification measure, measure of variability, reporting). Based on the results of this review, we provide recommendations for study design and analytical approach for further studies. CONCLUSIONS The findings from this review support the role of DNA methylation in the pathophysiology of preeclampsia. Establishing field-wide methodological and analytical standards may increase value and reduce waste, allowing researchers to gain additional insights into the role of DNA methylation in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- A Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - J Milin Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - O Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - T Weissgerber
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health, QUEST Center, Berlin, Germany
| | - A Stefanovic
- Clinic for Gynecology and Obstetrics, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia. .,Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Liu L, Li J, Qing L, Yan M, Xiong G, Lian X, Hu L, Nie S. Glucocorticoid receptor gene (NR3C1) is hypermethylated in adult males with aggressive behaviour. Int J Legal Med 2020; 135:43-51. [PMID: 32577827 DOI: 10.1007/s00414-020-02328-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Aggressive behaviour is a serious threat to the personal safety and property of others due to the potential that the assailant may hurt people, himself/herself or objects, and aggression has always been one of the focuses of research and concern. Accumulating evidence suggests that the hypothalamic-pituitary-adrenal (HPA) axis plays a major role in the development, elicitation, enhancement and genetic susceptibility of aggressive behaviour in humans and animals. GR (NR3C1) plays a crucial role in controlling HPA activity, which directly affects aggressive behaviour. Here, we investigated the methylation state of the NR3C1 gene promoter region and its role in aggressive behaviour in adult males for the first time by applying a case-control approach (N = 106 controls, N = 104 patients). Methylation of NR3C1 was measured in peripheral blood samples at exons 1D, 1B and 1F via sodium bisulfite treatment combined with the MethylTarget method. Methylation of the NR3C1 gene was significantly correlated with aggressive behaviour, and the methylation levels of 1D, 1B and 1F were upregulated in the aggressive behaviour group, intentional injury subgroup and robbery subgroup, and the significance varied. In addition, multiple CpG sites were found to be significantly associated with aggressive behaviour. These results suggest that epigenetic aberrations of NR3C1 are associated with aggressive behaviour, and epigenetic processes might mediate aggressive behaviour by affecting the activity of the HPA axis. This correlative study between DNA methylation of the NR3C1 gene and aggressive behaviour in patients may be helpful for forensic assessments.
Collapse
Affiliation(s)
- Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Jiajue Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Lili Qing
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Ming Yan
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Gen Xiong
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
26
|
Torres-Salazar Q, Martínez-López Y, Reyes-Romero M, Pérez-Morales R, Sifuentes-Álvarez A, Salvador-Moysén J. Differential Methylation in Promoter Regions of the Genes NR3C1 and HSP90AA1, Involved in the Regulation, and Bioavailability of Cortisol in Leukocytes of Women With Preeclampsia. Front Med (Lausanne) 2020; 7:206. [PMID: 32656215 PMCID: PMC7326011 DOI: 10.3389/fmed.2020.00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/27/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction: Hypertensive disorders are of interest in obstetrics and gynecology because they are the second place among causes of maternal mortality and a source of complications in the short, mid, and long term. Even if the pathophysiological process behind preeclampsia (PE) is still unknown, stress factors have been revealed to play an important role in the genesis of this pathologic process. Methods: A case-control study was designed with the purpose of determining if there is a differential methylation in NR3C1, HSD11B2, CYP11A1, CRHBP, TEAD3, and HSP90AA1 genes, related to signaling of the hypothalamic–pituitary–adrenal axis, and its regulation on early-onset PE (EOPE). Results: A total of 20 cases and 20 controls were studied by DNA methylation analysis, demonstrating differences among groups in the percentage of methylation of the NR3C1 gene. After a contingency analysis, an odds ratio (OR) for PE of 12.25 was identified for NR3C1 and 9.9 for HSP90AA1 genes. NR3C1, TEAD3, and HSP90AA1 genes showed a positive correlation with the systolic and diastolic blood pressure levels with a p ≤ 0.05. Conclusion: This study found a differential methylation in the glucocorticoid receptor (GR) NR3C1 and its co-chaperone HSP90AA1 in women with PE, with a possible regulatory role in the response to stress in pregnancy and is a likely physiopathological mechanism in PE.
Collapse
Affiliation(s)
- Quitzia Torres-Salazar
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico.,Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Yolanda Martínez-López
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Miguel Reyes-Romero
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Rebeca Pérez-Morales
- Facultad de Ciencias Químicas Campus Gómez Palacio, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Antonio Sifuentes-Álvarez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Durango, Mexico.,Hospital Materno Infantil del Estado de Durango, Durango, Mexico
| | - Jaime Salvador-Moysén
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| |
Collapse
|
27
|
Liu L, Wu J, Qing L, Li J, Yang H, Ji A, Yan M, Hu L, Nie S. DNA Methylation Analysis of the NR3C1 Gene in Patients with Schizophrenia. J Mol Neurosci 2020; 70:1177-1185. [DOI: 10.1007/s12031-020-01525-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
|
28
|
Tong J, Niu Y, Chen ZJ, Zhang C. Comparison of the transcriptional profile in the decidua of early-onset and late-onset pre-eclampsia. J Obstet Gynaecol Res 2020; 46:1055-1066. [PMID: 32281216 DOI: 10.1111/jog.14257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
AIM To compare early-onset pre-eclampsia (EOPE) and late-onset pre-eclampsia (LOPE) and provide insight into the pathophysiology of pre-eclampsia (PE). METHODS Our recent work compared the transcriptomics in decidua of EOPE, LOPE and normal pregnancies (NP). RESULTS We found there are a significant number of genes uniquely expressed in the decidua of EOPE and LOPE comparing with NP. Moreover, EOPE and LOPE have their distinct profiles. Unique EOPE-associated genes were mainly involved in apoptosis related pathways such as 'apoptosis' and 'Ras signaling pathway'. PIK3CB and BCL-2 are the core regulatory genes in EOPE decidua, their abnormal expression caused decidual abnormal apoptosis which is relevant to the pathogenesis of EOPE. Whereas, LOPE is a more complicated entity which has more special LOPE-associated genes involved in decidua differentiation, especially in 'gap junction pathway', 'vascular smooth muscle contraction' and 'long-term depression'. PIK3CB, FLT1, CBLC and ITGA7 are the core regulatory genes differentially expressed in EOPE decidua comparing with LOPE. CONCLUSION In brief, the different decidual transcriptomics of EOPE and LOPE may correlate with their different etiology. These findings highlight the complex pathophysiology of PE and provide potential targets for a new treatment strategy in patients with PE.
Collapse
Affiliation(s)
- Jing Tong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yichao Niu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji'nan, China
| |
Collapse
|
29
|
Song W, Puttabyatappa M, Zeng L, Vazquez D, Pennathur S, Padmanabhan V. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. CHEMOSPHERE 2020; 243:125301. [PMID: 31726260 PMCID: PMC7243413 DOI: 10.1016/j.chemosphere.2019.125301] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 05/09/2023]
Abstract
Gestational Bisphenol A (BPA) exposure is associated with low birth weight. We hypothesized that the low birth weight is the consequence of reduced placental efficiency and a function of BPA-induced inflammatory, oxidative, lipotoxic, angiogenic, steroidal and fibrotic changes involving epigenetic alterations. Placentomes were collected during early (day 65) and mid (day 90) gestation (term ∼147 days) from control and BPA (gestational day 30-90)-treated pregnant sheep. BPA treatment: reduced placental efficiency and fetal weight; increased interleukin 8, lipid peroxidation marker, antioxidants, aromatase, 17 alpha-hydroxylase, estrogen receptor 2, insulin like growth factor (IGF) 2 receptor and IGF binding proteins (IGFBP), and histone deacetylase 1 and 2; reduced tumor necrosis factor alpha and IGF1 receptor at early gestation (Day 65). Gestational BPA-induced mid-gestational changes include: reduced angiogenic factor hypoxia inducible factor 1 alpha; increased IL1beta, oxidative stress markers, triglyceride, 17alpha hydroxylase, IGFBP 1, DNA methyltransferase 3 A and histone deacetylase 1. These findings indicate that gestational BPA, either acting directly or by altering steroidal input, produces early/mid-gestational-specific epigenetic changes culminating in placental disruptions at several levels, in keeping with time-specific/time-lagged pregnancy-associated changes in placental efficiency and fetal weight. The reduced early-gestational placental efficiency may be a function of increased inflammation/oxidative stress and reduced IGF bioavailability with the mid-gestational restoration of placental efficiency likely driven by improved IGF bioavailability and the time-lagged response to antioxidant increase. This compensation, the result of time-lagged response to increases in negative mediators of placental function must have failed with pregnancy advancement to explain the low birthweight outcome.
Collapse
Affiliation(s)
- Wenhui Song
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Delia Vazquez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
30
|
Li Y, Cui S, Shi W, Yang B, Yuan Y, Yan S, Li Y, Xu Y, Zhang Z, Linlin Zhang. Differential placental methylation in preeclampsia, preterm and term pregnancies. Placenta 2020; 93:56-63. [PMID: 32250740 DOI: 10.1016/j.placenta.2020.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the leading causes of maternal mortality and morbidity worldwide. Recently, the role of epigenetic modifications in preeclampsia has been a focus of research. This study was to identified genes or pathways that may be associated with PE, and discuss whether the changes in the methylation level of these genes is related to the pathogenesis of PE. METHODS The methylation levels of placental tissues between PE (n = 4), preterm birth (PB, n = 4) and term birth (TB, n = 4) were detected by Illumina Infinium HumanMethylation850 K BeadChip. Pyrosequencing and qRT-PCR were used to validated the methylation and expression levels of the genes with the most significant differences. RESULTS The global methylation levels of placenta tissues in PE and PB were both higher compared to TB. After eliminated the effect of gestational age, there were 808 gene probes differentially methylated in PE compared to PB. We found 137 genes with 130 genes hypermethylated and 7 genes hypomethylated. CMIP, BLCAP and MICA genes were with the most significant differential methylation. The expression level of CMIP and BLCAP were both negatively correlated to the methylation levels, while the expression level of MICA was not related to its methylation levels. CONCLUSION The methylation levels in placenta tissues were associated with gestational ages. We indicated the expression levels of the significantly methylated genes were negatively correlated with the methylation levels, further functional researches were still needed to find out whether they are associated with the onset of preeclampsia.
Collapse
Affiliation(s)
- Yingying Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shihong Cui
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wenli Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Yang
- Department of Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yangyang Yuan
- Department of Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shujun Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ying Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yajuan Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Linlin Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
31
|
Abstract
Preeclampsia is a medical condition affecting 5-10% of pregnancies. It has serious effects on the health of the pregnant mother and developing fetus. While possible causes of preeclampsia are speculated, there is no consensus on its etiology. The advancement of big data and high-throughput technologies enables to study preeclampsia at the new and systematic level. In this review, we first highlight the recent progress made in the field of preeclampsia research using various omics technology platforms, including epigenetics, genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics. Next, we integrate the results in individual omic level studies, and show that despite the lack of coherent biomarkers in all omics studies, inhibin is a potential preeclamptic biomarker supported by GWAS, transcriptomics and DNA methylation evidence. Using network analysis on the biomarkers of all the literature reviewed here, we identify four striking sub-networks with clear biological functions supported by previous molecular-biology and clinical observations. In summary, omics integration approach offers the promise to understand molecular mechanisms in preeclampsia.
Collapse
|
32
|
Lower S-adenosylmethionine levels and DNA hypomethylation of placental growth factor (PlGF) in placental tissue of early-onset preeclampsia-complicated pregnancies. PLoS One 2019; 14:e0226969. [PMID: 31887212 PMCID: PMC6936822 DOI: 10.1371/journal.pone.0226969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The pathophysiology of preeclampsia is largely unknown. Serum placental induced growth factor (PlGF) levels are decreased during second trimester pregnancy. Aberrant DNA methylation is suggested to be involved in the etiology of preeclampsia (PE). We hypothesize that DNA methylation is altered in PE placentas determined the methylation index by measuring placental S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels. In addition, we assessed global DNA methylation status by long-interspersed nuclear element-1 (LINE-1) and DNA methylation status of the PlGF gene. METHODS Placental tissue of 11 early onset PE (EOPE), 11 late onset PE (LOPE) and 60 controls consisting of 25 uncomplicated controls 20 fetal growth restriction (FGR) and 15 preterm births (PTB) controls was collected from a nested case-control study of The Rotterdam Periconceptional Cohort. RNA and DNA was isolated from placental tissue and DNA was treated with sodium bisulfite. SAM and SAH levels were measured by LC-ESI-MS/MS. Methylation of LINE-1 and PlGF genes was analyzed by Sequenom Epityper and. mRNA expression of PlGF was assessed with qPCR. Differences were assessed by analysis of covariance (ANCOVA) corrected for gestational age and birth weight. RESULTS Placental SAM levels were significantly lower in placental tissue of EOPE pregnancies compared to PTB controls (mean difference -240 ± 71.4 nmol/g protein, P = 0.01). PlGF DNA methylation was decreased in placental tissue of EOPE cases versus LOPE (mean difference -17.4 ± 5.1%, P = 0.01), uncomplicated controls (mean difference -23.4 ± 5.4%%, P <0.001), FGR controls (mean difference -17.9 ± 4.6%, P = 0.002) and PTB controls (mean difference -11.3 ± 3.8% P = 0.04). No significant differences were observed in SAH, SAM:SAH ratio, LINE-1 DNA methylation and PlGF mRNA expression between groups. DISCUSSION The hypomethylation state of the placenta in EOPE, which is reflected by lower SAM and PlGF DNA hypomethylation underlines the possible role of placental DNA hypomethylation in the pathophysiology of EOPE, which needs further investigation.
Collapse
|
33
|
Bracht JR, Vieira‐Potter VJ, De Souza Santos R, Öz OK, Palmer BF, Clegg DJ. The role of estrogens in the adipose tissue milieu. Ann N Y Acad Sci 2019; 1461:127-143. [DOI: 10.1111/nyas.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Orhan K. Öz
- Department of RadiologyUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Biff F. Palmer
- Department of MedicineUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Deborah J. Clegg
- College of Nursing and Health ProfessionsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
34
|
Bellizzi S, Nivoli A, Salaris P, Ronzoni AR, Pichierri G, Palestra F, Wazwaz O, Luque-Fernandez MA. Sexual violence and eclampsia: analysis of data from Demographic and Health Surveys from seven low- and middle-income countries. J Glob Health 2019; 9:020434. [PMID: 31777658 PMCID: PMC6858987 DOI: 10.7189/jogh.09.020434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Scientific literature has provided clear evidence of the profound impact of sexual violence on women’s health, such as somatic disorders and mental adverse outcomes. However, consequences related to obstetric complications are not yet completely clarified. This study aimed to assess the association of lifetime exposure to intimate partner sexual violence with eclampsia. Methods We considered all the seven Demographic and Health Surveys (DHS) that included data on sexual violence and on signs and symptoms suggestive of eclampsia for women of reproductive age (15-49 years). We computed unadjusted and adjusted odds ratios (OR) to evaluate the risk of suggestive eclampsia by ever subjected to sexual violence. A sensitivity analysis was conducted restricting the study population to women who had their last live birth over the 12 months before the interview. Results Self-reported experience of sexual violence ranged from 3.7% in Mali to 9.2% in India while prevalence of women reporting signs and symptoms compatible with eclampsia ranged from 14.3% in Afghanistan to 0.7% in the Philippines. Reported sexual violence was associated with a 2-fold increased odd of signs and symptoms suggestive of eclampsia in the pooled analysis. The sensitivity analysis confirmed the strength of the association between sexual violence and eclampsia in Afghanistan and in India. Conclusions Women and girls in low-and-middle-income countries are at high risk of sexual violence, which may represent a risk factor for hypertensive obstetric complication. Accurate counseling by health care providers during antenatal care consultations may represent an important opportunity to prevent adverse outcomes during pregnancy.
Collapse
Affiliation(s)
- Saverio Bellizzi
- Partnership for Maternal, Newborn & Child Health, Geneva, Switzerland
| | - Alessandra Nivoli
- Department of Neuroscience, Institute of Psychiatry, University of Sassari, Sassari, Italy
| | - Paola Salaris
- Department of Endocrinology, Mater Olbia Hospital, Olbia, Italy
| | | | - Giuseppe Pichierri
- Kingston Hospital NHS Foundation Trust, Galsworthy Road, Kingston upon Thames, UK
| | | | - Ola Wazwaz
- Partnership for Maternal, Newborn & Child Health, Geneva, Switzerland
| | - Miguel Angel Luque-Fernandez
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Biomedical Research Institute of Granada, Non-Communicable and Cancer Epidemiology Group (ibs.Granada), Andalusian School of Public Health, Granada, University of Granada, Spain
| |
Collapse
|
35
|
Review: Understanding the role of androgens and placental AR variants: Insight into steroid-dependent fetal-placental growth and development. Placenta 2019; 84:63-68. [DOI: 10.1016/j.placenta.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
|
36
|
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci 2019; 20:ijms20112837. [PMID: 31212604 PMCID: PMC6600551 DOI: 10.3390/ijms20112837] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Camino S M Ruano
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Céline Méhats
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Francisco Miralles
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| |
Collapse
|
37
|
Gao Q, Li H, Ding H, Fan X, Xu T, Tang J, Liu Y, Chen X, Zhou X, Tao J, Xu Z. Hyper-methylation of AVPR1A and PKCΒ gene associated with insensitivity to arginine vasopressin in human pre-eclamptic placental vasculature. EBioMedicine 2019; 44:574-581. [PMID: 31175056 PMCID: PMC6606951 DOI: 10.1016/j.ebiom.2019.05.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/12/2023] Open
Abstract
Background Pre-eclampsia is a leading cause of maternal mortality and morbidity. Although the exact mechanisms that cause pre-eclampsia remain unclear, it is undeniable that abnormal placental function and circulation are a center for initiation pre-eclampsia. As a potent vasoconstrictor, arginine vasopressin (AVP) has long been implicated in controlling placental vascular tone and circulation; its secretion is grossly elevated in pre-eclamptic circulation. However, little is known about the reactivity of AVP in pre-eclamptic placental vasculature. Methods To reveal the special features of placental vascular regulations with placental pathophysiological changes, as well as the corresponding molecular mechanisms under pre-eclamptic conditions, vascular function and molecular assays were conducted with placental vessel samples from normal and pre-eclamptic pregnancies. Findings The present study found that vasoconstriction responses of placental vessels to AVP were attenuated in pre-eclampsia as compared to in normal pregnancy. The insensitivity of AVP was correlated with the down-regulated AVP receptor 1a (AVPR1A, AVPR1A gene) and protein kinase C isoform β (PKCβ, PKCΒ gene), particularly the hyper-methylation-mediated AVPR1A and PKCΒ gene down-regulation, respectively. Interpretation The findings collectively revealed that aberrant DNA methylation-mediated gene expressions are correlated with vascular dysfunction in pre-eclamptic placental circulation. Fund This work was supported by National Nature & Science Foundation of China. “333 Project”, “Six one project”, “Shuang Chuang Tuan Dui” and Key Discipline “Fetal medicine” of Jiangsu Province, and the Suzhou city “Wei Sheng Ren Cai” program.
Collapse
Affiliation(s)
- Qinqin Gao
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China.
| | - Huan Li
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Hongmei Ding
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Xiaorong Fan
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Xueyi Chen
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Jianying Tao
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital, Suzhou, China.
| | - Zhice Xu
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
38
|
Wilson RL, François M, Jankovic-Karasoulos T, McAninch D, McCullough D, Leifert WR, Roberts CT, Bianco-Miotto T. Characterization of 5-methylcytosine and 5-hydroxymethylcytosine in human placenta cell types across gestation. Epigenetics 2019; 14:660-671. [PMID: 31038385 DOI: 10.1080/15592294.2019.1609866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The placenta is an important organ in pregnancy, however, very little is understood about placental development at a molecular level. This includes the role of epigenetic mechanisms and how they change throughout gestation. DNA methylation studies in this organ are complicated by the different cell types that make up the placenta, each with their own unique transcriptome and epigenome. Placental dysfunction is often associated with pregnancy complications such as preeclampsia (PE). Aberrant DNA methylation in the placenta has been identified in pregnancy complications. We used immunohistochemistry (IHC) and immunofluorescence (IF) to localize 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in placenta tissue from first and second trimester as well as uncomplicated term and PE samples. IHC analysis of whole placental tissues showed 5-mC increased across gestation. When cytotrophoblasts (CTB) and syncytiotrophoblasts (STB) were isolated and assessed using IF, both 5-mC and 5-hmC increased in term CTBs compared to first/second-trimester samples. Staining intensity of 5-hmC was higher in first/second trimester STBs compared to CTBs (P = 0.0011). Finally, IHC staining of term tissue from PE and uncomplicated pregnancies revealed higher 5-mC staining intensity in placentas from PE pregnancies (P = 0.028). Our study has shown increased 5-mC and 5-hmC staining intensities across gestation and differed between two trophoblast populations. Differences in DNA methylation profiles between placental cell types may be indicative of different functions and requires further study to elucidate what changes accompany placental pathologies.
Collapse
Affiliation(s)
- Rebecca L Wilson
- a Center for Fetal and Placental Research , Cincinnati Children's Hospital and Medical Research Center , Cincinnati , OH , USA.,b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Maxime François
- d CSIRO Health and Biosecurity , Future Science Platforms Probing Biosystems , Adelaide , Australia.,e School of Biological Sciences , University of Adelaide , Adelaide , Australia
| | - Tanja Jankovic-Karasoulos
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Dale McAninch
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Dylan McCullough
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Wayne R Leifert
- d CSIRO Health and Biosecurity , Future Science Platforms Probing Biosystems , Adelaide , Australia.,e School of Biological Sciences , University of Adelaide , Adelaide , Australia
| | - Claire T Roberts
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Tina Bianco-Miotto
- c Robinson Research Institute , University of Adelaide , Adelaide , Australia.,f School of Agriculture, Food and Wine, Waite Research Institute , University of Adelaide , Adelaide , Australia
| |
Collapse
|
39
|
HOXD8/DIAPH2-AS1 epigenetically regulates PAX3 and impairs HTR-8/SVneo cell function under hypoxia. Biosci Rep 2019; 39:BSR20182022. [PMID: 30626726 PMCID: PMC6350042 DOI: 10.1042/bsr20182022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to unravel the molecular basis underlying PAX3 down-regulation, known to be involved in pre-eclampsia (PE) occurrence and development. Data obtained from databases suggested that Pax3 methylation levels in the promoter region are high in the placentas of PE patients. However, the expression of methylation-adjusting enzymes, including DNMT1, LSD1, and EZH2, did not change. Since lncRNAs enhance the function of methylation-related enzymes independently of expression, we selected three lncRNAs, RP11-269F21.2, DIAPH2-AS1, and RP11-445K13.2, predicted to interact with methylation-adjusting enzymes. Two transcription factors, HOXD8 and Lhx3, predicted to regulate the expression of lncRNAs, were also selected. Using RNA interference technology, HOXD8 and Lhx3 were found to positively regulate DIAPH2-AS1 and RP11-445K13.2 in HTR-8/SVneo cells. Chromatin immunoprecipitation assays determined that DIAPH2-AS1 recruited LSD1 to histone 3, increasing DNMT1 stability at H3. The HOXD8/DIAPH2-AS1 network regulated HTR-8/SVneo cell function under hypoxia by epigenetically regulating PAX3. This regulatory network may thus be responsible for PAX3 down-regulation in the placentas of PE patients.
Collapse
|
40
|
Zhu P, Wang W, Zuo R, Sun K. Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life. Cell Mol Life Sci 2019; 76:13-26. [PMID: 30225585 PMCID: PMC11105584 DOI: 10.1007/s00018-018-2918-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
The fetus is shielded from the adverse effects of excessive maternal glucocorticoids by 11β-HSD2, an enzyme which is expressed in the syncytial layer of the placental villi and is capable of converting biologically active cortisol into inactive cortisone. Impairment of this placental glucocorticoid barrier is associated with fetal intrauterine growth restriction (IUGR) and development of chronic diseases in later life. Ontogeny studies show that the expression of 11β-HSD2 is initiated at a very early stage after conception and increases with gestational age but declines around term. The promoter for HSD11B2, the gene encoding 11β-HSD2, has a highly GC-rich core. However, the pattern of methylation on HSD11B2 may have already been set up in the blastocyst when the trophoblast identity is committed. Instead, hCG-initiated signals appear to be responsible for the upsurge of 11β-HSD2 expression during trophoblast syncytialization. By activating the cAMP/PKA pathway, hCG not only alters the modification of histones but also increases the expression of Sp1 which activates the transcription of HSD11B2. Adverse conditions such as stress, hypoxia and nutritional restriction can cause IUGR of the fetus. It appears that different causes of IUGR may attenuate HSD11B2 expression differentially in the placenta. While stress and nutritional restriction may reduce HSD11B2 expression by increasing its methylation, hypoxia may decrease HSD11B2 expression via alternative mechanisms rather than by methylation. Herein, we summarize the advances in the study of mechanisms underlying the establishment of the placental glucocorticoid barrier and the attenuation of this barrier by adverse conditions during pregnancy.
Collapse
Affiliation(s)
- Ping Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Department of Obstetrics and Gynecology, No. 401 Hospital, Qingdao, People's Republic of China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Rujuan Zuo
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| |
Collapse
|
41
|
Hoffmann A, Spengler D. The Mitochondrion as Potential Interface in Early-Life Stress Brain Programming. Front Behav Neurosci 2018; 12:306. [PMID: 30574076 PMCID: PMC6291450 DOI: 10.3389/fnbeh.2018.00306] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play a central role in cellular energy-generating processes and are master regulators of cell life. They provide the energy necessary to reinstate and sustain homeostasis in response to stress, and to launch energy intensive adaptation programs to ensure an organism’s survival and future well-being. By this means, mitochondria are particularly apt to mediate brain programming by early-life stress (ELS) and to serve at the same time as subcellular substrate in the programming process. With a focus on mitochondria’s integrated role in metabolism, steroidogenesis and oxidative stress, we review current findings on altered mitochondrial function in the brain, the placenta and peripheral blood cells following ELS-dependent programming in rodents and recent insights from humans exposed to early life adversity (ELA). Concluding, we propose a role of the mitochondrion as subcellular intersection point connecting ELS, brain programming and mental well-being, and a role as a potential site for therapeutic interventions in individuals exposed to severe ELS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
42
|
Palma-Gudiel H, Córdova-Palomera A, Tornador C, Falcón C, Bargalló N, Deco G, Fañanás L. Increased methylation at an unexplored glucocorticoid responsive element within exon 1 D of NR3C1 gene is related to anxious-depressive disorders and decreased hippocampal connectivity. Eur Neuropsychopharmacol 2018; 28:579-588. [PMID: 29650294 DOI: 10.1016/j.euroneuro.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Abstract
Among the major psychiatric disorders, anxious-depressive disorders stand out as one of the more prevalent and more frequently associated with hypothalamic-pituitary-adrenal (HPA) axis abnormalities. Methylation at the exon 1F of the glucocorticoid receptor gene NR3C1 has been associated with both early stress exposure and risk for developing a psychiatric disorder; however, other NR3C1 promoter regions have been underexplored. Exon 1D emerges as a suggestive new target in stress-related disorders epigenetically sensitive to early adversity. After assessment of 48 monozygotic twin pairs (n=96 subjects) informative for lifetime history of anxious-depressive disorders, they were classified as concordant, discordant or healthy in function of whether both, one or neither twin in each pair had a lifetime diagnosis of anxious-depressive disorders. DNA for epigenetic analysis was extracted from peripheral blood. Exon 1F and exon 1D CpG-specific methylation was analysed by means of pyrosequencing technology. Functional magnetic resonance imaging was available for 54 subjects (n=27 twin pairs). Exon 1D CpG-specific methylation within a glucocorticoid responsive element (GRE) was correlated with familial burden of anxious-depressive disorders (r=0.35, z=2.26, p=0.02). Right hippocampal connectivity was significantly associated with CpG-specific GRE methylation (β=-2.33, t=-2.85, p=0.01). Exon 1F was uniformly hypomethylated across all subgroups of the present sample. GRE hypermethylation at exon 1D of the NR3C1 gene in monozygotic twins concordant for anxious-depressive disorders suggests this region plays a role in increasing vulnerability to psychosocial stress, partly mediated by altered hippocampal connectivity.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Aldo Córdova-Palomera
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Cristian Tornador
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carles Falcón
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), Zaragoza, Spain; BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Medical Image Core facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Medical Image Core facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Diagnóstico por Imagen, Hospital Clínico, Barcelona, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lourdes Fañanás
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
43
|
Meakin CJ, Martin EM, Santos HP, Mokrova I, Kuban K, O'Shea TM, Joseph RM, Smeester L, Fry RC. Placental CpG methylation of HPA-axis genes is associated with cognitive impairment at age 10 among children born extremely preterm. Horm Behav 2018; 101:29-35. [PMID: 29477804 PMCID: PMC6354776 DOI: 10.1016/j.yhbeh.2018.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
A major component of the neuroendocrine system is the hypothalamus-pituitary adrenal (HPA) axis. HPA axis genes are also known to play a role in placental physiology. Thus, disruptions in the signaling of HPA axis-associated genes may adversely impact the placenta as well as fetal development, with adverse consequences for health and development of the child. In support of this, recent studies have shown that placental epigenetic methylation of HPA axis genes has an impact on infant behavior. In this study, we evaluated CpG methylation of 14 placental HPA axis-associated genes from a subcohort (n=228) of the Extremely Low Gestational Age Newborns (ELGAN) cohort in relation to cognitive function in mid-childhood (e.g. 10 yrs). Multivariable logistic regression revealed that placental CpG methylation of 10 HPA-axis associated genes were significantly associated with cognition at age 10. Specifically, placental CpG methylation levels of the glucocorticoid receptor gene, Nuclear Receptor Subfamily Group 3 C Member 1 (NR3C1 ) and Brain-derived Neurotropic Factor (BDNF ) were significantly associated with increased odds in developing moderate/severe adverse cognitive impairment at age 10. Methyl-CpG Binding Protein 2 (MECP2) was the major transcriptional regulator of the ten identified HPA genes. The data suggest that placental CpG methylation is associated with cognitive outcomes in mid-childhood.
Collapse
Affiliation(s)
- C J Meakin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - E M Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA
| | - H P Santos
- School of Nursing, University of North Carolina, Chapel Hill, NC, USA
| | - I Mokrova
- Frank Porter Graham Child Development Institute, University of North Carolina, Chapel Hill, NC, USA
| | - K Kuban
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - T M O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - R M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - L Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - R C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
DNA methylation of the glucocorticoid receptor gene promoter in the placenta is associated with blood pressure regulation in human pregnancy. J Hypertens 2018; 35:2276-2286. [PMID: 28817493 DOI: 10.1097/hjh.0000000000001450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Blood pressure (BP) regulation during pregnancy is influenced by hormones of placental origin. It was shown that the glucocorticoid system is altered in hypertensive pregnancy disorders such as preeclampsia. Epigenetic mechanism might influence the activity of genes involved in placental hormone/hormone receptor synthesis/action during pregnancy. METHOD In the current study, we analyzed the association of 5'-C-phosphate-G-3' (CpG) site methylation of different glucocorticoid receptor gene (NR3C1) promoter regions with BP during pregnancy. The study was performed as a nested case-control study (n = 80) out of 1045 mother/child pairs from the Berlin Birth Cohort. Placental DNA was extracted and bisulfite converted. Nested PCR products from six NR3C1 proximal promoter regions [glucocorticoid receptor gene promotor region B (GR-1B), C (GR-1C), D (GR-1D), E (GR-1E), F (GR-1F), and H (GR-1H)] were analyzed by next generation sequencing. RESULTS NR3C1 promoter regions GR-1D and GR-1E had a much higher degree of DNA methylation as compared to GR-1B, GR-1F or GR-1H when analyzing the entire study population. Comparison of placental NR3C1 CpG site methylation among hypotensive, normotensive and hypertensive mothers revealed several differently methylated CpG sites in the GR-1F promoter region only. Both hypertension and hypotension were associated with increased DNA methylation of GR-1F CpG sites. These associations were independent of confounding factors, such as family history of hypertension, smoking status before pregnancy and prepregnancy BMI. Assessment of placental glucocorticoid receptor expression by western blot showed that observed DNA methylation differences were not associated with altered levels of placental glucocorticoid receptor expression. However, correlation matrices of all NR3C1 proximal promoter regions demonstrated different correlation patterns of intraregional and interregional DNA methylation in the three BP groups, putatively indicating altered transcriptional control of glucocorticoid receptor isoforms. CONCLUSION Our study provides evidence of an independent association between placental NR3C1 proximal promoter methylation and maternal BP. Furthermore, we observed different patterns of NR3C1 promoter methylation in normotensive, hypertensive and hypotensive pregnancy.
Collapse
|
45
|
Alahari S, Post M, Rolfo A, Weksberg R, Caniggia I. Compromised JMJD6 Histone Demethylase Activity Affects VHL Gene Repression in Preeclampsia. J Clin Endocrinol Metab 2018; 103:1545-1557. [PMID: 29373688 DOI: 10.1210/jc.2017-02197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
CONTEXT The von Hippel Lindau (VHL) protein is a key executor of the cellular hypoxic response that is compromised in preeclampsia, a serious disorder complicating 5% to 7% of pregnancies. To date, the mechanisms controlling VHL gene expression in the human placenta remain elusive. OBJECTIVE We examined VHL epigenetic regulation in normal pregnancy and in preeclampsia, a pathology characterized by placental hypoxia. DESIGN, SETTING, AND PARTICIPANTS Placentae were obtained from early-onset preeclampsia (n = 56; <34 weeks of gestation) and late-onset preeclampsia (n = 19; ≥34 weeks of gestation). Placentae from healthy normotensive age-matched preterm control (n = 43) and term control (n = 23) pregnancies were included as controls. MAIN OUTCOME MEASURE(S) We measured the activity of Jumonji domain containing protein 6 (JMJD6), a ferrous iron (Fe2+)- and oxygen-dependent histone demethylase, and examined its function in the epigenetic control of VHL. RESULTS JMJD6 regulates VHL gene expression in the human placenta. VHL downregulation in preeclampsia is dependent on decreased JMJD6 demethylase activity due to hypoxia and reduced Fe2+ bioavailability. Chromatin immunoprecipitation assays revealed decreased association of JMJD6 and its histone targets with the VHL promoter. Findings in preeclampsia were corroborated in a murine model of pharmacological hypoxia using FG-4592. Placentae from FG-4592-treated mice exhibited reduced VHL levels, accompanied by placental morphological alterations and reduced pup weights. Notably, Fe2+ supplementation rescued JMJD6 histone demethylase activity in histone from E-PE and FG-4592-treated mice. CONCLUSIONS Our study uncovers epigenetic regulation of VHL and its functional consequences for altered oxygen and iron homeostasis in preeclampsia.
Collapse
Affiliation(s)
- Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alessandro Rolfo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Goffin SM, Derraik JGB, Groom KM, Cutfield WS. Maternal pre-eclampsia and long-term offspring health: Is there a shadow cast? Pregnancy Hypertens 2018; 12:11-15. [PMID: 29674189 DOI: 10.1016/j.preghy.2018.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
Pre-eclampsia is a common pregnancy disorder with important short-term complications for mother and baby. Evidence suggests pre-eclampsia also has implications for the mother beyond pregnancy, as well as long-term effects on offspring health. Limited research has linked pre-eclampsia with changes in offspring blood pressure, BMI, and stroke risk. Underpinning mechanisms are poorly understood, but developmental programming may be involved. Research in this area has been hindered by difficulties in defining pre-eclampsia and problems with study design. Further targeted evaluation through to adulthood is required to determine the long-term impact of pre-eclampsia on offspring disease risk and how this develops.
Collapse
Affiliation(s)
- Sarah M Goffin
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - José G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand; A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Katie M Groom
- Department of Obstetrics & Gynaecology, University of Auckland, Auckland, New Zealand; National Women's Health, Auckland City Hospital, Auckland, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand; A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
47
|
Liu G, Ke M, Fan X, Zhang M, Zhu Y, Lu T, Sun L, Qian H. Reproductive and endocrine-disrupting toxicity of Microcystis aeruginosa in female zebrafish. CHEMOSPHERE 2018; 192:289-296. [PMID: 29112878 DOI: 10.1016/j.chemosphere.2017.10.167] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Microcystis aeruginosa, a primary species in cyanobacterial blooms, is ubiquitously distributed in water. Microcystins (MCs) purified from M. aeruginosa can exert reproductive toxicity in fish. However, the effects of M. aeruginosa at environmentally relevant levels on the reproductive and endocrine systems of zebrafish are still unknown. The present study investigated the reproductive and endocrine-disrupting toxicity of M. aeruginosa on female zebrafish (Danio rerio) by short-term exposure (96 h). After exposure, marked histological lesions in the liver or gonads, such as nuclear pyknosis and deformation, were observed, and the fertilization rate and hatchability of eggs spawned from treated females were both significantly lower than they were in females in the control group, suggesting the possibility of transgenerational effects of M. aeruginosa exposure. Moreover, M. aeruginosa exposure decreased the concentration of 17β-estradiol (E2) and testosterone (T) in female zebrafish. Interestingly, the vtg1 transcriptional level significantly decreased in the liver, whereas plasma vitellogenin (VTG) protein levels increased. The present findings indicate that M. aeruginosa could modulate endocrine function by disrupting transcription of hypothalamic-pituitary-gonadal-liver (HPGL) axis-related genes, and impair the reproductive capacity of female zebrafish, suggesting that M. aeruginosa causes potential adverse effects on fish reproduction in Microcystis bloom-contaminated aquatic environments.
Collapse
Affiliation(s)
- Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China; Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiaoji Fan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Youchao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
48
|
Abstract
Hypertension (HT) is among the major components of the metabolic syndrome, i.e., obesity, dyslipidemia, and hyperglycemia/insulin resistance. It represents a significant health problem with foremost risks for chronic cardiovascular disease and a significant cause of morbidity and mortality worldwide. Therefore, it is not surprising that this disorder constitutes a serious public health concern. Although multiple studies have stressed the multifactorial nature of HT, the pathogenesis remains largely unknown. However, if we want to reduce the global prevalence of HT, restrain the number of deaths (currently 9.4 million/year in the world), and alleviate the socio-economic burden, a deeper insight into the mechanisms is urgently needed in order to define new meaningful therapeutic targets. Recently, the role of epigenetics in the development of various complex diseases has attracted much attention. In the present review, we provide a critical update on the available literature and ongoing research regarding the epigenetic modifications of genes involved in several pathways of elevated blood pressure, especially those linked to the vascular epithelium. This review also focuses on the role of microRNA (miRNA) in the regulation of gene expression associated with HT and of fetal programming mediating susceptibility to HT in adulthood.
Collapse
|
49
|
Decato BE, Lopez-Tello J, Sferruzzi-Perri AN, Smith AD, Dean MD. DNA Methylation Divergence and Tissue Specialization in the Developing Mouse Placenta. Mol Biol Evol 2017; 34:1702-1712. [PMID: 28379409 DOI: 10.1093/molbev/msx112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The placental epigenome plays a vital role in regulating mammalian growth and development. Aberrations in placental DNA methylation are linked to several disease states, including intrauterine growth restriction and preeclampsia. Studying the evolution and development of the placental epigenome is critical to understanding the origin and progression of such diseases. Although high-resolution studies have found substantial variation between placental methylomes of different species, the nature of methylome variation has yet to be characterized within any individual species. We conducted a study of placental DNA methylation at high resolution in multiple strains and closely related species of house mice (Mus musculus musculus, Mus m. domesticus, and M. spretus), across developmental timepoints (embryonic days 15-18), and between two distinct layers (labyrinthine transport and junctional endocrine). We observed substantial genome-wide methylation heterogeneity in mouse placenta compared with other differentiated tissues. Species-specific methylation profiles were concentrated in retrotransposon subfamilies, specifically RLTR10 and RLTR20 subfamilies. Regulatory regions such as gene promoters and CpG islands displayed cross-species conservation, but showed strong differences between layers and developmental timepoints. Partially methylated domains exist in the mouse placenta and widen during development. Taken together, our results characterize the mouse placental methylome as a highly heterogeneous and deregulated landscape globally, intermixed with actively regulated promoter and retrotransposon sequences.
Collapse
Affiliation(s)
- Benjamin E Decato
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
50
|
Zhao M, Li L, Yang X, Cui J, Li H. FN1, FOS, and ITGA5 induce preeclampsia: Abnormal expression and methylation. Hypertens Pregnancy 2017; 36:302-309. [PMID: 29039998 DOI: 10.1080/10641955.2017.1385795] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mei Zhao
- Department of Gynecology and obstetrics, Jiyang Public Hospital, Jinan, Shandong China
| | - Lin Li
- Department of Gynecology and obstetrics, Jiyang Public Hospital, Jinan, Shandong China
| | - Xiumei Yang
- Department of Gynecology and obstetrics, Jiyang Public Hospital, Jinan, Shandong China
| | - Jianying Cui
- Department of Gynecology and obstetrics, Jiyang Public Hospital, Jinan, Shandong China
| | - Hong Li
- Department of Gynecology and obstetrics, Jiyang Public Hospital, Jinan, Shandong China
| |
Collapse
|