1
|
Holveck M, Muller D, Visser B, Timmermans A, Colonval L, Jan F, Crucifix M, Nieberding CM. Warmer temperatures result in maladaptive learning of sexual preferences. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marie‐Jeanne Holveck
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Doriane Muller
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology University of Liège ‐ Gembloux Agro‐Bio Tech Gembloux Belgium
| | - Arthur Timmermans
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Lidwine Colonval
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Fabrice Jan
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Michel Crucifix
- Earth and Climate, Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Caroline M. Nieberding
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
2
|
Connahs H, Tan EJ, Ter YT, Dion E, Matsuoka Y, Bear A, Monteiro A. The yellow gene regulates behavioural plasticity by repressing male courtship in Bicyclus anynana butterflies. Proc Biol Sci 2022; 289:20212665. [PMID: 35382598 PMCID: PMC8984812 DOI: 10.1098/rspb.2021.2665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Seasonal plasticity in male courtship in Bicyclus anynana butterflies is due to variation in levels of the steroid hormone 20E (20-hydroxyecdysone) during pupation. Wet season (WS) males have high levels of 20E and become active courters. Dry season (DS) males have lower levels of 20E and reduced courtship rates. However, WS courtship rates can be achieved if DS male pupae are injected with 20E at 30% of pupation. Here, we investigated the genes involved in male courtship plasticity and examined whether 20E plays an organizational role in the pupal brain that later influences the sexual behaviour of adults. We show that DS pupal brains have a sevenfold upregulation of the yellow gene relative to the WS brains, and that knocking out yellow leads to increased male courtship. We find that injecting 20E into DS pupa reduced yellow expression although not significantly. Our results show that yellow is a repressor of the neural circuity for male courtship behaviour in B. anynana. 20E levels experienced during pupation could play an organizational role during pupal brain development by regulating yellow expression, however, other factors might also be involved. Our findings are in striking contrast to Drosophila where yellow is required for male courtship.
Collapse
Affiliation(s)
- Heidi Connahs
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Eunice Jingmei Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Yale-NUS College, 16 College Avenue West, Singapore 138527
| | - Yi Ting Ter
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Emilie Dion
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yuji Matsuoka
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Ashley Bear
- Department of Ecology and Evolutionary Biology, Yale University, CT 06511, USA
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Yale-NUS College, 16 College Avenue West, Singapore 138527
| |
Collapse
|
3
|
Xing K, Sun D, Zhao F. Within- and Trans-Generational Life History Responses to Diurnal Temperature Amplitudes of the Pupal Stage in the Diamondback Moth. ENVIRONMENTAL ENTOMOLOGY 2021; 50:888-897. [PMID: 33974683 DOI: 10.1093/ee/nvab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Diurnal temperature fluctuations in nature can have a significant effect on many ectodermic traits. However, studies on the effects of diurnal temperature fluctuations on organisms, especially the effects on specific life stages, are still limited. We examined the immediate effects of the same average temperature (25°C) and different temperature amplitudes (±4, ±6, ±8, ±10, ±12°C) on the development and survival of Plutella xylostella (Lepidoptera: Plutellidae). We also assessed carry-over effects on adult longevity, reproduction, development, and survival of offspring across generations. The effect of moderate temperature amplitudes was similar to that of constant temperature. Wide temperature amplitudes inhibited the development of pupae, reduced total reproduction, lowered intrinsic rates of population growth, and slowed the development and survival of eggs on the first day, but the proportion of females ovipositing on the first three days increased. Insects coped with the adverse effects of wide temperature amplitudes by laying eggs as soon as possible. Our results confirmed that a logistic model based on daily average temperature cannot predict development rates under wide temperature amplitudes. These findings highlight the effect of environmental temperature fluctuations at the pupal stage on the development and oviposition patterns of P. xylostella and should be fully considered when predicting field occurrence.
Collapse
Affiliation(s)
- Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang 031700, China
| | - Dongbao Sun
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang 031700, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang 031700, China
| |
Collapse
|
4
|
Toh YP, Dion E, Monteiro A. Dissections of Larval, Pupal and Adult Butterfly Brains for Immunostaining and Molecular Analysis. Methods Protoc 2021; 4:53. [PMID: 34449688 PMCID: PMC8395752 DOI: 10.3390/mps4030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 11/21/2022] Open
Abstract
Butterflies possess impressive cognitive abilities, and investigations into the neural mechanisms underlying these abilities are increasingly being conducted. Exploring butterfly neurobiology may require the isolation of larval, pupal, and/or adult brains for further molecular and histological experiments. This procedure has been largely described in the fruit fly, but a detailed description of butterfly brain dissections is still lacking. Here, we provide a detailed written and video protocol for the removal of Bicyclus anynana adult, pupal, and larval brains. This species is gradually becoming a popular model because it uses a large set of sensory modalities, displays plastic and hormonally controlled courtship behaviour, and learns visual mate preference and olfactory preferences that can be passed on to its offspring. The extracted brain can be used for downstream analyses, such as immunostaining, DNA or RNA extraction, and the procedure can be easily adapted to other lepidopteran species and life stages.
Collapse
Affiliation(s)
- Yi Peng Toh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
| | - Emilie Dion
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
- Yale-NUS College, 10 College Avenue West, Singapore 138609, Singapore
| |
Collapse
|
5
|
Broder ED, Elias DO, Rodríguez RL, Rosenthal GG, Seymoure BM, Tinghitella RM. Evolutionary novelty in communication between the sexes. Biol Lett 2021; 17:20200733. [PMID: 33529546 PMCID: PMC8086948 DOI: 10.1098/rsbl.2020.0733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
The diversity of signalling traits within and across taxa is vast and striking, prompting us to consider how novelty evolves in the context of animal communication. Sexual selection contributes to diversification, and here we endeavour to understand the initial conditions that facilitate the maintenance or elimination of new sexual signals and receiver features. New sender and receiver variants can occur through mutation, plasticity, hybridization and cultural innovation, and the initial conditions of the sender, the receiver and the environment then dictate whether a novel cue becomes a signal. New features may arise in the sender, the receiver or both simultaneously. We contend that it may be easier than assumed to evolve new sexual signals because sexual signals may be arbitrary, sexual conflict is common and receivers are capable of perceiving much more of the world than just existing sexual signals. Additionally, changes in the signalling environment can approximate both signal and receiver changes through a change in transmission characteristics of a given environment or the use of new environments. The Anthropocene has led to wide-scale disruption of the environment and may thus generate opportunity to directly observe the evolution of new signals to address questions that are beyond the reach of phylogenetic approaches.
Collapse
Affiliation(s)
- E. Dale Broder
- Department of Biology, St Ambrose University, Davenport, IA 52803, USA
| | - Damian O. Elias
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA 94720, USA
| | - Rafael L. Rodríguez
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Gil G. Rosenthal
- Department of Biology, Texas A&M, College Station, TX 77843, USA
| | - Brett M. Seymoure
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | |
Collapse
|
6
|
Rodrigues YK, Beldade P. Thermal Plasticity in Insects’ Response to Climate Change and to Multifactorial Environments. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
|
8
|
Muller D, Elias B, Collard L, Pels C, Holveck MJ, Nieberding CM. Polyphenism of visual and chemical secondary sexually-selected wing traits in the butterfly Bicyclus anynana: How different is the intermediate phenotype? PLoS One 2019; 14:e0225003. [PMID: 31738776 PMCID: PMC6860419 DOI: 10.1371/journal.pone.0225003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Polyphenism is a type of phenotypic plasticity supposedly adaptive to drastic and recurrent changes in the environment such as seasonal alternation in temperate and tropical regions. The butterfly Bicyclus anynana shows polyphenism with well-described wet and dry seasonal forms in sub-Saharan Africa, displaying striking morphological, physiological and behavioural differences in response to higher or lower developmental temperatures. During the seasonal transition in the wild, the intermediate phenotype co-occurs with wet and dry phenotypes. In this study, we aimed to characterize the secondary sexually-selected wing traits of the intermediate form to infer its potential fitness compared to wet and dry phenotypes. Among the previously described wing morphological traits, we first showed that the area of the fifth eyespot on the ventral hindwing is the most discriminant trait to identify wet, dry and intermediate phenotypes in both sexes. Second, we characterized the intermediate form for two secondary sexually-selected wing traits: the area and UV reflectance of the dorsal forewing pupil and the composition of the male sex pheromone. We showed that values of these two traits are often between those of the wet and dry phenotypes. Third, we observed increasing male sex pheromone production in ageing dry and wet phenotypes. Our results contrast with previous reports of values for sexually-selected traits in wet and dry seasonal forms, which might be explained by differences in rearing conditions or sample size effects among studies. Wet, dry and intermediate phenotypes display redundant sexually dimorphic traits, including sexually-selected traits that can inform about their developmental temperature in sexual interactions.
Collapse
Affiliation(s)
- Doriane Muller
- Group of Evolutionary Ecology and Genetics, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Benjamin Elias
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Laurent Collard
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Christophe Pels
- Group of Evolutionary Ecology and Genetics, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Marie-Jeanne Holveck
- Group of Evolutionary Ecology and Genetics, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Caroline M. Nieberding
- Group of Evolutionary Ecology and Genetics, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Nieberding CM, San Martin G, Saenko S, Allen CE, Brakefield PM, Visser B. Sexual selection contributes to partial restoration of phenotypic robustness in a butterfly. Sci Rep 2018; 8:14315. [PMID: 30254273 PMCID: PMC6156326 DOI: 10.1038/s41598-018-32132-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Phenotypic variation is the raw material for selection that is ubiquitous for most traits in natural populations, yet the processes underlying phenotypic evolution or stasis often remain unclear. Here, we report phenotypic evolution in a mutant line of the butterfly Bicyclus anynana after outcrossing with the genetically polymorphic wild type population. The comet mutation modifies two phenotypic traits known to be under sexual selection in this butterfly: the dorsal forewing eyespots and the pheromone-producing structures. The original comet mutant line was inbred and remained phenotypically stable for at least seven years, but when outcrossed to the wild type population the outcrossed comet line surprisingly recovered the wild type phenotype within 8 generations at high (27 °C), but not at low (20 °C), developmental temperatures. Male mating success experiments then revealed that outcrossed comet males with the typical comet phenotype suffered from lower mating success, while mating success of outcrossed comet males resembling wild types was partially restored. We document a fortuitous case where the addition of genetic polymorphism around a spontaneous mutation could have allowed partial restoration of phenotypic robustness. We further argue that sexual selection through mate choice is likely the driving force leading to phenotypic robustness in our system.
Collapse
Affiliation(s)
- Caroline M Nieberding
- Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Evolutionary Biology Group, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Gilles San Martin
- Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Suzanne Saenko
- Evolutionary Biology Group, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Cerisse E Allen
- Evolutionary Biology Group, Institute of Biology, Leiden University, Leiden, The Netherlands
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Paul M Brakefield
- Evolutionary Biology Group, Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Zoology, University Museum of Zoology Cambridge, University of Cambridge, Cambridge, United Kingdom
| | - Bertanne Visser
- Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Fischer K, Karl I, Dublon IAN, Kehl T. A reply to Nieberding and Holveck: beyond experimental design and proximate mechanisms - mate choice in the face of sexual conflict. Front Zool 2018; 15:19. [PMID: 29719562 PMCID: PMC5921974 DOI: 10.1186/s12983-017-0242-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 12/01/2022] Open
Abstract
We summarise our work on male mating behaviour in the tropical butterfly Bicyclus anynana, responding to the commentary provided by Nieberding and Holveck. We acknowledge that our laboratory studies are not free of shortcomings and potential caveats, though we attempted to address or highlight these within each paper. The concerns raised seem to stem mainly from different notions with respect to the proximate basis of old male mating advantage, and specifically the relative importance of male behaviour versus pheromone blend. In our view, our experiments provided compelling evidence for a prominent role of male behaviour, while we were unable to obtain clear evidence for a major role of male sexual pheromones. In addition to the lack of evidence we argue that a preference of females for older males based on pheromone blend is unlikely, as pheromone titres do not seem to indicate male quality and, more importantly, females actually suffer a fitness cost when mating with older males. The latter suggests that old male mating advantage arises from sexual conflict rather than cooperation. We thus highlight the importance of considering both the proximate and the ultimate level for gaining an integrative understanding of complex behavioural patterns.
Collapse
Affiliation(s)
- Klaus Fischer
- 1Zoological Institute and Museum, Greifswald University, Loitzer Straße 26, D-17489 Greifswald, Germany
| | - Isabell Karl
- 1Zoological Institute and Museum, Greifswald University, Loitzer Straße 26, D-17489 Greifswald, Germany
| | - Ian A N Dublon
- 2Infrastrukturavdelningen, Swedish University of Agricultural Sciences, Slottsvägen 1, P.O. Box 19, SE-230 53 Alnarp, Sweden
| | - Tobias Kehl
- 1Zoological Institute and Museum, Greifswald University, Loitzer Straße 26, D-17489 Greifswald, Germany
| |
Collapse
|
11
|
Steroid hormone signaling during development has a latent effect on adult male sexual behavior in the butterfly Bicyclus anynana. PLoS One 2017; 12:e0174403. [PMID: 28328961 PMCID: PMC5362226 DOI: 10.1371/journal.pone.0174403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 11/19/2022] Open
Abstract
It is well established that steroid hormones regulate sexual behavior in vertebrates via organizational and activational effects. However, whether the organizational/activational paradigm applies more broadly to the sexual behavior of other animals such as insects is not well established. Here we describe the hormonal regulation of a sexual behavior in the seasonally polyphenic butterfly Bicyclus anynana is consistent with the characteristics of an organizational effect. By measuring hormone titer levels, quantifying hormone receptor gene expression in the brain, and performing hormone manipulations, we demonstrate steroid hormone signaling early in pupal development has a latent effect on adult male sexual behavior in B. anynana. These findings suggest the organizational/activational paradigm may be more highly conserved across animal taxa than previously thought.
Collapse
|
12
|
Dion E, Monteiro A, Yew JY. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies. Sci Rep 2016; 6:39002. [PMID: 27966579 PMCID: PMC5155268 DOI: 10.1038/srep39002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season.
Collapse
Affiliation(s)
- Emilie Dion
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.,Temasek Life Sciences Laboratory, 1 Research Link, 118173, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.,Yale-NUS College, 6 College Avenue East, 138614, Singapore
| | - Joanne Y Yew
- Pacific Biosciences Research Center, 1993 East West Road, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
13
|
Westerman E, Monteiro A. Rearing Temperature Influences Adult Response to Changes in Mating Status. PLoS One 2016; 11:e0146546. [PMID: 26863319 PMCID: PMC4749170 DOI: 10.1371/journal.pone.0146546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022] Open
Abstract
Rearing environment can have an impact on adult behavior, but it is less clear how rearing environment influences adult behavior plasticity. Here we explore the effect of rearing temperature on adult mating behavior plasticity in the butterfly Bicyclus anynana, a species that has evolved two seasonal forms in response to seasonal changes in temperature. These seasonal forms differ in both morphology and behavior. Females are the choosy sex in cohorts reared at warm temperatures (WS butterflies), and males are the choosy sex in cohorts reared at cooler temperatures (DS butterflies). Rearing temperature also influences mating benefits and costs. In DS butterflies, mated females live longer than virgin females, and mated males live shorter than virgin males. No such benefits or costs to mating are present in WS butterflies. Given that choosiness and mating costs are rearing temperature dependent in B. anynana, we hypothesized that temperature may also impact male and female incentives to remate in the event that benefits and costs of second matings are similar to those of first matings. We first examined whether lifespan was affected by number of matings. We found that two matings did not significantly increase lifespan for either WS or DS butterflies relative to single matings. However, both sexes of WS but not DS butterflies experienced decreased longevity when mated to a non-virgin relative to a virgin. We next observed pairs of WS and DS butterflies and documented changes in mating behavior in response to changes in the mating status of their partner. WS but not DS butterflies changed their mating behavior in response to the mating status of their partner. These results suggest that rearing temperature influences adult mating behavior plasticity in B. anynana. This developmentally controlled behavioral plasticity may be adaptive, as lifespan depends on the partner’s mating status in one seasonal form, but not in the other.
Collapse
Affiliation(s)
- Erica Westerman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Antónia Monteiro
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
14
|
Macias-Muñoz A, Smith G, Monteiro A, Briscoe AD. Transcriptome-Wide Differential Gene Expression in Bicyclus anynana Butterflies: Female Vision-Related Genes Are More Plastic. Mol Biol Evol 2015; 33:79-92. [PMID: 26371082 DOI: 10.1093/molbev/msv197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vision is energetically costly to maintain. Consequently, over time many cave-adapted species downregulate the expression of vision genes or even lose their eyes and associated eye genes entirely. Alternatively, organisms that live in fluctuating environments, with different requirements for vision at different times, may evolve phenotypic plasticity for expression of vision genes. Here, we use a global transcriptomic and candidate gene approach to compare gene expression in the heads of a polyphenic butterfly. Bicyclus anynana have two seasonal forms that display sexual dimorphism and plasticity in eye morphology, and female-specific plasticity in opsin gene expression. Nonchoosy dry season females downregulate opsin expression, consistent with the high physiological cost of vision. To identify other genes associated with sexually dimorphic and seasonally plastic differences in vision, we analyzed RNA-sequencing data from whole head tissues. We identified two eye development genes (klarsicht and warts homologs) and an eye pigment biosynthesis gene (henna) differentially expressed between seasonal forms. By comparing sex-specific expression across seasonal forms, we found that klarsicht, warts, henna, and another eye development gene (domeless) were plastic in a female-specific manner. In a male-only analysis, white (w) was differentially expressed between seasonal forms. Reverse transcription polymerase chain reaction confirmed that warts and white are expressed in eyes only, whereas klarsicht, henna and domeless are expressed in both eyes and brain. We find that differential expression of eye development and eye pigment genes is associated with divergent eye phenotypes in B. anynana seasonal forms, and that there is a larger effect of season on female vision-related genes.
Collapse
Affiliation(s)
- Aide Macias-Muñoz
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| | - Gilbert Smith
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore Yale-NUS College, Singapore
| | - Adriana D Briscoe
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| |
Collapse
|