1
|
The presynaptic glycine transporter GlyT2 is regulated by the Hedgehog pathway in vitro and in vivo. Commun Biol 2021; 4:1197. [PMID: 34663888 PMCID: PMC8523746 DOI: 10.1038/s42003-021-02718-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability. By modulating the activation state of the Hedgehog pathway, de la Rocha-Muñoz et al demonstrate that Hedgehog signaling controls the expression and transport activity of the neuronal glycine transporter GlyT2. This work begins to reveal a potential link between the Hedgehog signaling pathway and presynaptic glycine availability.
Collapse
|
2
|
Benito-Muñoz C, Perona A, Felipe R, Pérez-Siles G, Núñez E, Aragón C, López-Corcuera B. Structural Determinants of the Neuronal Glycine Transporter 2 for the Selective Inhibitors ALX1393 and ORG25543. ACS Chem Neurosci 2021; 12:1860-1872. [PMID: 34003005 PMCID: PMC8691691 DOI: 10.1021/acschemneuro.0c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
![]()
The
neuronal glycine transporter GlyT2 modulates inhibitory glycinergic
neurotransmission by controlling the extracellular concentration of
synaptic glycine and the supply of neurotransmitter to the presynaptic
terminal. Spinal cord glycinergic neurons present in the dorsal horn
diminish their activity in pathological pain conditions and behave
as gate keepers of the touch-pain circuitry. The pharmacological blockade
of GlyT2 reduces the progression of the painful signal to rostral
areas of the central nervous system by increasing glycine extracellular
levels, so it has analgesic action. O-[(2-benzyloxyphenyl-3-fluorophenyl)methyl]-l-serine (ALX1393) and N-[[1-(dimethylamino)cyclopentyl]methyl]-3,5-dimethoxy-4-(phenylmethoxy)benzamide
(ORG25543) are two selective GlyT2 inhibitors with nanomolar affinity
for the transporter and analgesic effects in pain animal models, although
with deficiencies which preclude further clinical development. In
this report, we performed a comparative ligand docking of ALX1393
and ORG25543 on a validated GlyT2 structural model including all ligand
sites constructed by homology with the crystallized dopamine transporter
from Drosophila melanogaster. Molecular dynamics
simulations and energy analysis of the complex and functional analysis
of a series of point mutants permitted to determine the structural
determinants of ALX1393 and ORG25543 discrimination by GlyT2. The
ligands establish simultaneous contacts with residues present in transmembrane
domains 1, 3, 6, and 8 and block the transporter in outward-facing
conformation and hence inhibit glycine transport. In addition, differential
interactions of ALX1393 with the cation bound at Na1 site and ORG25543
with TM10 define the differential sites of the inhibitors and explain
some of their individual features. Structural information about the
interactions with GlyT2 may provide useful tools for new drug discovery.
Collapse
Affiliation(s)
- Cristina Benito-Muñoz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Almudena Perona
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel Felipe
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gonzalo Pérez-Siles
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Núñez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Rescue of two trafficking-defective variants of the neuronal glycine transporter GlyT2 associated to hyperekplexia. Neuropharmacology 2021; 189:108543. [PMID: 33794243 DOI: 10.1016/j.neuropharm.2021.108543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022]
Abstract
Hyperekplexia is a rare sensorimotor syndrome characterized by pathological startle reflex in response to unexpected trivial stimuli for which there is no specific treatment. Neonates suffer from hypertonia and are at high risk of sudden death due to apnea episodes. Mutations in the human SLC6A5 gene encoding the neuronal glycine transporter GlyT2 may disrupt the inhibitory glycinergic neurotransmission and cause a presynaptic form of the disease. The phenotype of missense mutations giving rise to protein misfolding but maintaining residual activity could be rescued by facilitating folding or intracellular trafficking. In this report, we characterized the trafficking properties of two mutants associated with hyperekplexia (A277T and Y707C, rat numbering). Transporter molecules were partially retained in the endoplasmic reticulum showing increased interaction with the endoplasmic reticulum chaperone calnexin. One transporter variant had export difficulties and increased ubiquitination levels, suggestive of enhanced endoplasmic reticulum-associated degradation. However, the two mutant transporters were amenable to correction by calnexin overexpression. Within the search for compounds capable of rescuing mutant phenotypes, we found that the arachidonic acid derivative N-arachidonoyl glycine can rescue the trafficking defects of the two variants in heterologous cells and rat brain cortical neurons. N-arachidonoyl glycine improves the endoplasmic reticulum output by reducing the interaction transporter/calnexin, increasing membrane expression and improving transport activity in a comparable way as the well-established chemical chaperone 4-phenyl-butyrate. This work identifies N-arachidonoyl glycine as a promising compound with potential for hyperekplexia therapy.
Collapse
|
4
|
de la Rocha-Muñoz A, Núñez E, Arribas-González E, López-Corcuera B, Aragón C, de Juan-Sanz J. E3 ubiquitin ligases LNX1 and LNX2 are major regulators of the presynaptic glycine transporter GlyT2. Sci Rep 2019; 9:14944. [PMID: 31628376 PMCID: PMC6802383 DOI: 10.1038/s41598-019-51301-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
The neuronal glycine transporter GlyT2 is an essential regulator of glycinergic neurotransmission that recaptures glycine in presynaptic terminals to facilitate transmitter packaging in synaptic vesicles. Alterations in GlyT2 expression or activity result in lower cytosolic glycine levels, emptying glycinergic synaptic vesicles and impairing neurotransmission. Lack of glycinergic neurotransmission caused by GlyT2 loss-of-function mutations results in Hyperekplexia, a rare neurological disease characterized by generalized stiffness and motor alterations that may cause sudden infant death. Although the importance of GlyT2 in pathology is known, how this transporter is regulated at the molecular level is poorly understood, limiting current therapeutic strategies. Guided by an unbiased screening, we discovered that E3 ubiquitin ligase Ligand of Numb proteins X1/2 (LNX1/2) modulate the ubiquitination status of GlyT2. The N-terminal RING-finger domain of LNX1/2 ubiquitinates a cytoplasmic C-terminal lysine cluster in GlyT2 (K751, K773, K787 and K791), and this process regulates the expression levels and transport activity of GlyT2. The genetic deletion of endogenous LNX2 in spinal cord primary neurons causes an increase in GlyT2 expression and we find that LNX2 is required for PKC-mediated control of GlyT2 transport. This work identifies, to our knowledge, the first E3 ubiquitin-ligases acting on GlyT2, revealing a novel molecular mechanism that controls presynaptic glycine availability. Providing a better understanding of the molecular regulation of GlyT2 may help future investigations into the molecular basis of human disease states caused by dysfunctional glycinergic neurotransmission, such as hyperekplexia and chronic pain.
Collapse
Affiliation(s)
- A de la Rocha-Muñoz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Núñez
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Arribas-González
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002, Madrid, Spain
| | - B López-Corcuera
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - C Aragón
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.
| | - J de Juan-Sanz
- Sorbonne Université and Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France.
| |
Collapse
|
5
|
Kitzenmaier A, Schaefer N, Kasaragod VB, Polster T, Hantschmann R, Schindelin H, Villmann C. The P429L loss of function mutation of the human glycine transporter 2 associated with hyperekplexia. Eur J Neurosci 2019; 50:3906-3920. [DOI: 10.1111/ejn.14533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Alexandra Kitzenmaier
- Institute for Clinical Neurobiology Julius‐Maximilians‐University of Würzburg Würzburg Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology Julius‐Maximilians‐University of Würzburg Würzburg Germany
| | - Vikram Babu Kasaragod
- Rudolf Virchow Centre for Experimental Biomedicine Julius‐Maximilians‐University of Würzburg Würzburg Germany
| | - Tilman Polster
- Pediatric Epileptology Mara Hospital Bethel Epilepsy Centre Bielefeld Germany
| | - Ralph Hantschmann
- Center for Developmental Pediatrics and Pediatric Neurology Hagen Germany
| | - Hermann Schindelin
- Rudolf Virchow Centre for Experimental Biomedicine Julius‐Maximilians‐University of Würzburg Würzburg Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology Julius‐Maximilians‐University of Würzburg Würzburg Germany
| |
Collapse
|
6
|
Benito-Muñoz C, Perona A, Abia D, Dos Santos HG, Núñez E, Aragón C, López-Corcuera B. Modification of a Putative Third Sodium Site in the Glycine Transporter GlyT2 Influences the Chloride Dependence of Substrate Transport. Front Mol Neurosci 2018; 11:347. [PMID: 30319354 PMCID: PMC6166138 DOI: 10.3389/fnmol.2018.00347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter removal from glycine-mediated synapses relies on two sodium-driven high-affinity plasma membrane GlyTs that control neurotransmitter availability. Mostly glial GlyT1 is the main regulator of glycine synaptic levels, whereas neuronal GlyT2 promotes the recycling of synaptic glycine and supplies neurotransmitter for presynaptic vesicle refilling. The GlyTs differ in sodium:glycine symport stoichiometry, showing GlyT1 a 2:1 and GlyT2 a 3:1 sodium:glycine coupling. Sodium binds to the GlyTs at two conserved Na+ sites: Na1 and Na2. The location of GlyT2 Na3 site remains unknown, although Glu650 has been involved in the coordination. Here, we have used comparative MD simulations of a GlyT2 model constructed by homology to the crystalized DAT from Drosophila melanogaster by placing the Na3 ion at two different locations. By combination of in silico and experimental data obtained by biochemical and electrophysiological analysis of GlyTs mutants, we provide evidences suggesting the GlyT2 third sodium ion is held by Glu-250 and Glu-650, within a region with robust allosteric properties involved in cation-specific sensitivity. Substitution of Glu650 in GlyT2 by the corresponding methionine in GlyT1 reduced the charge-to-flux ratio to the level of GlyT1 without producing transport uncoupling. Chloride dependence of glycine transport was almost abolished in this GlyT2 mutant but simultaneous substitution of Glu250 and Glu650 by neutral amino acids rescued chloride sensitivity, suggesting that protonation/deprotonation of Glu250 substitutes chloride function. The differential behavior of equivalent GlyT1 mutations sustains a GlyT2-specific allosteric coupling between the putative Na3 site and the chloride site.
Collapse
Affiliation(s)
- Cristina Benito-Muñoz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Almudena Perona
- Smartligs, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Helena G Dos Santos
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Núñez
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Aragón
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz López-Corcuera
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
López-Corcuera B, Arribas-González E, Aragón C. Hyperekplexia-associated mutations in the neuronal glycine transporter 2. Neurochem Int 2018; 123:95-100. [PMID: 29859229 DOI: 10.1016/j.neuint.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
Hyperekplexia or startle disease is a dysfunction of inhibitory glycinergic neurotransmission characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. Although rare, this disorder can have serious consequences, including sudden infant death. One of the most frequent causes of hyperekplexia are mutations in the SLC6A5 gene, encoding the neuronal glycine transporter 2 (GlyT2), a key component of inhibitory glycinergic presynapses involved in synaptic glycine recycling though sodium and chloride-dependent co-transport. Most GlyT2 mutations detected so far are recessive, but two dominant missense mutations have been described. The detailed analysis of these mutations has revealed structural cues on the quaternary structure of GlyT2, and opens the possibility that novel selective pharmacochaperones have potential therapeutic effects in hyperekplexia.
Collapse
Affiliation(s)
- Beatriz López-Corcuera
- Centro de Biología Molecular ''Severo Ochoa'', Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Esther Arribas-González
- Centro de Biología Molecular ''Severo Ochoa'', Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Aragón
- Centro de Biología Molecular ''Severo Ochoa'', Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Villarejo-López L, Jiménez E, Bartolomé-Martín D, Zafra F, Lapunzina P, Aragón C, López-Corcuera B. P2X receptors up-regulate the cell-surface expression of the neuronal glycine transporter GlyT2. Neuropharmacology 2017; 125:99-116. [PMID: 28734869 DOI: 10.1016/j.neuropharm.2017.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022]
Abstract
Glycinergic inhibitory neurons of the spinal dorsal horn exert critical control over the conduction of nociceptive signals to higher brain areas. The neuronal glycine transporter 2 (GlyT2) is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft and its activity modulates intra and extracellular glycine concentrations. In this report we show that the stimulation of P2X purinergic receptors with βγ-methylene adenosine 5'-triphosphate induces the up-regulation of GlyT2 transport activity by increasing total and plasma membrane expression and reducing transporter ubiquitination. We identified the receptor subtypes involved by combining pharmacological approaches, siRNA-mediated protein knockdown, and dorsal root ganglion cell enrichment in brainstem and spinal cord primary cultures. Up-regulation of GlyT2 required the combined stimulation of homomeric P2X3 and P2X2 receptors or heteromeric P2X2/3 receptors. We measured the spontaneous glycinergic currents, glycine release and GlyT2 uptake concurrently in response to P2X receptor agonists, and showed that the impact of P2X3 receptor activation on glycinergic neurotransmission involves the modulation of GlyT2 expression or activity. The recognized pro-nociceptive action of P2X3 receptors suggests that the fine-tuning of GlyT2 activity may have consequences in nociceptive signal conduction.
Collapse
Affiliation(s)
- Lucía Villarejo-López
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Esperanza Jiménez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - David Bartolomé-Martín
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Francisco Zafra
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; Instituto de Genética Médica y Molecular, IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain.
| |
Collapse
|
9
|
Jung J, Michalak M, Agellon LB. Endoplasmic Reticulum Malfunction in the Nervous System. Front Neurosci 2017; 11:220. [PMID: 28487627 PMCID: PMC5403925 DOI: 10.3389/fnins.2017.00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases often have multifactorial causes and are progressive diseases. Some are inherited while others are acquired, and both vary greatly in onset and severity. Impaired endoplasmic reticulum (ER) proteostasis, involving Ca2+ signaling, protein synthesis, processing, trafficking, and degradation, is now recognized as a key risk factor in the pathogenesis of neurological disorders. Lipidostasis involves lipid synthesis, quality control, membrane assembly as well as sequestration of excess lipids or degradation of damaged lipids. Proteostasis and lipidostasis are maintained by interconnected pathways within the cellular reticular network, which includes the ER and Ca2+ signaling. Importantly, lipidostasis is important in the maintenance of membranes and luminal environment that enable optimal protein processing. Accumulating evidence suggest that the loss of coordinate regulation of proteostasis and lipidostasis has a direct and negative impact on the health of the nervous system.
Collapse
Affiliation(s)
- Joanna Jung
- Department of Biochemistry, University of AlbertaEdmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of AlbertaEdmonton, AB, Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill UniversitySte. Anne de Bellevue, QC, Canada
| |
Collapse
|
10
|
Glycinergic transmission: glycine transporter GlyT2 in neuronal pathologies. Neuronal Signal 2016; 1:NS20160009. [PMID: 32714574 PMCID: PMC7377260 DOI: 10.1042/ns20160009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Glycinergic neurons are major contributors to the regulation of neuronal excitability, mainly in caudal areas of the nervous system. These neurons control fluxes of sensory information between the periphery and the CNS and diverse motor activities like locomotion, respiration or vocalization. The phenotype of a glycinergic neuron is determined by the expression of at least two proteins: GlyT2, a plasma membrane transporter of glycine, and VIAAT, a vesicular transporter shared by glycine and GABA. In this article, we review recent advances in understanding the role of GlyT2 in the pathophysiology of inhibitory glycinergic neurotransmission. GlyT2 mutations are associated to decreased glycinergic function that results in a rare movement disease termed hyperekplexia (HPX) or startle disease. In addition, glycinergic neurons control pain transmission in the dorsal spinal cord and their function is reduced in chronic pain states. A moderate inhibition of GlyT2 may potentiate glycinergic inhibition and constitutes an attractive target for pharmacological intervention against these devastating conditions.
Collapse
|
11
|
Garcia-Huerta P, Bargsted L, Rivas A, Matus S, Vidal RL. ER chaperones in neurodegenerative disease: Folding and beyond. Brain Res 2016; 1648:580-587. [PMID: 27134034 DOI: 10.1016/j.brainres.2016.04.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
Proteins along the secretory pathway are co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Afterwards, they are usually modified with N-linked glycans, correctly folded and stabilized by disulfide bonds. ER chaperones and folding enzymes control these processes. The accumulation of unfolded proteins in the ER activates a signaling response, termed the unfolded protein response (UPR). The hallmark of this response is the coordinated transcriptional up-regulation of ER chaperones and folding enzymes. In order to discuss the importance of the proper folding of certain substrates we will address the role of ER chaperones in normal physiological conditions and examine different aspects of its contribution in neurodegenerative disease. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Leslie Bargsted
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Alexis Rivas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Soledad Matus
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Rene L Vidal
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
12
|
Arribas-González E, de Juan-Sanz J, Aragón C, López-Corcuera B. Molecular basis of the dominant negative effect of a glycine transporter 2 mutation associated with hyperekplexia. J Biol Chem 2014; 290:2150-65. [PMID: 25480793 DOI: 10.1074/jbc.m114.587055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperekplexia or startle disease is a rare clinical syndrome characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. This neurological disorder can have serious consequences in neonates, provoking brain damage and/or sudden death due to apnea episodes and cardiorespiratory failure. Hyperekplexia is caused by defective inhibitory glycinergic neurotransmission. Mutations in the human SLC6A5 gene encoding the neuronal GlyT2 glycine transporter are responsible for the presynaptic form of the disease. GlyT2 mediates synaptic glycine recycling, which constitutes the main source of releasable transmitter at glycinergic synapses. Although the majority of GlyT2 mutations detected so far are recessive, a dominant negative mutant that affects GlyT2 trafficking does exist. In this study, we explore the properties and structural alterations of the S512R mutation in GlyT2. We analyze its dominant negative effect that retains wild-type GlyT2 in the endoplasmic reticulum (ER), preventing surface expression. We show that the presence of an arginine rather than serine 512 provoked transporter misfolding, enhanced association to the ER-chaperone calnexin, altered association with the coat-protein complex II component Sec24D, and thereby impeded ER exit. The S512R mutant formed oligomers with wild-type GlyT2 causing its retention in the ER. Overexpression of calnexin rescued wild-type GlyT2 from the dominant negative effect of the mutant, increasing the amount of transporter that reached the plasma membrane and dampening the interaction between the wild-type and mutant GlyT2. The ability of chemical chaperones to overcome the dominant negative effect of the disease mutation on the wild-type transporter was demonstrated in heterologous cells and primary neurons.
Collapse
Affiliation(s)
- Esther Arribas-González
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, the IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - Jaime de Juan-Sanz
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, the IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain the Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid 28029, Spain, and
| | - Carmen Aragón
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, the IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain the Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid 28029, Spain, and
| | - Beatriz López-Corcuera
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, the IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain the Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid 28029, Spain, and
| |
Collapse
|
13
|
de Juan-Sanz J, Núñez E, Zafra F, Berrocal M, Corbacho I, Ibáñez I, Arribas-González E, Marcos D, López-Corcuera B, Mata AM, Aragón C. Presynaptic control of glycine transporter 2 (GlyT2) by physical and functional association with plasma membrane Ca2+-ATPase (PMCA) and Na+-Ca2+ exchanger (NCX). J Biol Chem 2014; 289:34308-24. [PMID: 25315779 DOI: 10.1074/jbc.m114.586966] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans. Here, we show a novel endogenous regulatory mechanism that can modulate GlyT2 activity based on a compartmentalized interaction between GlyT2, neuronal plasma membrane Ca(2+)-ATPase (PMCA) isoforms 2 and 3, and Na(+)/Ca(2+)-exchanger 1 (NCX1). This GlyT2·PMCA2,3·NCX1 complex is found in lipid raft subdomains where GlyT2 has been previously found to be fully active. We show that endogenous PMCA and NCX activities are necessary for GlyT2 activity and that this modulation depends on lipid raft integrity. Besides, we propose a model in which GlyT2·PMCA2-3·NCX complex would help Na(+)/K(+)-ATPase in controlling local Na(+) increases derived from GlyT2 activity after neurotransmitter release.
Collapse
Affiliation(s)
- Jaime de Juan-Sanz
- From the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| | - Enrique Núñez
- the Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049-Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46009-Valencia, Spain, the IdiPAZ-Hospital, Universitario La Paz, 28046-Madrid, Spain, and
| | - Francisco Zafra
- the Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049-Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46009-Valencia, Spain, the IdiPAZ-Hospital, Universitario La Paz, 28046-Madrid, Spain, and
| | - María Berrocal
- the Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006-Badajoz, Spain
| | - Isaac Corbacho
- the Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006-Badajoz, Spain
| | - Ignacio Ibáñez
- the Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049-Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46009-Valencia, Spain, the IdiPAZ-Hospital, Universitario La Paz, 28046-Madrid, Spain, and
| | - Esther Arribas-González
- the Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049-Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46009-Valencia, Spain, the IdiPAZ-Hospital, Universitario La Paz, 28046-Madrid, Spain, and
| | - Daniel Marcos
- the Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006-Badajoz, Spain
| | - Beatriz López-Corcuera
- the Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049-Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46009-Valencia, Spain, the IdiPAZ-Hospital, Universitario La Paz, 28046-Madrid, Spain, and
| | - Ana M Mata
- the Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006-Badajoz, Spain
| | - Carmen Aragón
- the Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049-Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46009-Valencia, Spain, the IdiPAZ-Hospital, Universitario La Paz, 28046-Madrid, Spain, and
| |
Collapse
|