1
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. eLife 2025; 13:RP95629. [PMID: 40297980 PMCID: PMC12040321 DOI: 10.7554/elife.95629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Rana R Khankan
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Mahlet A Mekonnen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Giovanni Juarez
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | | | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| |
Collapse
|
2
|
Kwon H, Joh JY, Hong KU. Human CKAP2L shows a cell cycle-dependent expression pattern and exhibits microtubule-stabilizing properties. FEBS Open Bio 2024; 14:1526-1539. [PMID: 39073037 PMCID: PMC11492392 DOI: 10.1002/2211-5463.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Cytoskeleton-associated protein 2-like (CKAP2L) is a paralogue of cytoskeleton-associated protein 2 (CKAP2). We characterized the expression pattern, subcellular localization, and microtubule-stabilizing properties of human CKAP2L. The levels of both CKAP2L transcript and protein were cell cycle phase-dependent, peaking during the G2/M phase and relatively high in certain human tissues, including testis, intestine, and spleen. CKAP2L protein was detectable in all human cancer cell lines we tested. CKAP2L localized to the mitotic spindle apparatus during mitosis, as reported previously. During interphase, however, CKAP2L localized mainly to the nucleus. Ectopic overexpression of CKAP2L resulted in 'microtubule bundling', and, consequently, an elevated CKAP2L level led to prolonged mitosis. These findings support the mitotic role of CKAP2L during the human cell cycle.
Collapse
Affiliation(s)
- Hyerim Kwon
- School of MedicineSungkyunkwan UniversitySuwonKorea
| | - Jonathan Y. Joh
- Department of Pharmacology & ToxicologyUniversity of Louisville School of MedicineKYUSA
| | - Kyung U. Hong
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMAUSA
| |
Collapse
|
3
|
Paim LMG, Lopez-Jauregui AA, McAlear TS, Bechstedt S. The spindle protein CKAP2 regulates microtubule dynamics and ensures faithful chromosome segregation. Proc Natl Acad Sci U S A 2024; 121:e2318782121. [PMID: 38381793 PMCID: PMC10907244 DOI: 10.1073/pnas.2318782121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
Regulation of microtubule dynamics by microtubule-associated proteins (MAPs) is essential for mitotic spindle assembly and chromosome segregation. Altered microtubule dynamics, particularly increased microtubule growth rates, were found to be a contributing factor for the development of chromosomal instability, which potentiates tumorigenesis. The MAP XMAP215/CKAP5 is the only known microtubule growth factor, and whether other MAPs regulate microtubule growth in cells is unclear. Our recent in vitro reconstitution experiments have demonstrated that Cytoskeleton-Associated Protein 2 (CKAP2) increases microtubule nucleation and growth rates, and here, we find that CKAP2 is also an essential microtubule growth factor in cells. By applying CRISPR-Cas9 knock-in and knock-out (KO) as well as microtubule plus-end tracking live cell imaging, we show that CKAP2 is a mitotic spindle protein that ensures faithful chromosome segregation by regulating microtubule growth. Live cell imaging of endogenously labeled CKAP2 showed that it localizes to the spindle during mitosis and rapidly shifts its localization to the chromatin upon mitotic exit before being degraded. Cells lacking CKAP2 display reduced microtubule growth rates and an increased proportion of chromosome segregation errors and aneuploidy that may be a result of an accumulation of kinetochore-microtubule misattachments. Microtubule growth rates and chromosome segregation fidelity can be rescued upon ectopic CKAP2 expression in KO cells, revealing a direct link between CKAP2 expression and microtubule dynamics. Our results unveil a role of CKAP2 in regulating microtubule growth in cells and provide a mechanistic explanation for the oncogenic potential of CKAP2 misregulation.
Collapse
Affiliation(s)
- Lia Mara Gomes Paim
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| | | | - Thomas S. McAlear
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| |
Collapse
|
4
|
Aldwaik RK, Shian D, Thapa R, Vasudevan S, Ashqar MAA, Reich E, Kravchenko-Balasha N, Klutstein M. Overexpressed kinetochore genes are used by cancer cells as genome destabilizers and transformation catalysts. Transl Oncol 2023; 34:101703. [PMID: 37295219 DOI: 10.1016/j.tranon.2023.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer cells have an altered transcriptome, which contributes to their abnormal behavior. Many tumors have high levels of kinetochore genes, which play important roles in genome stability. This overexpression could be utilized to destabilize cancer cell genomes, however this has not been proven specifically. We investigated the link between kinetochore gene overexpression, chromosomal number variations (CNVs) and genomic instability. Data on RNA expression and CNV from 12 different cancer types were evaluated using information theory. In all cancer types, we looked at the relationship between RNA expression and CNVs. Kinetochore gene expression was found to be substantially linked with CNV levels. In all cancer types, with the exception of thyroid cancer, highly expressed kinetochore genes were enriched in the most dominant cancer-specific co-expression subnetworks characterizing the largest patient subgroups. Except for thyroid cancer, kinetochore inner protein CENPA was among the transcripts most strongly associated with CNV values in all cancer types studied, with significantly higher expression levels in patients with high CNVs than in patients with low CNVs. CENPA function was investigated further in cell models by transfecting genomically stable (HCT116) and unstable (MCF7 and HT29) cancer cell lines using CENPA overexpression vectors. This overexpression increased the number of abnormal cell divisions in the stable cancer cell line HCT116 and, to a lesser extent, in the unstable cell lines MCF7 and HT29. Overexpression improved anchorage-independent growth properties of all cell lines. Our findings suggest that overexpression of kinetochore genes in general, and CENPA in particular, can cause genomic instability and cancer progression.
Collapse
Affiliation(s)
- Reem Kamal Aldwaik
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Denen Shian
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Roshina Thapa
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Swetha Vasudevan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Mimi Abo-Ayoub Ashqar
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Eli Reich
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel.
| | - Michael Klutstein
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel.
| |
Collapse
|
5
|
Mayer EA, Ryu HJ, Bhatt RR. The neurobiology of irritable bowel syndrome. Mol Psychiatry 2023; 28:1451-1465. [PMID: 36732586 PMCID: PMC10208985 DOI: 10.1038/s41380-023-01972-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Irritable bowel syndrome (IBS) is the most prevalent disorder of brain-gut interactions that affects between 5 and 10% of the general population worldwide. The current symptom criteria restrict the diagnosis to recurrent abdominal pain associated with altered bowel habits, but the majority of patients also report non-painful abdominal discomfort, associated psychiatric conditions (anxiety and depression), as well as other visceral and somatic pain-related symptoms. For decades, IBS was considered an intestinal motility disorder, and more recently a gut disorder. However, based on an extensive body of reported information about central, peripheral mechanisms and genetic factors involved in the pathophysiology of IBS symptoms, a comprehensive disease model of brain-gut-microbiome interactions has emerged, which can explain altered bowel habits, chronic abdominal pain, and psychiatric comorbidities. In this review, we will first describe novel insights into several key components of brain-gut microbiome interactions, starting with reported alterations in the gut connectome and enteric nervous system, and a list of distinct functional and structural brain signatures, and comparing them to the proposed brain alterations in anxiety disorders. We will then point out the emerging correlations between the brain networks with the genomic, gastrointestinal, immune, and gut microbiome-related parameters. We will incorporate this new information into a systems-based disease model of IBS. Finally, we will discuss the implications of such a model for the improved understanding of the disorder and the development of more effective treatment approaches in the future.
Collapse
Affiliation(s)
- Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Departments of Medicine, Psychiatry and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Hyo Jin Ryu
- A.T. Still University School of Osteopathic Medicine in Arizona, Meza, AZ, USA
| | - Ravi R Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
CKAP2L Promotes Esophageal Squamous Cell Carcinoma Progression and Drug-Resistance by Modulating Cell Cycle. JOURNAL OF ONCOLOGY 2022; 2022:2378253. [PMID: 36090903 PMCID: PMC9462994 DOI: 10.1155/2022/2378253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common types of cancer and the leading cause of cancer-related mortality worldwide, especially in Asia. In this study, the gene CKAP2L was selected by GEO, TCGA, and GTEx database analysis. The high expression of CKAP2L is related to the occurrence and development of ESCC. In addition, CKAP2L knockdown can inhibit the growth and migration of ESCC cells, while CKAP2L overexpression has the opposite effect. Furthermore, in vivo experiments indicated that down-regulation of CKAP2L can inhibit the tumorigenesis of ESCC cells. KEGG pathway analysis and the STRING database explored the relationship between cell cycle and CKAP2L and verified that depletion of CKAP2L markedly arrested cell cycle in the G2/M phase. Meanwhile, CKAP2L knockdown increased the sensitivity of ESCC cells to flavopiridol, the first CDK inhibitor to be tested in clinical trials, leading to an observable reduction in cell proliferation and an increase in cellular apoptosis. In brief, we identified CKAP2L as a tumor promoter, potential prognostic indicator, and therapeutic target of ESCC, which may play a role in regulating cell cycle progression.
Collapse
|
7
|
dos Santos A, Ouellete G, Diorio C, Elowe S, Durocher F. Knockdown of CKAP2 Inhibits Proliferation, Migration, and Aggregate Formation in Aggressive Breast Cancer. Cancers (Basel) 2022; 14:cancers14153759. [PMID: 35954424 PMCID: PMC9367390 DOI: 10.3390/cancers14153759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Cancer is a complex disease where cells grow and divide in an uncontrolled manner. It is well established that its development and progression involve major alterations in the activity of mitotic regulators. In order to improve our understanding of the contribution of cell-cycle progression defects to the development of disease, the aim of this study is to identify genes relevant to the proper progression of mitosis that are deregulated in breast cancer. Our findings identified CKAP2 as an important mitotic regulator in BC tumors. Moreover, in vitro experiments showed that gene silencing of CKAP2 blocked cell growth, cell migration, and formation of cell aggregates. These results demonstrated the important role of CKAP2 in breast cancer tumor formation. Abstract Loss of mitotic regulation is commonly observed in cancer and is a major cause of whole-chromosome aneuploidy. The identification of genes that play a role in the proper progression of mitosis can help us to understand the development and evolution of this disease. Here, we generated a list of proteins implicated in mitosis that we used to probe a patient-derived breast cancer (BC) continuum gene-expression dataset generated by our group by human transcriptome analysis of breast lesions of varying aggressiveness (from normal to invasive). We identified cytoskeleton-associated protein 2 (CKAP2) as an important mitotic regulator in invasive BC. The results showed that CKAP2 is overexpressed in invasive BC tumors when compared with normal tissues, and highly expressed in all BC subtypes. Higher expression of CKAP2 is also related to a worse prognosis in overall survival and relapse-free survival in estrogen receptor (ER)-positive and human epidermal growth factor receptor type 2 (HER2)-negative BC patients. Knockdown of CKAP2 in SKBR3 cells impaired cell proliferation and cell migration and reduced aggregate formation in a 3D culture. Our results show the important role of CKAP2 in BC tumorigenesis, and its potential utility as a prognostic marker in BC.
Collapse
Affiliation(s)
- Alexsandro dos Santos
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, L’ingénierie et les Applications des Protéines, Québec City, QC G1V 0A6, Canada
| | - Geneviève Ouellete
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, L’ingénierie et les Applications des Protéines, Québec City, QC G1V 0A6, Canada
- Département de Pédiatrie, Faculté de Médecine, Université Laval et le Centre de recherche sur le Cancer de l’Université Laval, Québec City, QC G1R 2J6, Canada
- Correspondence: (S.E.); (F.D.)
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; (A.d.S.); (G.O.)
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada;
- Correspondence: (S.E.); (F.D.)
| |
Collapse
|
8
|
Yunes SA, Willoughby JLS, Kwan JH, Biagi JM, Pokharel N, Chin HG, York EA, Su KC, George K, Shah JV, Emili A, Schaus SE, Hansen U. Factor quinolinone inhibitors disrupt spindles and multiple LSF (TFCP2)-protein interactions in mitosis, including with microtubule-associated proteins. PLoS One 2022; 17:e0268857. [PMID: 35704642 PMCID: PMC9200292 DOI: 10.1371/journal.pone.0268857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Factor quinolinone inhibitors (FQIs), a first-in-class set of small molecule inhibitors targeted to the transcription factor LSF (TFCP2), exhibit promising cancer chemotherapeutic properties. FQI1, the initial lead compound identified, unexpectedly induced a concentration-dependent delay in mitotic progression. Here, we show that FQI1 can rapidly and reversibly lead to mitotic arrest, even when added directly to mitotic cells, implying that FQI1-mediated mitotic defects are not transcriptionally based. Furthermore, treatment with FQIs resulted in a striking, concentration-dependent diminishment of spindle microtubules, accompanied by a concentration-dependent increase in multi-aster formation. Aberrant γ-tubulin localization was also observed. These phenotypes suggest that perturbation of spindle microtubules is the primary event leading to the mitotic delays upon FQI1 treatment. Previously, FQIs were shown to specifically inhibit not only LSF DNA-binding activity, which requires LSF oligomerization to tetramers, but also other specific LSF-protein interactions. Other transcription factors participate in mitosis through non-transcriptional means, and we recently reported that LSF directly binds α-tubulin and is present in purified cellular tubulin preparations. Consistent with a microtubule role for LSF, here we show that LSF enhanced the rate of tubulin polymerization in vitro, and FQI1 inhibited such polymerization. To probe whether the FQI1-mediated spindle abnormalities could result from inhibition of mitotic LSF-protein interactions, mass spectrometry was performed using as bait an inducible, tagged form of LSF that is biotinylated by endogenous enzymes. The global proteomics analysis yielded expected associations for a transcription factor, notably with RNA processing machinery, but also to nontranscriptional components. In particular, and consistent with spindle disruption due to FQI treatment, mitotic, FQI1-sensitive interactions were identified between the biotinylated LSF and microtubule-associated proteins that regulate spindle assembly, positioning, and dynamics, as well as centrosome-associated proteins. Probing the mitotic LSF interactome using small molecule inhibitors therefore supported a non-transcriptional role for LSF in mediating progression through mitosis.
Collapse
Affiliation(s)
- Sarah A. Yunes
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| | - Jennifer L. S. Willoughby
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Julian H. Kwan
- Department of Biochemistry and Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jessica M. Biagi
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Niranjana Pokharel
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Hang Gyeong Chin
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Emily A. York
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Kelly George
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jagesh V. Shah
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew Emili
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Biochemistry and Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Scott E. Schaus
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Ulla Hansen
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
McAlear TS, Bechstedt S. The mitotic spindle protein CKAP2 potently increases formation and stability of microtubules. eLife 2022; 11:72202. [PMID: 35029146 PMCID: PMC8798059 DOI: 10.7554/elife.72202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cells increase microtubule dynamics to make large rearrangements to their microtubule cytoskeleton during cell division. Changes in microtubule dynamics are essential for the formation and function of the mitotic spindle, and misregulation can lead to aneuploidy and cancer. Using in vitro reconstitution assays we show that the mitotic spindle protein Cytoskeleton-Associated Protein 2 (CKAP2) has a strong effect on nucleation of microtubules by lowering the critical tubulin concentration 100-fold. CKAP2 increases the apparent rate constant ka of microtubule growth by 50-fold and increases microtubule growth rates. In addition, CKAP2 strongly suppresses catastrophes. Our results identify CKAP2 as the most potent microtubule growth factor to date. These finding help explain CKAP2's role as an important spindle protein, proliferation marker, and oncogene.
Collapse
Affiliation(s)
- Thomas S McAlear
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| |
Collapse
|
10
|
Feng Y, Wei G, Zhang L, Zhou H, Wang W, Guo P, Cheng C, Ji L, Cai Q, Feng Y, Tu H. LncRNA DARS-AS1 aggravates the growth and metastasis of hepatocellular carcinoma via regulating the miR-3200-5p-Cytoskeleton associated protein 2 (CKAP2) axis. Bioengineered 2021; 12:8217-8232. [PMID: 34596006 PMCID: PMC8806480 DOI: 10.1080/21655979.2021.1982272] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Accumulating signs have found that long noncoding RNAs (lncRNAs) contribute to hepatocellular carcinoma (HCC). Here, we probed the effect and mechanism of lncRNA DARS-AS1 in HCC. The profiles of DARS-AS1 and Cytoskeleton associated protein 2 (CKAP2) in 50 HCC tissues and non-tumor tissues were examined by real-time quantitative polymerase chain reaction (RT-qPCR). DARS-AS1 and CKAP2 overexpression and/or knockdown cell models were established. The proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) were determined. CKAP2, and focal adhesion kinase (FAK)-extracellular signal-regulated kinase (ERK) was tested by Western blot (WB). The relationship between DARS-AS1 and CKAP2 was predicted by Bioinformatics, and the dual-luciferase reporter assay was applied to verify the targeting association between miR-3200-5p and DARS-AS1 and CKAP2. DARS-AS1 was overexpressed in HCC tissues (vs. that in non-tumor tissues) and was closely correlated with the patients’ tumor stage. DARS-AS1 facilitated HCC cell proliferation and hampered apoptosis. HCC cell migration and EMT were enhanced by DARS-AS1. DARS-AS1 up-regulated CKAP2, which aggravated HCC. Further investigation illustrated that either DARS-AS1 or CKAP2 activated FAK-ERK pathway, and miR-3200-5p was competitively restrained by DARS-AS1. miR-3200-5p exerted tumor-suppressive effects in HCC and inactivated CKAP2 and FAK-ERK pathway. All in all, this study corroborates that DARS-AS1 facilitates HCC proliferation and metastasis by regulating miR-3200-5p-mediated CKAP2, which provides a potential target for HCC diagnosis and treatment. Abbreviations: CCK-8: cell counting kit-8; CKAP2: Cytoskeleton associated protein 2; cDNA:complementary DNA; DAPI: 4ʹ,6-diamidino-2-phenylindole; DARS-AS1: DARS1 antisense RNA 1; DEPC: diethyl pyrocarbonate; DMEM-F12: Dulbecco’s minimal essential medium/Ham’s-F12; EMT: epithelial-mesenchymal transition; ERK: extracellular signal-regulated kinase; FAK: focal adhesion kinase; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC: hepatocellular carcinoma; HE: hematoxylin-eosin; IHC: Immunohistochemistry; LIHC: Liver hepatocellular carcinoma; lncRNAs: long noncoding RNAs; MIAT: lncRNA myocardial infarction-related transcripts; MT: Mutant; NC: negative control; PBS: phosphate-buffered saline; PMSF: Phenylmethylsulfonyl fluoride; PVDF: polyvinylidene difluoride; RT: room temperature; RT-qPCR: real-time quantitative polymerase chain reaction; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SPF: specific pathogen-free; TMAP: tumor-associated microtubule-associated protein; TUNEL: TdT-mediated dUTP nick end labeling; V: volume; WT: wild type.
Collapse
Affiliation(s)
- Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Gang Wei
- Department of Gastroentrology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Linfei Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Guo
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Caitao Cheng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Ji
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
11
|
Li YF, Tsai WC, Chou CH, Huang LC, Huang SM, Hueng DY, Tsai CK. CKAP2L Knockdown Exerts Antitumor Effects by Increasing miR-4496 in Glioblastoma Cell Lines. Int J Mol Sci 2020; 22:ijms22010197. [PMID: 33375517 PMCID: PMC7796349 DOI: 10.3390/ijms22010197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in the diagnosis and treatment of the central nervous system malignancy glioma, overall survival remains poor. Cytoskeleton-associated protein 2-like (CKAP2L), which plays key roles in neural progenitor cell division, has also been linked to poor prognosis in lung cancer. In the present study, we investigated the role of CKAP2L in glioma. From bioinformatics analyses of datasets from The Cancer Gene Atlas and the Chinese Glioma Genome Atlas, we found that CKAP2L expression correlates with tumor grade and overall survival. Gene set enrichment analysis (GSEA) showed that MITOTIC_SPINDLE, G2M_CHECKPOINT, and E2F_TARGETS are crucially enriched phenotypes associated with high CKAP2L expression. Using U87MG, U118MG, and LNZ308 human glioma cells, we confirmed that CKAP2L knockdown with siCKAP2L inhibits glioma cell proliferation, migration, invasion, and epithelial-mesenchymal transition. Interestingly, CKAP2L knockdown also induced cell cycle arrest at G2/M phase, which is consistent with the GSEA finding. Finally, we observed that CKAP2L knockdown led to significant increases in miR-4496. Treating cells with exogenous miR-4496 mimicked the effect of CKAP2L knockdown, and the effects of CKAP2L knockdown could be suppressed by miR-4496 inhibition. These findings suggest that CKAP2L is a vital regulator of miR-4496 activity and that CKAP2L is a potentially useful prognostic marker in glioma.
Collapse
Affiliation(s)
- Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (W.-C.T.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (W.-C.T.)
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (S.-M.H.); (D.-Y.H.)
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (S.-M.H.); (D.-Y.H.)
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (S.-M.H.); (D.-Y.H.)
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence:
| |
Collapse
|
12
|
Wang K, Huang R, Li G, Zeng F, Zhao Z, Liu Y, Hu H, Jiang T. CKAP2 expression is associated with glioma tumor growth and acts as a prognostic factor in high‑grade glioma. Oncol Rep 2018; 40:2036-2046. [PMID: 30066946 PMCID: PMC6111633 DOI: 10.3892/or.2018.6611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023] Open
Abstract
Cytoskeletal‑associated protein 2 (CKAP2), which is also known as tumor‑associated microtubule‑associated protein, has been reported to be dysregulated in various types of human cancer. However, the role of CKAP2 in glioma has not been fully elucidated. The present study evaluated the expression pattern of CKAP2 using the Chinese Glioma Genome Atlas microarray database, which included 301 patients, and validated the findings using The Cancer Genome Atlas RNA sequencing database. Kaplan‑Meier survival analysis, and univariate and multivariate Cox analyses, were used to estimate survival distributions. Furthermore, the biological implication of aberrant CKAP2 expression in high‑grade glioma (HGG) was investigated using Gene Ontology analysis, gene set enrichment analysis, gene set variation analysis and STRING. The results indicated that patients with HGG exhibited significantly higher CKAP2 expression levels compared with patients with low‑grade glioma in both databases. Higher expression levels of CKAP2 were significantly associated with shorter overall survival and progression‑free survival of patients with HGG. Furthermore, CKAP2 was also positively correlated with known malignant factors, including high Ki67 expression and phosphatase and tensin homolog mutations. The univariate and multivariate Cox regression analyses demonstrated that CKAP2 may be a novel independent prognostic biomarker for patients with HGG. Functional assays also indicated that CKAP2 was closely associated with the cell cycle, mitosis and cell proliferation. These results suggested that CKAP2 may be associated with tumor growth and could serve as an independent prognostic factor, particularly in patients with HGG.
Collapse
Affiliation(s)
- Kuanyu Wang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
| | - Fan Zeng
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Zheng Zhao
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Yanwei Liu
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Huimin Hu
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
- Chinese Glioma Cooperative Group (CGCG), Beijing 100050, P.R. China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
13
|
Navarro-Domínguez B, Ruiz-Ruano FJ, Cabrero J, Corral JM, López-León MD, Sharbel TF, Camacho JPM. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci Rep 2017; 7:45200. [PMID: 28367986 PMCID: PMC5377258 DOI: 10.1038/srep45200] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/22/2017] [Indexed: 01/20/2023] Open
Abstract
For many years, parasitic B chromosomes have been considered genetically inert elements. Here we show the presence of ten protein-coding genes in the B chromosome of the grasshopper Eyprepocnemis plorans. Four of these genes (CIP2A, GTPB6, KIF20A, and MTG1) were complete in the B chromosome whereas the six remaining (CKAP2, CAP-G, HYI, MYCB2, SLIT and TOP2A) were truncated. Five of these genes (CIP2A, CKAP2, CAP-G, KIF20A, and MYCB2) were significantly up-regulated in B-carrying individuals, as expected if they were actively transcribed from the B chromosome. This conclusion is supported by three truncated genes (CKAP2, CAP-G and MYCB2) which showed up-regulation only in the regions being present in the B chromosome. Our results indicate that B chromosomes are not so silenced as was hitherto believed. Interestingly, the five active genes in the B chromosome code for functions related with cell division, which is the main arena where B chromosome destiny is played. This suggests that B chromosome evolutionary success can lie on its gene content.
Collapse
Affiliation(s)
| | - Francisco J. Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - José María Corral
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Department of Bioanalytics, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | | | - Timothy F. Sharbel
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4J8, Canada
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
14
|
Quintens R. Convergence and divergence between the transcriptional responses to Zika virus infection and prenatal irradiation. Cell Death Dis 2017; 8:e2672. [PMID: 28300836 PMCID: PMC5386517 DOI: 10.1038/cddis.2017.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roel Quintens
- Radiobiology Unit, Institute of Environment, Health and Safety, Belgian Nuclear Research Centre, Mol, Belgium
| |
Collapse
|
15
|
Eymery A, Liu Z, Ozonov EA, Stadler MB, Peters AHFM. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos. Development 2016; 143:2767-79. [PMID: 27317807 DOI: 10.1242/dev.132746] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/02/2016] [Indexed: 01/13/2023]
Abstract
Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life.
Collapse
Affiliation(s)
- Angeline Eymery
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland Faculty of Sciences, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
16
|
Kamien B, Digilio MC, Novelli A, O'Donnell S, Bain N, Meldrum C, Dudding-Byth T, Scott RJ, Goel H. Narrowing the critical region for overgrowth within 13q14.2-q14.3 microdeletions. Eur J Med Genet 2015; 58:629-33. [PMID: 26475974 DOI: 10.1016/j.ejmg.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/30/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
Large chromosomal deletions from 13q13.3 to 13q21.3 have previously been associated with overgrowth. We present two patients with deletions at 13q14.2q14.3 who have macrocephaly, tall stature relative to their parents, cardiac phenotypes, and intellectual disability. This report narrows the critical region for tall stature, macrocephaly, and possibly cardiac disease.
Collapse
Affiliation(s)
- Benjamin Kamien
- Hunter Genetics, Newcastle, New South Wales, Australia; The University of Newcastle, School of Medicine and Public Health, Newcastle, New South Wales, Australia; The University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle, New South Wales, Australia.
| | - M Cristina Digilio
- Department of Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | | | - Nicole Bain
- Molecular Medicine, Pathology North, Newcastle, New South Wales, Australia
| | - Cliff Meldrum
- Molecular Medicine, Pathology North, Newcastle, New South Wales, Australia
| | - Tracy Dudding-Byth
- Hunter Genetics, Newcastle, New South Wales, Australia; The University of Newcastle, School of Medicine and Public Health, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- The University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle, New South Wales, Australia; Molecular Medicine, Pathology North, Newcastle, New South Wales, Australia
| | - Himanshu Goel
- Hunter Genetics, Newcastle, New South Wales, Australia; The University of Newcastle, School of Medicine and Public Health, Newcastle, New South Wales, Australia
| |
Collapse
|