1
|
Jiao S, Wei L, Zou L, Wang T, Hu K, Zhang F, Hou X. Prognostic values of tumor size and location in early stage endometrial cancer patients who received radiotherapy. J Gynecol Oncol 2024; 35:e84. [PMID: 38606825 PMCID: PMC11543252 DOI: 10.3802/jgo.2024.35.e84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE To investigate the correlation between tumor size, tumor location, and prognosis in patients with early-stage endometrial cancer (EC) receiving adjuvant radiotherapy. METHODS Data of patients who had been treated for stage I-II EC from March 1999 to September 2017 in 13 tertiary hospitals in China was screened. Cox regression analysis was performed to investigate associations between tumor size, tumor location, and other clinical or pathological factors with cancer-specific survival (CSS) and distant metastasis failure-free survival (DMFS). The relationship between tumor size as a continuous variable and prognosis was demonstrated by restricted cubic splines. Prognostic models were constructed as nomograms and evaluated by Harrell's C-index, calibration curves and receiver operating characteristic (ROC) curves. RESULTS The study cohort comprised 805 patients with a median follow-up of 61 months and a median tumor size of 3.0 cm (range 0.2-15.0 cm). Lower uterine segment involvement (LUSI) was found in 243 patients (30.2%). Tumor size and LUSI were identified to be independent prognostic factors for CSS. Further, tumor size was an independent predictor of DMFS. A broadly positive relationship between poor survival and tumor size as a continuous variable was visualized in terms of hazard ratios. Nomograms constructed and evaluated for CSS and DMFS had satisfactory calibration curves and C-indexes of 0.847 and 0.716, respectively. The area under the ROC curves for 3- and 5-year ROC ranged from 0.718 to 0.890. CONCLUSION Tumor size and LUSI are independent prognostic factors in early-stage EC patients who have received radiotherapy. Integrating these variables into prognostic models would improve predictive ability.
Collapse
Affiliation(s)
- Shuning Jiao
- Department of Radiation Oncology, Peking Union Medical College Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Lichun Wei
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University of PLA (the Fourth Military Medical University), Xi'an, People's Republic of China
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital Affiliated by Jilin University, Changchun, People's Republic of China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaorong Hou
- Department of Radiation Oncology, Peking Union Medical College Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Shukuri M, Onoe S, Karube T, Mokudai R, Wakui H, Asano H, Murai S, Akizawa H. Assessment of Radiolabelled Derivatives of R954 for Detection of Bradykinin B1 Receptor in Cancer Cells: Studies on Glioblastoma Xenografts in Mice. Pharmaceuticals (Basel) 2024; 17:902. [PMID: 39065752 PMCID: PMC11279923 DOI: 10.3390/ph17070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Bradykinin B1 receptor (B1R) has garnered attention as a cancer therapeutic and diagnostic target. Several reports on radiolabelled derivatives of B1R antagonists have shown favourable properties as imaging agents in cells highly expressing hB1R following transfection. In the present study, we assessed whether radiolabelled probes can detect B1R endogenously expressed in cancer cells. To this end, we evaluated 111In-labelled derivatives of a B1R antagonist ([111In]In-DOTA-Ahx-R954) using glioblastoma cell lines (U87MG and U251MG) with different B1R expression levels. Cellular uptake studies showed that the specific accumulation of [111In]In-DOTA-Ahx-R954 in U87MG was higher than that in U251MG, which correlated with B1R expression levels. Tissue distribution in U87MG-bearing mice revealed approximately 2-fold higher radioactivity in tumours than in the muscle in the contralateral leg. The specific accumulation of [111In]In-DOTA-Ahx-R954 in the tumour was demonstrated by the reduction in the tumour-to-plasma ratios in nonlabelled R954-treated mice. Moreover, ex vivo autoradiographic images revealed that the intratumoural distribution of [111In]In-DOTA-Ahx-R954 correlated with the localisation of B1R-expressing glioblastoma cells. In conclusion, we demonstrated that [111In]In-DOTA-Ahx-R954 radioactivity correlated with B1R expression in glioblastoma cells, indicating that radiolabelled derivatives of the B1R antagonist could serve as promising tools for elucidating the involvement of B1R in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hiromichi Akizawa
- Laboratory of Physical Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| |
Collapse
|
3
|
Ferreira JDCP, Soley BS, Pawloski PL, Moreira CG, Pesquero JB, Bader M, Calixto JB, Cabrini DA, Otuki MF. Role of kinin receptors in skin pigmentation. Eur J Pharmacol 2024; 973:176537. [PMID: 38604546 DOI: 10.1016/j.ejphar.2024.176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Previous studies have shown that all kinin system is constitutively expressed in the normal and inflamed skin, with a potential role in both physiological and pathological processes. However, the understanding regarding the involvement of the kinin system in skin pigmentation and pigmentation disorders remains incomplete. In this context, the present study was designed to determine the role of kinins in the Monobenzone (MBZ)-induced vitiligo-like model. Our findings showed that MBZ induces higher local skin depigmentation in kinin receptors knockout mice (KOB1R, KOB2R and KOB1B2R) than in wild type (WT). Remarkably, lower levels of melanin content and reduced ROS generation were detected in KOB1R and KOB2R mice treated with MBZ. In addition, both KOB1R and KOB2R show increased dermal cell infiltrate in vitiligo-like skin, when compared to WT-MBZ. Additionally, lack of B1R was associated with greater skin accumulation of IL-4, IL-6, and IL-17 by MBZ, while KOB1B2R presented lower levels of TNF and IL-1. Of note, the absence of both kinin B1 and B2 receptors demonstrates a protective effect by preventing the increase in polymorphonuclear and mononuclear cell infiltrations, as well as inflammatory cytokine levels induced by MBZ. In addition, in vitro assays confirm that B1R and B2R agonists increase intracellular melanin synthesis, while bradykinin significantly enhanced extracellular melanin levels and proliferation of B16F10 cells. Our findings highlight that the lack of kinin receptors caused more severe depigmentation in the skin, as well as genetic deletion of both B1/B2 receptors seems to be linked with changes in levels of constitutive melanin levels, suggesting the involvement of kinin system in crucial skin pigmentation pathways.
Collapse
Affiliation(s)
| | - Bruna Silva Soley
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | | | - João Bosco Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Institute for Biology, University of Lübeck, Germany; Charité University Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - João Batista Calixto
- Center of Innovation and Preclinical Studies (CIENP), Florianópolis, SC, Brazil.
| | | | - Michel Fleith Otuki
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
4
|
Souza-Silva IM, Steckelings UM, Assersen KB. The role of vasoactive peptides in skin homeostasis-focus on adiponectin and the kallikrein-kinin system. Am J Physiol Cell Physiol 2023; 324:C741-C756. [PMID: 36745527 DOI: 10.1152/ajpcell.00269.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasoactive peptides often serve a multitude of functions aside from their direct effects on vasodynamics. This article will review the existing literature on two vasoactive peptides and their involvement in skin homeostasis: adiponectin and-as the main representative of the kallikrein-kinin system-bradykinin. Adiponectin is the most abundantly expressed adipokine in the human organism, where it is mainly localized in fat depots including subcutaneous adipose tissue, from where adiponectin can exert paracrine effects. The involvement of adiponectin in skin homeostasis is supported by a number of studies reporting the effects of adiponectin in isolated human keratinocytes, sebocytes, fibroblasts, melanocytes, and immune cells. Regarding skin pathology, the potential involvement of adiponectin in psoriasis, atopic dermatitis, scleroderma, keloid, and melanogenesis is discussed in this article. The kallikrein-kinin system is composed of a variety of enzymes and peptides, most of which have been identified to be expressed in the skin. This also includes the expression of bradykinin receptors on most skin cells. Bradykinin is one of the very few hormones that is targeted by treatment in routine clinical use in dermatology-in this case for the treatment of hereditary angioedema. The potential involvement of bradykinin in wound healing, psoriasis, and melanoma is further discussed in this article. This review concludes with a call for additional preclinical and clinical studies to further explore the therapeutic potential of adiponectin supplementation (for psoriasis, atopic dermatitis, wound healing, scleroderma, and keloid) or pharmacological interference with the kallikrein-kinin system (for wound healing, psoriasis, and melanoma).
Collapse
Affiliation(s)
- Igor M Souza-Silva
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - U Muscha Steckelings
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kasper Bostlund Assersen
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Dermatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
An overview of kinin mediated events in cancer progression and therapeutic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188807. [PMID: 36167271 DOI: 10.1016/j.bbcan.2022.188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.
Collapse
|
6
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
7
|
Maria AG, Dillemburg-Pilla P, Durand MDT, Floriano EM, Manfiolli AO, Ramos SG, Pesquero JB, Nahmias C, Costa-Neto CM. Activation of the Kinin B1 Receptor by Its Agonist Reduces Melanoma Metastasis by Playing a Dual Effect on Tumor Cells and Host Immune Response. Front Pharmacol 2019; 10:1106. [PMID: 31607931 PMCID: PMC6774293 DOI: 10.3389/fphar.2019.01106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Metastatic melanoma is an aggressive type of skin cancer leading half of the patients to death within 8–10 months after diagnosis. Kinins are peptides that interact with B1 and B2 receptors playing diverse biological roles. We investigated whether treatment with B1 receptor agonist, des-Arg9-bradykinin (DABK), has effects in lung metastasis establishment after melanoma induction in mice. We found a lower number of metastatic colonies in lungs of DABK-treated mice, reduced expression of vascular cell adhesion molecule 1 (VCAM-1), and increased CD8+T-cell recruitment to the metastatic area compared to animals that did not receive treatment. To understand whether the effects of DABK observed were due to the activation of the B1 receptor in the tumor cells or in the host, we treated wild-type (WT) and kinin B1 receptor knockout (B1−/−) mice with DABK. No significant differences in the number of melanoma colonies established in lungs were seen between WT and B1−/−mice; however, B1−/−mice presented higher VCAM-1 expression and lower CD8+T-cell infiltration. In conclusion, we believe that activation of kinin B1 receptor by its agonist in the host stimulates the immune response more efficiently, promoting CD8+T-cell recruitment to the metastatic lungs and interfering in VCAM-1 expression. Moreover, treatment with DABK reduced establishment of metastatic colonies by mainly acting on tumor cells; hence, this study brings insights to explore novel approaches to treat metastatic melanoma targeting the B1 receptor.
Collapse
Affiliation(s)
- Andrea Gutierrez Maria
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Dillemburg-Pilla
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Elaine Medeiros Floriano
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana Oliveira Manfiolli
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Simone Gusmão Ramos
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Clara Nahmias
- INSERM U981, Department of Molecular Medicine, Gustave Roussy Cancer Center, Villejuif, France
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Maria AG, Dillenburg-Pilla P, Reis RI, Floriano EM, Tefé-Silva C, Ramos SG, Pesquero JB, Nahmias C, Costa-Neto CM. Host kinin B1 receptor plays a protective role against melanoma progression. Sci Rep 2016; 6:22078. [PMID: 26898917 PMCID: PMC4761993 DOI: 10.1038/srep22078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/05/2016] [Indexed: 01/06/2023] Open
Abstract
Melanoma is a very aggressive tumor that arises from melanocytes. Late stage and widely spread diseases do not respond to standard therapeutic approaches. The kallikrein-kinin system (KKS) participates in biological processes such as vasodilatation, pain and inflammatory response. However, the role of KKS in tumor formation and progression is not completely understood. The role of the host kinin B1 receptor in melanoma development was evaluated using a syngeneic melanoma model. Primary tumors and metastasis were respectively induced by injecting B16F10 melanoma cells, which are derived from C57BL/6 mice, subcutaneously or in the tail vein in wild type C57BL/6 and B1 receptor knockout mice (B1−/−). Tumors developed in B1−/− mice presented unfavorable prognostic factors such as increased incidence of ulceration, higher levels of IL-10, higher activation of proliferative pathways such as ERK1/2 and Akt, and increased mitotic index. Furthermore, in the metastasis model, B1−/− mice developed larger metastatic colonies in the lung and lower CD8+immune effector cells when compared with WT animals. Altogether, our results provide evidences that B1−/− animals developed primary tumors with multiple features associated with poor prognosis and unfavorable metastatic onset, indicating that the B1 receptor may contribute to improve the host response against melanoma progression.
Collapse
Affiliation(s)
- Andrea G Maria
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School - University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| | - Patrícia Dillenburg-Pilla
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School - University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| | - Rosana I Reis
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School - University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| | - Elaine M Floriano
- Departament of Pathology, Ribeirão Preto Medical School - University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| | - Cristiane Tefé-Silva
- Departament of Pathology, Ribeirão Preto Medical School - University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| | - Simone G Ramos
- Departament of Pathology, Ribeirão Preto Medical School - University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| | - João B Pesquero
- Department of Biophysics, Federal University of São Paulo, 04039-032, São Paulo, Brazil
| | - Clara Nahmias
- Inserm U981,Institut Gustave Roussy, 94800, Villejuif, France
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School - University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Pillat MM, Oliveira MN, Motaln H, Breznik B, Glaser T, Lah TT, Ulrich H. Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: Possible involvement of bradykinin in information flow. Cytometry A 2015; 89:365-75. [DOI: 10.1002/cyto.a.22800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/08/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Micheli M. Pillat
- Department of Biochemistry; Institute of Chemistry, University of São Paulo; Av. Prof. Lineu Prestes 748 São Paulo S.P 05508-000 Brazil
| | - Mona N. Oliveira
- Department of Biochemistry; Institute of Chemistry, University of São Paulo; Av. Prof. Lineu Prestes 748 São Paulo S.P 05508-000 Brazil
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology; National Institute of Biology; Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology; National Institute of Biology; Ljubljana, Slovenia
- Nanosciences and Nanotechnologies Programme, Jožef Stefan International Postgraduate School; Jamova 39 Ljubljana 1000 Slovenia
| | - Talita Glaser
- Department of Biochemistry; Institute of Chemistry, University of São Paulo; Av. Prof. Lineu Prestes 748 São Paulo S.P 05508-000 Brazil
| | - Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology; National Institute of Biology; Ljubljana, Slovenia
- Nanosciences and Nanotechnologies Programme, Jožef Stefan International Postgraduate School; Jamova 39 Ljubljana 1000 Slovenia
| | - Henning Ulrich
- Department of Biochemistry; Institute of Chemistry, University of São Paulo; Av. Prof. Lineu Prestes 748 São Paulo S.P 05508-000 Brazil
| |
Collapse
|
10
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
11
|
da Costa PLN, Sirois P, Tannock IF, Chammas R. The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett 2013; 345:27-38. [PMID: 24333733 DOI: 10.1016/j.canlet.2013.12.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Kinins are generated within inflammatory tissue microenvironments, where they exert diverse functions, including cell proliferation, leukocyte activation, cell migration, endothelial cell activation and nociception. These pleiotropic functions depend on signaling through two cross talking receptors, the constitutively expressed kinin receptor 2 (B2R) and the inducible kinin receptor 1 (B1R). We have reviewed evidence, which supports the concept that kinin receptors, especially kinin receptor 1, are promising targets for cancer therapy, since (1) many tumor cells express aberrantly high levels of these receptors; (2) some cancers produce kinins and use them as autocrine factors to stimulate their growth; (3) activation of kinin receptors leads to activation of macrophages, dendritic cells and other cells from the tumor microenvironment; (4) kinins have pro-angiogenic properties; (5) kinin receptors have been implicated in cancer migration, invasion and metastasis; and (6) selective antagonists for either B1R or B2R have shown anti-proliferative, anti-inflammatory, anti-angiogenic and anti-migratory properties. The multiple cross talks between kinin receptors and renin-angiotensin system (RAS) as well as its implications for targeting KKS or RAS for the treatment of malignancies are also discussed. It is expected that B1R antagonists would interfere less with housekeeping functions and therefore would be attractive compounds to treat selected types of cancer. Reliable clinical studies are needed to establish the translatability of these data to human settings and the usefulness of kinin receptor antagonists.
Collapse
Affiliation(s)
- Patrícia L N da Costa
- Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil
| | - Pierre Sirois
- CHUL Research Center, Laval University, Quebec City, Canada
| | - Ian F Tannock
- Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Roger Chammas
- Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil.
| |
Collapse
|