1
|
Rani N, Sahu M, Ambasta RK, Kumar P. Triaging between post-translational modification of cell cycle regulators and their therapeutics in neurodegenerative diseases. Ageing Res Rev 2024; 94:102174. [PMID: 38135008 DOI: 10.1016/j.arr.2023.102174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, present challenges in healthcare because of their complicated etiologies and absence of healing remedies. Lately, the emerging role of post-translational modifications (PTMs), in the context of cell cycle regulators, has garnered big interest as a potential avenue for therapeutic intervention. The review explores the problematic panorama of PTMs on cell cycle regulators and their implications in neurodegenerative diseases. We delve into the dynamic phosphorylation, acetylation, ubiquitination, SUMOylation, Glycation, and Neddylation that modulate the key cell cycle regulators, consisting of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors. The dysregulation of these PTMs is related to aberrant cell cycle in neurons, which is one of the factors involved in neurodegenerative pathologies. Moreover, the effect of exogenous activation of CDKs and CDK inhibitors through PTMs on the signaling cascade was studied in postmitotic conditions of NDDs. Furthermore, the therapeutic implications of CDK inhibitors and associated alteration in PTMs were discussed. Lastly, we explored the putative mechanism of PTMs to restore normal neuronal function that might reverse NDDs.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042.
| |
Collapse
|
2
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
3
|
Sanz-García A, Sánchez-Jiménez P, Granero-Cremades I, de Toledo M, Pulido P, Navas M, Frade JM, Pereboom-Maicas MD, Torres-Díaz CV, Ovejero-Benito MC. Neuronal and astrocytic tetraploidy is increased in drug-resistant epilepsy. Neuropathol Appl Neurobiol 2023; 49:e12873. [PMID: 36541120 DOI: 10.1111/nan.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
AIMS Epilepsy is one of the most prevalent neurological diseases. A third of patients with epilepsy remain drug-resistant. The exact aetiology of drug-resistant epilepsy (DRE) is still unknown. Neuronal tetraploidy has been associated with neuropathology. The aim of this study was to assess the presence of tetraploid neurons and astrocytes in DRE. METHODS For that purpose, cortex, hippocampus and amygdala samples were obtained from patients subjected to surgical resection of the epileptogenic zone. Post-mortem brain tissue of subjects without previous records of neurological, neurodegenerative or psychiatric diseases was used as control. RESULTS The percentage of tetraploid cells was measured by immunostaining of neurons (NeuN) or astrocytes (S100β) followed by flow cytometry analysis. The results were confirmed by image cytometry (ImageStream X Amnis System Cytometer) and with an alternative astrocyte biomarker (NDRG2). Statistical comparison was performed using univariate tests. A total of 22 patients and 10 controls were included. Tetraploid neurons and astrocytes were found both in healthy individuals and DRE patients in the three brain areas analysed: cortex, hippocampus and amygdala. DRE patients presented a higher number of tetraploid neurons (p = 0.020) and astrocytes (p = 0.002) in the hippocampus than controls. These results were validated by image cytometry. CONCLUSIONS We demonstrated the presence of both tetraploid neurons and astrocytes in healthy subjects as well as increased levels of both cell populations in DRE patients. Herein, we describe for the first time the presence of tetraploid astrocytes in healthy subjects. Furthermore, these results provide new insights into epilepsy, opening new avenues for future treatment.
Collapse
Affiliation(s)
- Ancor Sanz-García
- Data Analysis Unit, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
| | - Patricia Sánchez-Jiménez
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto de Investigaciones Sanitarias La Princesa (IIS-IP), Madrid, Spain.,NIMGenetics Genómica y Medicina S.L., Madrid, Spain
| | | | - María de Toledo
- Department of Neurology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Paloma Pulido
- Department of Neurosurgery, Hospital Universitario de La Princesa, Madrid, Spain
| | - Marta Navas
- Department of Neurosurgery, Hospital Universitario de La Princesa, Madrid, Spain
| | - José María Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | - María C Ovejero-Benito
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto de Investigaciones Sanitarias La Princesa (IIS-IP), Madrid, Spain.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
4
|
López-Grueso MJ, Padilla CA, Bárcena JA, Requejo-Aguilar R. Deficiency of Parkinson's Related Protein DJ-1 Alters Cdk5 Signalling and Induces Neuronal Death by Aberrant Cell Cycle Re-entry. Cell Mol Neurobiol 2023; 43:757-769. [PMID: 35182267 PMCID: PMC9958167 DOI: 10.1007/s10571-022-01206-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
DJ-1 is a multifunctional protein involved in Parkinson disease (PD) that can act as antioxidant, molecular chaperone, protease, glyoxalase, and transcriptional regulator. However, the exact mechanism by which DJ-1 dysfunction contributes to development of Parkinson's disease remains elusive. Here, using a comparative proteomic analysis between wild-type cortical neurons and neurons lacking DJ-1 (data available via ProteomeXchange, identifier PXD029351), we show that this protein is involved in cell cycle checkpoints disruption. We detect increased amount of p-tau and α-synuclein proteins, altered phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) signalling pathways, and deregulation of cyclin-dependent kinase 5 (Cdk5). Cdk5 is normally involved in dendritic growth, axon formation, and the establishment of synapses, but can also contribute to cell cycle progression in pathological conditions. In addition, we observed a decrease in proteasomal activity, probably due to tau phosphorylation that can also lead to activation of mitogenic signalling pathways. Taken together, our findings indicate, for the first time, that aborted cell cycle re-entry could be at the onset of DJ-1-associated PD. Therefore, new approaches targeting cell cycle re-entry can be envisaged to improve current therapeutic strategies.
Collapse
Affiliation(s)
- María José López-Grueso
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - Carmen Alicia Padilla
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain ,grid.428865.50000 0004 0445 6160Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - José Antonio Bárcena
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain ,grid.428865.50000 0004 0445 6160Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14071, Córdoba, Spain. .,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain.
| |
Collapse
|
5
|
Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021; 285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
6
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Fadaka AO, Samantha Sibuyi NR, Bakare OO, Klein A, Madiehe AM, Meyer M. Expression of cyclin-dependent kinases and their clinical significance with immune infiltrates could predict prognosis in colorectal cancer. ACTA ACUST UNITED AC 2021; 29:e00602. [PMID: 33732631 PMCID: PMC7937668 DOI: 10.1016/j.btre.2021.e00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022]
Abstract
The expression and prognostic values of AURKA and RB1 may also be significant to CRC diagnosis than previously studies. The association of CDKs with immune infiltrates may serve as target molecules for immunotherapy in CRC. The expression of CDK is significant among CRC subtypes and therefore, it can be inferred as a potential biomarker in the cancer subtype. An increase in tumor purity was positively correlated with the expression of CDK-1 in COAD due to CD4+ cells and CDK-4 in COAD and READ resulting from a fraction of immune cells.
Introduction Colorectal cancer (CRC) is one of the most cancer-related mortalities worldwide and remains a major public health issue. Despite several attempts to develop promising therapies for CRC, its survival rate decreases with metastasis. Cyclin-dependent kinases (CDKs) are a family of protein kinases with various regulatory activities including cell cycle, mRNA expression, transcription, and differentiation. Aside from their role in cell proliferation when mutated, abnormal expression of these genes has been reported in some human cancer subtypes. This study explored the roles and therapeutic potentials of CDK 1 and 4 as prognostic biomarkers in CRC. Methods Bioinformatics analyses were carried out to demonstrate the expression and prognostic values of CDK-1 and CDK-4 with immune infiltrate in CRC. Discussion CDK levels in CRC were remarkably higher than those in normal tissues (p < 0.05), and overexpression in CRC tissues was significantly related to nodal metastatic status (p < 0.05) and histological subtypes. Kaplan-Meier analyses showed that patients with CRC who exhibited CDK-1 overexpression had worse overall survival (OS) as against patients with CDK-4 overexpression. The alteration observed was a mutation while the mutation hotspots include E163* and R24A/C/H/L respectively for CDK-1 and CDK-4 on the Pkinase domain. Of the associated genes, AURKA and RB1 were predominantly altered. Furthermore, CDK-4 is positively correlated with tumor purity in both COAD and READ while CDK-1is only positively correlated in COAD. CDK-1 overexpression was significantly associated with poor prognosis as opposed to CDK-4. Conclusion The expression and prognostic values of AURKA and RB1 may also be significant to CRC diagnosis. CDKs together with the co-expressed genes and their association with immune infiltrates may serve as target molecules for immunotherapy in CRC.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Olalekan Olanrewaju Bakare
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.,Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
8
|
Obesity-linked circular RNA circTshz2-2 regulates the neuronal cell cycle and spatial memory in the brain. Mol Psychiatry 2021; 26:6350-6364. [PMID: 34561612 PMCID: PMC8760052 DOI: 10.1038/s41380-021-01303-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022]
Abstract
Metabolic syndromes, including obesity, cause neuropathophysiological changes in the brain, resulting in cognitive deficits. Only a few studies explored the contribution of non-coding genes in these pathophysiologies. Recently, we identified obesity-linked circular RNAs (circRNA) by analyzing the brain cortices of high-fat-fed obese mice. In this study, we scrutinized a conserved and neuron-specific circRNA, circTshz2-2, which affects neuronal cell cycle and spatial memory in the brain. Transcriptomic and cellular analysis indicated that circTshz2-2 dysregulation altered the expression of cell division-related genes and induced cell cycle arrest at the G2/M phase of the neuron. We found that circTshz2-2 bound to the YY1 transcriptional complex and suppressed Bdnf transcription. Suppression of circTshz2-2 increased BDNF expression and reduced G2/M checkpoint proteins such as Cyclin B2 and CDK1 through BDNF/TrkB signaling pathway, resulting in cell cycle arrest and neurite elongation. Inversely, overexpression of circTshz2-2 decreased BDNF expression, induced cell cycle proteins, and shortened the neurite length, indicating that circTshz2-2 regulates neuronal cell cycle and structure. Finally, we showed that circTshz2-2 affects spatial memory in wild-type and obese mice. Our data have revealed potential regulatory roles of obesity-related circTshz2-2 on the neuronal cell cycle and memory function providing a novel link between metabolic syndromes and cognitive deficits.
Collapse
|
9
|
Zhou H, Guo S, Sun Y, Wang H, Zhang M, Li Y. Screening the Action Targets of Enterovirus 71 in Human SH-SY5Y Cells Using RNA Sequencing Data. Viral Immunol 2019; 32:170-178. [PMID: 31063043 DOI: 10.1089/vim.2018.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infection for children younger than the age of five. HFMD is mainly induced by coxsackievirus A16 and enterovirus 71 (EV71). EV71-associated HFMD often has serious neurological disease complications. The purpose of this study was to reveal the mechanisms of action of EV71 on neurons. SH-SY5Y cells transfected or untransfected with EV71 were sequenced. After data preprocessing, differentially expressed genes (DEGs) were screened using the limma package in R, and clustering analysis was then performed using the ComplexHeatmap package in R. The DAVID tool was used for EDG enrichment analysis. Protein-protein interactions (PPIs) were predicted using the STRING database and PPI networks were then constructed using Cytoscape software. After pathways involved in the key PPI network nodes were enriched, pathway deviation scores were calculated. Clustering analysis was also conducted for these pathways. There were 978 DEGs in the transfected samples. Upregulated TNF was enriched in NF-kappa B signaling pathway. Among the top 20 nodes in the PPI network, CDK1, STAT3, CCND1, TNF, and MYC had the highest degrees. A total of 28 pathways were enriched for the top 20 nodes, including Epstein-Barr virus infection (p = 3.78E-06), proteoglycans in cancer (p = 4.96E-06), and melanoma (p = 1.99E-05). In addition, clustering analysis showed that these pathways could clearly differentiate the two groups of samples. EV71 may affect neurons by mediating CDK1, STAT3, CCND1, TNF, and MYC, indicating that these genes are promising targets for preventing the neuronal complications of HFMD.
Collapse
Affiliation(s)
- Hong Zhou
- 1 The Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuzhen Guo
- 2 The Respiratory Medicine, The Center for Disease Control and Prevention of Harbin, Harbin, China
| | - Yu Sun
- 1 The Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Wang
- 1 The Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meiling Zhang
- 1 The Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjun Li
- 1 The Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Yang E, Gavini K, Bhakta A, Dhanasekaran M, Khan I, Parameshwaran K. Streptozotocin induced hyperglycemia stimulates molecular signaling that promotes cell cycle reentry in mouse hippocampus. Life Sci 2018; 205:131-135. [DOI: 10.1016/j.lfs.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/12/2023]
|
11
|
CDK1 inhibition facilitates formation of syncytiotrophoblasts and expression of human Chorionic Gonadotropin. Placenta 2018; 66:57-64. [PMID: 29884303 DOI: 10.1016/j.placenta.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
AIMS The human placental syncytiotrophoblast (STB) cells play essential roles in embryo implantation and nutrient exchange between the mother and the fetus. STBs are polyploid which are formed by fusion of diploid cytotrophoblast (CTB) cells. Abnormality in STBs formation can result in pregnancy-related disorders. While a number of genes have been associated with CTB fusion the initial events that trigger cell fusion are not well understood. Primary objective of this study was to enhance our understanding about the molecular mechanism of placental cell fusion. METHODS FACS and microscopic analysis was used to optimize Forskolin-induced fusion of BeWo cells (surrogate of CTBs) and subsequently, changes in the expression of different cell cycle regulator genes were analyzed through Western blotting and qPCR. Immunohistochemistry was performed on the first trimester placental tissue sections to validate the results in the context of placental tissue. Effect of Cyclin Dependent Kinase 1 (CDK1) inhibitor, RO3306, on BeWo cell fusion was studied by microscopy and FACS, and by monitoring the expression of human Chorionic Gonadotropin (hCG) by Western blotting and qPCR. RESULTS The data showed that the placental cell fusion was associated with down regulation of CDK1 and its associated cyclin B, and significant decrease in DNA replication. Moreover, inhibition of CDK1 by an exogenous inhibitor induced placental cell fusion and expression of hCG. CONCLUSION Here, we report that the placental cell fusion can be induced by inhibiting CDK1. This study has a high therapeutic significance to manage pregnancy related abnormalities.
Collapse
|
12
|
Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer's disease: as it was in the beginning. Rev Neurosci 2018; 28:825-843. [PMID: 28704198 DOI: 10.1515/revneuro-2017-0006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/19/2017] [Indexed: 01/09/2023]
Abstract
Since Alzheimer's disease was first described in 1907, many attempts have been made to reveal its main cause. Nowadays, two forms of the disease are known, and while the hereditary form of the disease is clearly caused by mutations in one of several genes, the etiology of the sporadic form remains a mystery. Both forms share similar sets of neuropathological and molecular manifestations, including extracellular deposition of amyloid-beta, intracellular accumulation of hyperphosphorylated tau protein, disturbances in both the structure and functions of mitochondria, oxidative stress, metal ion metabolism disorders, impairment of N-methyl-D-aspartate receptor-related signaling pathways, abnormalities of lipid metabolism, and aberrant cell cycle reentry in some neurons. Such a diversity of symptoms led to proposition of various hypotheses for explaining the development of Alzheimer's disease, the amyloid hypothesis, which postulates the key role of amyloid-beta in Alzheimer's disease development, being the most prominent. However, this hypothesis does not fully explain all of the molecular abnormalities and is therefore heavily criticized. In this review, we propose a hypothetical model of Alzheimer's disease progression, assuming a key role of age-related mitochondrial dysfunction, as was postulated in the mitochondrial cascade hypothesis. Our model explains the connections between all the symptoms of Alzheimer's disease, with particular attention to autophagy, metal metabolism disorders, and aberrant cell cycle re-entry in neurons. Progression of the Alzheimer's disease appears to be a complex process involving aging and too many protective mechanisms affecting one another, thereby leading to even greater deleterious effects.
Collapse
|
13
|
Patiño-Parrado I, Gómez-Jiménez Á, López-Sánchez N, Frade JM. Strand-specific CpG hemimethylation, a novel epigenetic modification functional for genomic imprinting. Nucleic Acids Res 2017; 45:8822-8834. [PMID: 28605464 PMCID: PMC5587773 DOI: 10.1093/nar/gkx518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Imprinted genes are regulated by allele-specific differentially DNA-methylated regions (DMRs). Epigenetic methylation of the CpGs constituting these DMRs is established in the germline, resulting in a 5-methylcytosine-specific pattern that is tightly maintained in somatic tissues. Here, we show a novel epigenetic mark, characterized by strand-specific hemimethylation of contiguous CpG sites affecting the germline DMR of the murine Peg3, but not Snrpn, imprinted domain. This modification is enriched in tetraploid cortical neurons, a cell type where evidence for a small proportion of formylmethylated CpG sites within the Peg3-controlling DMR is also provided. Single nucleotide polymorphism (SNP)-based transcriptional analysis indicated that these epigenetic modifications participate in the maintainance of the monoallelic expression pattern of the Peg3 imprinted gene. Our results unexpectedly demonstrate that the methylation pattern observed in DMRs controlling defined imprinting regions can be modified in somatic cells, resulting in a novel epigenetic modification that gives rise to strand-specific hemimethylated domains functional for genomic imprinting. We anticipate the existence of a novel molecular mechanism regulating the transition from fully methylated CpGs to strand-specific hemimethylated CpGs.
Collapse
Affiliation(s)
- Iris Patiño-Parrado
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - Álvaro Gómez-Jiménez
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - Noelia López-Sánchez
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - José M Frade
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| |
Collapse
|
14
|
Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol Basis Dis 2017; 1863:324-336. [DOI: 10.1016/j.bbadis.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
|
15
|
Xia T, Fu Y, Li S, Ma R, Zhao Z, Wang B, Chao C. Bu Shen Tiao Chong recipe restores diminished ovary reserve through the BDNF pathway. J Assist Reprod Genet 2016; 33:795-805. [PMID: 27094194 PMCID: PMC4889480 DOI: 10.1007/s10815-016-0697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The purpose of this study was to explore the molecular pathway of BSTCR (Bu Shen Tiao Chong recipe) in retrieving diminished ovary reserve (DOR). METHODS The DOR model was established through injecting cyclophosphamide and the effect of BSTCR was examined under this background. RESULTS BSTCR was shown to restore depleted brain-derived neurotrophic factor (BDNF), CDC2, cyclin B, GSH1, and P38 levels as well as impaired oocyte maturation and the higher apoptosis induced in DOR. BSTCR also enhances the response of oocytes to in vitro fertilization, with higher implantation rate, birth rate, and placenta weight. CONCLUSION BSTCR might exert its beneficial role in oocyte maturation and restore DOR through regulating the BDNF pathway. And this pathway itself is probably through the consequence on several serum hormones such as FSH, E2, Inhibin B, etc.
Collapse
Affiliation(s)
- Tian Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China.
| | - Yu Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Shuang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Ruihong Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Zhimei Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Baojuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Chune Chao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Tianjin Chinese Traditional Medicine University, No. 314, Anshan West Road, Nankai District, Tianjin, 300193, People's Republic of China
| |
Collapse
|
16
|
Abstract
Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons.
Collapse
Key Words
- AD, Alzheimer disease
- BDNF, brain-derived neurotrophic factor
- BrdU, 5-bromo-2′-deoxyuridine
- CKI, Cdk-inhibitor
- CNS, central nervous system
- Cdk, cyclin-dependent kinase
- Cip/Kip, cyclin inhibitor protein/kinase inhibitor protein
- G0, quiescent state
- G1, growth phase 1
- G2, growth phase 2
- Ink, inhibitor of kinase
- Mcm2, minichromosome maintenance 2
- PCNA, proliferating cell nuclear antigen
- PD, Parkinson disease
- RGCs, retinal ganglion cells
- Rb, Retinoblastoma
- S-phase
- S-phase, synthesis phase.
- apoptosis
- cell cycle re-entry
- mitosis
- neuron
- p38MAPK, p38 mitogen-activated protein kinase
- p75NTR, neurotrophin receptor p75
- tetraploid
Collapse
Affiliation(s)
- José M Frade
- a Department of Molecular, Cellular and Developmental Neurobiology; Instituto Cajal; Consejo Superior de Investigaciones Científicas (IC-CSIC) ; Madrid , Spain
| | | |
Collapse
|
17
|
Rybaczek D, Musiałek MW, Balcerczyk A. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba. PLoS One 2015; 10:e0142307. [PMID: 26545248 PMCID: PMC4636323 DOI: 10.1371/journal.pone.0142307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- * E-mail:
| | - Marcelina Weronika Musiałek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
18
|
Ovejero-Benito MC, Frade JM. p27(Kip1) participates in the regulation of endoreplication in differentiating chick retinal ganglion cells. Cell Cycle 2015; 14:2311-22. [PMID: 25946375 PMCID: PMC4614947 DOI: 10.1080/15384101.2015.1044175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear DNA duplication in the absence of cell division (i.e. endoreplication) leads to somatic polyploidy in eukaryotic cells. In contrast to some invertebrate neurons, whose nuclei may contain up to 200,000-fold the normal haploid DNA amount (C), polyploid neurons in higher vertebrates show only 4C DNA content. To explore the mechanism that prevents extra rounds of DNA synthesis in these latter cells we focused on the chick retina, where a population of tetraploid retinal ganglion cells (RGCs) has been described. We show that differentiating chick RGCs that express the neurotrophic receptors p75 and TrkB while lacking retinoblastoma protein, a feature of tetraploid RGCs, also express p27Kip1. Two different short hairpin RNAs (shRNA) that significantly downregulate p27Kip1 expression facilitated DNA synthesis and increased ploidy in isolated chick RGCs. Moreover, this forced DNA synthesis could not be prevented by Cdk4/6 inhibition, thus suggesting that it is triggered by a mechanism similar to endoreplication. In contrast, p27Kip1 deficiency in mouse RGCs does not lead to increased ploidy despite previous observations have shown ectopic DNA synthesis in RGCs from p27Kip1−/− mice. This suggests that a differential mechanism is used for the regulation of neuronal endoreplication in mammalian versus avian RGCs.
Collapse
Affiliation(s)
- María C Ovejero-Benito
- a Department of Molecular , Cellular, and Developmental Neurobiology; Cajal Institute; IC-CSIC ; Madrid , Spain
| | | |
Collapse
|
19
|
Samal R, Ameling S, Dhople V, Sappa PK, Wenzel K, Völker U, Felix SB, Hammer E, Könemann S. Brain derived neurotrophic factor contributes to the cardiogenic potential of adult resident progenitor cells in failing murine heart. PLoS One 2015; 10:e0120360. [PMID: 25799225 PMCID: PMC4370398 DOI: 10.1371/journal.pone.0120360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Aims Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF) moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium. Methods and Results Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC) proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts. Conclusion Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i) stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii) repressed the cell cycle progression suggesting its potency to ameliorate heart failure.
Collapse
Affiliation(s)
- Rasmita Samal
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu Dhople
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Stephan B. Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
- * E-mail: (EH); (SK)
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
- * E-mail: (EH); (SK)
| |
Collapse
|
20
|
Doniak M, Barciszewska MZ, Kaźmierczak J, Kaźmierczak A. The crucial elements of the 'last step' of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. PLANT CELL REPORTS 2014; 33:2063-76. [PMID: 25213134 DOI: 10.1007/s00299-014-1681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 05/09/2023]
Abstract
Kinetin-induced programmed cell death, manifested by condensation, degradation and methylation of DNA and fluctuation of kinase activities and ATP levels, is an autolytic and root cortex cell-specific process. The last step of programmed cell death (PCD) induced by kinetin in the root cortex of V. faba ssp. minor seedlings was explained using morphologic (nuclear chromatin/aggregation) and metabolic (DNA degradation, DNA methylation and kinases activity) analyses. This step involves: (1) decrease in nuclear DNA content, (2) increase in the number of 4',6-diamidino-2-phenylindole (DAPI)-stained chromocenters, and decrease in chromomycin A3 (CMA3)-stained chromocenters, (3) increase in fluorescence intensity of CMA3-stained chromocenters, (4) condensation of DAPI-stained and loosening of CMA3-stained chromatin, (5) fluctuation of the level of DNA methylation, (6) fluctuation of activities of exo-/endonucleolytic Zn(2+) and Ca(2+)/Mg(2+)-dependent nucleases, (7) changes in H1 and core histone kinase activities and (8) decrease in cellular ATP amount. These results confirmed that kinetin-induced PCD was a specific process. Additionally, based on data presented in this paper (DNA condensation and ATP depletion) and previous studies [increase in vacuole, increase in amount of cytosolic calcium ions, ROS production and cytosol acidification "in Byczkowska et al. (Protoplasma 250:121-128, 2013)"], we propose that the process resembles autolytic type of cell death, the most common type of death during development of plants. Lastly, the observations also suggested that regulation of these processes might be under control of epigenetic (methylation/phosphorylation) mechanisms.
Collapse
Affiliation(s)
- Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | | | |
Collapse
|