1
|
Kyle Martin W, Schladweiler MC, Oshiro W, Smoot J, Fisher A, Williams W, Valdez M, Miller CN, Jackson TW, Freeborn D, Kim YH, Davies D, Ian Gilmour M, Kodavanti U, Kodavanti P, Hazari MS, Farraj AK. Wildfire-related smoke inhalation worsens cardiovascular risk in sleep disrupted rats. FRONTIERS IN ENVIRONMENTAL HEALTH 2023; 2:1166918. [PMID: 38116203 PMCID: PMC10726696 DOI: 10.3389/fenvh.2023.1166918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Introduction As a lifestyle factor, poor sleep status is associated with increased cardiovascular morbidity and mortality and may be influenced by environmental stressors, including air pollution. Methods To determine whether exposure to air pollution modified cardiovascular effects of sleep disruption, we evaluated the effects of single or repeated (twice/wk for 4 wks) inhalation exposure to eucalyptus wood smoke (ES; 964 μg/m3 for 1 h), a key wildland fire air pollution source, on mild sleep loss in the form of gentle handling in rats. Blood pressure (BP) radiotelemetry and echocardiography were evaluated along with assessments of lung and systemic inflammation, cardiac and hypothalamic gene expression, and heart rate variability (HRV), a measure of cardiac autonomic tone. Results and Discussion GH alone disrupted sleep, as evidenced by active period-like locomotor activity, and increases in BP, heart rate (HR), and hypothalamic expression of the circadian gene Per2. A single bout of sleep disruption and ES, but neither alone, increased HR and BP as rats transitioned into their active period, a period aligned with a critical early morning window for stroke risk in humans. These responses were immediately preceded by reduced HRV, indicating increased cardiac sympathetic tone. In addition, only sleep disrupted rats exposed to ES had increased HR and BP during the final sleep disruption period. These rats also had increased cardiac output and cardiac expression of genes related to adrenergic function, and regulation of vasoconstriction and systemic blood pressure one day after final ES exposure. There was little evidence of lung or systemic inflammation, except for increases in serum LDL cholesterol and alanine aminotransferase. These results suggest that inhaled air pollution increases sleep perturbation-related cardiovascular risk, potentially in part by increased sympathetic activity.
Collapse
Affiliation(s)
- W. Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, UNC, Chapel Hill, NC, United States
| | - M. C. Schladweiler
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Oshiro
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - J. Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - A. Fisher
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Williams
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Valdez
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - C. N. Miller
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - T. W. Jackson
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Freeborn
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - Y. H. Kim
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Davies
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Ian Gilmour
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - U. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - P. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. S. Hazari
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - A. K. Farraj
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| |
Collapse
|
2
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
3
|
Positive Association between Indoor Gaseous Air Pollution and Obesity: An Observational Study in 60 Households. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111447. [PMID: 34769965 PMCID: PMC8582717 DOI: 10.3390/ijerph182111447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023]
Abstract
This study aims to analyze whether exposure to indoor air pollution affects obesity. In our research, we recruited 127 participants, with an average age of 43.30 ± 15.38 years old, residing in 60 households. We monitored indoor air quality for 24 h, and conducted both questionnaire surveys and collected serum samples for analysis, to assess the relationship between indoor air pollutant exposure and obesity. After adjusting for demographic characteristics, the results showed that CO2 exposure is positively associated with being overweight and with a higher risk of being abdominally obese. Exposures to CO and formaldehyde were also positively associated with being overweight. IQR increase in TVOC was positively associated with increases in the risk of a high BMI, being abdominally obese and having a high body fat percentage. Two-pollutant models demonstrate that TVOCs presented the strongest risks associated with overweightness. We concluded that persistent exposure to indoor gaseous pollutants increases the risk of overweightness and obesity, as indicated by the positive association with BMI, abdominal obesity, and percentage body fat. TVOCs display the strongest contribution to obesity.
Collapse
|
4
|
Liu S, Chen J, Zhao Q, Song X, Shao D, Meliefste K, Du Y, Wang J, Wang M, Wang T, Feng B, Wu R, Xu H, Bei H, Brunekreef B, Huang W. Cardiovascular benefits of short-term indoor air filtration intervention in elderly living in Beijing: An extended analysis of BIAPSY study. ENVIRONMENTAL RESEARCH 2018; 167:632-638. [PMID: 30172196 DOI: 10.1016/j.envres.2018.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Adverse cardiovascular effects associated with air pollution exposure have been widely demonstrated. However, inconsistent cardiovascular responses were observed from reducing indoor air pollution exposure. We aimed to assess whether short-term air filtration intervention could benefit cardiovascular health in elderly living in high pollution area. METHODS A randomized crossover intervention study of short-term indoor air filtration intervention on cardiovascular health was conducted among 35 non-smoking elderly participants living in Beijing in the winter of 2013, as part of Beijing Indoor Air Purifier StudY (BIAPSY). Portable air filtration units were randomly allocated to active filtration for 2 weeks and sham filtration for 2 weeks in the households. Twelve-hour daytime ambulatory heart rate variability (HRV) and blood pressure (ABP) were measured during active and sham filtration. Concurrently, real-time indoor and outdoor particulate matter with diameter less than 2.5 µm (PM2.5) and indoor black carbon (BC) concentrations were measured. We applied generalized additive mixed models to evaluate the associations of 1- to 10-h moving average (MA) exposures of indoor PM2.5 and BC with HRV and ABP indices, and to explore whether these associations could be modified by air filtration. RESULTS We observed decreases of 34.8% in indoor PM2.5 and 35.3% in indoor BC concentrations during active filtration. Indoor PM2.5 and BC exposures were significantly associated with reduced HRV and increased ABP indices, and greater changes were observed during sham filtration. In specific, each 10 μg/m3 increase in indoor PM2.5 at MA8-h was associated with a significant reduction of 1.34% (95% CI: -2.42, -0.26) in SDNN during sham filtration, compared with a non-significant reduction of 0.81% (95% CI: -6.00, 4.68) during active filtration (Pinter< 0.001). Each 1 μg/m3 increase in indoor BC at MA8-h was associated with a significant increase of 2.41% (95% CI: 0.38, 4.47) in SBP during sham filtration, compared with a non-significant increase of -1.09% (95% CI: -4.06, 1.96) during active filtration (Pinter = 0.135). Nonlinear inverse exposure-response relationships of indoor air pollution exposures with predicted HRV and ABP indices also confirmed some cardiovascular benefits of short-term air filtration intervention. CONCLUSIONS Our results suggested that short-term indoor air filtration intervention can be of some cardiovascular benefits in elderly living with high pollution episodes.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China
| | - Jie Chen
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China; Institute for Risk Assessment Sciences, University Utrecht, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, PO Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Qian Zhao
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China
| | - Danqing Shao
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China; Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 College Road, Beijing 100191, China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, University Utrecht, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, PO Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Yipeng Du
- Department of Respiratory Medicine, Peking University Third Hospital, 49 College Road, Beijing 100191, China
| | - Juan Wang
- Department of Respiratory Medicine, Peking University Third Hospital, 49 College Road, Beijing 100191, China
| | - Meng Wang
- Department of Respiratory Medicine, Peking University Third Hospital, 49 College Road, Beijing 100191, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China
| | - Baihuan Feng
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China
| | - He Bei
- Department of Respiratory Medicine, Peking University Third Hospital, 49 College Road, Beijing 100191, China
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, University Utrecht, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, PO Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, ScD, 38 College Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
5
|
Tirosh E, Schnell I. The relationship between ambient carbon monoxide and heart rate variability-a systematic world review-2015. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21157-21164. [PMID: 27623853 DOI: 10.1007/s11356-016-7533-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
The objective of this report is to systematically review the literature pertaining to the evidence of the relationship between environmental carbon monoxide (CO) and heart rate variability (HRV). For this purpose, reports published in English scientific journals were critically reviewed by the authors employing PRISMA guidelines. Fifteen studies performed in China, Finland, Israel, Mexico, Taiwan, and the USA were identified as eligible to be included in the review. Out of these, 10 studies found a significant relationship between CO and HRV. However, while a proportion of these studies found an increase in parasympathetic tone, other studies found an increase in sympathetic tone. Methodological differences across these studies, including population understudy, sample size, measurement techniques, and accounting for intervening variables do not pave the way for a consensual conclusion. In conclusion, the lack of consistent results on the relationship between CO and HRV as reflected by the present review calls for more research employing appropriate indoor and outdoor ecological designs that account for possible interaction effects and individual differences. Involvement of olfactory receptors is suggested as a possible underlying mechanism for both short response latencies as well as for the diversity between individuals and samples investigated.
Collapse
Affiliation(s)
- Emanuel Tirosh
- Bnei Zion Medical Center, Technion Medical School, Haifa, Israel
| | - Izhak Schnell
- Geography and Human Environment Department, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Zhou F, Li S, Jia W, Lv G, Song C, Kang C, Zhang Q. Effects of diesel exhaust particles on microRNA-21 in human bronchial epithelial cells and potential carcinogenic mechanisms. Mol Med Rep 2015; 12:2329-35. [PMID: 25901472 DOI: 10.3892/mmr.2015.3655] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/16/2014] [Indexed: 11/06/2022] Open
Abstract
Air pollution plays a role in cancer risk, particularly in lung cancer, which is the leading cause of cancer-related mortality worldwide. Diesel exhaust particles (DEPs), a component of diesel exhaust products, is a complex mixture of particle compounds that include a large number of known and suspected human carcinogens. Historically, lung cancer, which is associated with DEPs, has been the focus of attention as a health risk in human and animal studies. However, the mechanism by which DEPs cause lung cancer remains unclear. The present study reports that DEPs increased miR-21 expression and then activated the PTEN/PI3K/AKT pathway in human bronchial epithelial (HBE) cells, which may serve as an important carcinogenic mechanism. However, the data revealed that short-term exposure to a high DEP concentration did not cause evident cell carcinogenesis in HBE cells.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Suli Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenliang Jia
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Gang Lv
- State Key Laboratory of Internal Combustion Engine Fuel Science of Tianjin University, Tianjin 300072, P.R. China
| | - Chonglin Song
- State Key Laboratory of Internal Combustion Engine Fuel Science of Tianjin University, Tianjin 300072, P.R. China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|