1
|
Lee D, Jo MG, Min KY, Choi MY, Kim YM, Kim HS, Choi WS. IL-10 + regulatory B cells mitigate atopic dermatitis by suppressing eosinophil activation. Sci Rep 2024; 14:18164. [PMID: 39107352 PMCID: PMC11303538 DOI: 10.1038/s41598-024-68660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Atopic dermatitis (AD) presents significant therapeutic challenges due to its poorly understood etiology. Eosinophilia, a hallmark of allergic inflammation, is implicated in AD pathogenesis. Interleukin-10 (IL-10)-producing regulatory B (Breg) cells exhibit potent anti-inflammatory effects. However, their role in controlling AD-related eosinophilia is not well understood. To investigate the impact of eosinophils on AD, we employed IL-5Rα-deficient (Il5ra-/-) mice, which lack functional eosinophils. Induction of AD in these mice resulted in attenuated disease symptoms, underscoring the critical role of eosinophils in AD development. Additionally, the adoptive transfer of purified Breg cells into mice with AD significantly alleviated disease severity. Mechanistic studies revealed that IL-10 produced by Breg cells directly inhibits eosinophil activation and infiltration into the skin. In vitro experiments further confirmed that Breg cells inhibited eosinophil peroxidase secretion in an IL-10-dependent manner. Our collective findings demonstrate that IL-10 from Breg cells alleviates AD by suppressing eosinophil activation and tissue infiltration. This study elucidates a novel regulatory mechanism of Breg cells, providing a foundation for future Breg-mediated therapeutic strategies for AD.
Collapse
Affiliation(s)
- Dajeong Lee
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Geun Jo
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Yeong Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea.
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea.
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
2
|
Kubatova N, Schmidt T, Schwieters CD, Clore GM. Quantitative analysis of sterol-modulated monomer-dimer equilibrium of the β 1-adrenergic receptor by DEER spectroscopy. Proc Natl Acad Sci U S A 2023; 120:e2221036120. [PMID: 36745787 PMCID: PMC9963004 DOI: 10.1073/pnas.2221036120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
G protein-coupled receptors (GPCR) activate numerous intracellular signaling pathways. The oligomerization properties of GPCRs, and hence their cellular functions, may be modulated by various components within the cell membrane (such as the presence of cholesterol). Modulation may occur directly via specific interaction with the GPCR or indirectly by affecting the physical properties of the membrane. Here, we use pulsed Q-band double electron-electron resonance (DEER) spectroscopy to probe distances between R1 nitroxide spin labels attached to Cys163 and Cys344 of the β1-adrenergic receptor (β1AR) in n-dodecyl-β-D-maltoside micelles upon titration with two soluble cholesterol analogs, cholesteryl hemisuccinate (CHS) and sodium cholate. The former, like cholesterol, inserts itself into the lipid membrane, parallel to the phospholipid chains; the latter is aligned parallel to the surface of membranes. Global quantitative analysis of DEER echo curves upon titration of spin-labeled β1AR with CHS and sodium cholate reveal the following: CHS binds specifically to the β1AR monomer at a site close to the Cys163-R1 spin label with an equilibrium dissociation constant [Formula: see text] ~1.4 ± 0.4 mM. While no direct binding of sodium cholate to the β1AR receptor was observed by DEER, sodium cholate induces specific β1AR dimerization ([Formula: see text] ~35 ± 6 mM and a Hill coefficient n ~ 2.5 ± 0.4) with intersubunit contacts between transmembrane helices 1 and 2 and helix 8. Analysis of the DEER data obtained upon the addition of CHS to the β1AR dimer in the presence of excess cholate results in dimer dissociation with species occupancies as predicted from the individual KD values.
Collapse
Affiliation(s)
- Nina Kubatova
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Thomas Schmidt
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Charles D. Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
3
|
van Aalst E, Wylie BJ. Cholesterol Is a Dose-Dependent Positive Allosteric Modulator of CCR3 Ligand Affinity and G Protein Coupling. Front Mol Biosci 2021; 8:724603. [PMID: 34490352 PMCID: PMC8417553 DOI: 10.3389/fmolb.2021.724603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/14/2021] [Indexed: 01/14/2023] Open
Abstract
Cholesterol as an allosteric modulator of G protein-coupled receptor (GPCR) function is well documented. This quintessential mammalian lipid facilitates receptor–ligand interactions and multimerization states. Functionally, this introduces a complicated mechanism for the homeostatic modulation of GPCR signaling. Chemokine receptors are Class A GPCRs responsible for immune cell trafficking through the binding of endogenous peptide ligands. CCR3 is a CC motif chemokine receptor expressed by eosinophils and basophils. It traffics these cells by transducing the signal stimulated by the CC motif chemokine primary messengers 11, 24, and 26. These behaviors are close to the human immunoresponse. Thus, CCR3 is implicated in cancer metastasis and inflammatory conditions. However, there is a paucity of experimental evidence linking the functional states of CCR3 to the molecular mechanisms of cholesterol–receptor cooperativity. In this vein, we present a means to combine codon harmonization and a maltose-binding protein fusion tag to produce CCR3 from E. coli. This technique yields ∼2.6 mg of functional GPCR per liter of minimal media. We leveraged this protein production capability to investigate the effects of cholesterol on CCR3 function in vitro. We found that affinity for the endogenous ligand CCL11 increases in a dose-dependent manner with cholesterol concentration in both styrene:maleic acid lipid particles (SMALPs) and proteoliposomes. This heightened receptor activation directly translates to increased signal transduction as measured by the GTPase activity of the bound G-protein α inhibitory subunit 3 (Gαi3). This work represents a critical step forward in understanding the role of cholesterol-GPCR allostery in regulation of signal transduction.
Collapse
Affiliation(s)
- Evan van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
4
|
Huang H, Yang B, Ge B, Lao J, Zhou S, Huang F. Using self-cleavable ternary fusion pattern for efficient preparation of Bacteriorhodopsin. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Ge B, Li J, Wei Z, Sun T, Song Y, Khan NU. Functional expression of CCL8 and its interaction with chemokine receptor CCR3. BMC Immunol 2017; 18:54. [PMID: 29281969 PMCID: PMC5745793 DOI: 10.1186/s12865-017-0237-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/14/2017] [Indexed: 01/23/2023] Open
Abstract
Background Chemokines and their cognate receptors play important role in the control of leukocyte chemotaxis, HIV entry and other inflammatory diseases. Developing an effcient method to investigate the functional expression of chemokines and its interactions with specific receptors will be helpful to asses the structural and functional characteristics as well as the design of new approach to therapeutic intervention. Results By making systematic optimization study of expression conditions, soluble and functional production of chemokine C-C motif ligand 8 (CCL8) in Escherichia coli (E. coli) has been achieved with approx. 1.5 mg protein/l culture. Quartz crystal microbalance (QCM) analysis exhibited that the purified CCL8 could bind with C-C chemokine receptor type 3 (CCR3) with dissociation equilibrium constant (KD) as 1.2 × 10−7 M in vitro. Obvious internalization of CCR3 in vivo could be detected in 1 h when exposed to 100 nM of CCL8. Compared with chemokine C-C motif ligand 11 (CCL11) and chemokine C-C motif ligand 24 (CCL24), a weaker chemotactic effect of CCR3 expressing cells was observed when induced by CCL8 with same concentration. Conclusion This study delivers a simple and applicable way to produce functional chemokines in E. coli. The results clearly confirms that CCL8 can interact with chemokine receptor CCR3, therefore, it is promising area to develop drugs for the treatment of related diseases. Electronic supplementary material The online version of this article (10.1186/s12865-017-0237-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baosheng Ge
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Jiqiang Li
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Zhijin Wei
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Tingting Sun
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Yanzhuo Song
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Naseer Ullah Khan
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| |
Collapse
|
6
|
Single-molecule imaging reveals dimerization/oligomerization of CXCR4 on plasma membrane closely related to its function. Sci Rep 2017; 7:16873. [PMID: 29203889 PMCID: PMC5715067 DOI: 10.1038/s41598-017-16802-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Dimerization and oligomerization of G-protein coupled receptors (GPCRs) have emerged as important characters during their trans-membrane signal transduction. However, until now the relationship between GPCR dimerization and their trans-membrane signal transduction function is still uncovered. Here, using pertussis toxin (PTX) to decouple the receptor from G protein complex and with single-molecule imaging, we show that in the presence of agonist, cells treated with PTX showed a decrease in the number of dimers and oligomers on the cell surface compared with untreated ones, which suggests that oligomeric status of CXCR4 could be significantly influenced by the decoupling of G protein complex during its signal transduction process. Moreover, with chlorpromazine (CPZ) to inhibit internalization of CXCR4, it was found that after SDF-1α stimulation, cells treated with CPZ showed more dimers and oligomers on the cell surface than untreated ones, which suggest that dimers and oligomers of CXCR4 tend to internalize more easily than monomers. Taken together, our results demonstrate that dimerization and oligomerization of CXCR4 is closely related with its G protein mediated pathway and β-arrestin mediated internalization process, and would play an important role in regulating its signal transduction functions.
Collapse
|
7
|
Song Y, Ge B, Lao J, Wang Z, Yang B, Wang X, He H, Li J, Huang F. Regulation of the Oligomeric Status of CCR3 with Binding Ligands Revealed by Single-Molecule Fluorescence Imaging. Biochemistry 2017; 57:852-860. [PMID: 28994588 DOI: 10.1021/acs.biochem.7b00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between the oligomeric status and functions of chemokine receptor CCR3 is still controversial. We use total internal reflection fluorescence microscopy at the single-molecule level to visualize the oligomeric status of CCR3 and its regulation of the membrane of stably transfected T-REx-293 cells. We find that the population of the dimers and oligomers of CCR3 can be modulated by the binding of ligands. Natural agonists can induce an increase in the level of dimers and oligomers at high concentrations, whereas antagonists do not have a significant influence on the oligomeric status. Moreover, monomeric CCR3 exhibits a stronger chemotactic response in the migration assay of stably transfected CCR3 cells. Together, these data support the notion that CCR3 exists as a mixture of monomers and dimers under nearly physiological conditions and the monomeric CCR3 receptor is the minimal functional unit in cellular signaling transduction. To the best of our knowledge, these results constitute the first report of the oligomeric status of CCR3 and its regulation.
Collapse
Affiliation(s)
- Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Bin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| |
Collapse
|
8
|
He H, Liu X, Li S, Wang X, Wang Q, Li J, Wang J, Ren H, Ge B, Wang S, Zhang X, Huang F. High-Density Super-Resolution Localization Imaging with Blinking Carbon Dots. Anal Chem 2017; 89:11831-11838. [DOI: 10.1021/acs.analchem.7b03567] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hua He
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xu Liu
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Shan Li
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiqiang Li
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Junying Wang
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300350, China
| | - Hao Ren
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Shengjie Wang
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaodong Zhang
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300350, China
| | - Fang Huang
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Ge B, Jiang X, Chen Y, Sun T, Yang Q, Huang F. Kinetic and thermodynamic studies reveal chemokine homologues CC11 and CC24 with an almost identical tertiary structure have different folding pathways. BMC BIOPHYSICS 2017; 10:7. [PMID: 28919974 PMCID: PMC5596964 DOI: 10.1186/s13628-017-0039-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/06/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Proteins with low sequence identity but almost identical tertiary structure and function have been valuable to uncover the relationship between sequence, tertiary structure, folding mechanism and functions. Two homologous chemokines, CCL11 and CCL24, with low sequence identity but similar tertiary structure and function, provide an excellent model system for respective studies. RESULTS The kinetics and thermodynamics of the two homologous chemokines were systematically characterized. Despite their similar tertiary structures, CCL11 and CCL24 show different thermodynamic stability in guanidine hydrochloride titration, with D50% = 2.20 M and 4.96 M, respectively. The kinetics curves clearly show two phases in the folding/unfolding processes of both CCL11 and CCL24, which suggests the existence of an intermediate state in their folding/unfolding processes. The folding pathway of both CCL11 and CCL24 could be well described using a folding model with an on-pathway folding intermediate. However, the folding kinetics and stability of the intermediate state of CCL11 and CCL24 are obviously different. CONCLUSION Our results suggest homologous proteins with low sequence identity can display almost identical tertiary structure, but very different folding mechanisms, which applies to homologues in the chemokine protein family, extending the general applicability of the above observation.
Collapse
Affiliation(s)
- Baosheng Ge
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580 People's Republic of China
| | - Xiaoyong Jiang
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580 People's Republic of China
| | - Yao Chen
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580 People's Republic of China
| | - Tingting Sun
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580 People's Republic of China
| | - Qiuxia Yang
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580 People's Republic of China
| | - Fang Huang
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580 People's Republic of China
| |
Collapse
|
10
|
Belloir C, Miller-Leseigneur ML, Neiers F, Briand L, Le Bon AM. Biophysical and functional characterization of the human olfactory receptor OR1A1 expressed in a mammalian inducible cell line. Protein Expr Purif 2017; 129:31-43. [DOI: 10.1016/j.pep.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|
11
|
Chi H, Wang X, Li J, Ren H, Huang F. Chaperonin-enhanced Escherichia coli cell-free expression of functional CXCR4. J Biotechnol 2016; 231:193-200. [PMID: 27316829 DOI: 10.1016/j.jbiotec.2016.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 11/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are important therapeutic targets for a broad spectrum of diseases and disorders. Obtaining milligram quantities of functional receptors through the development of robust production methods are highly demanded to probe GPCR structure and functions. In this study, we analyzed synergies of the bacterial chaperonin GroEL-GroES and cell-free expression for the production of functionally folded C-X-C chemokine GPCR type 4 (CXCR4). The yield of soluble CXCR4 in the presence of detergent Brij-35 reached ∼1.1mg/ml. The chaperonin complex added was found to significantly enhance the productive folding of newly synthesized CXCR4, by increasing both the rate (∼30-fold) and the yield (∼1.3-fold) of folding over its spontaneous behavior. Meanwhile, the structural stability of CXCR4 was also improved with supplied GroEL-GroES, as was the soluble expression of biologically active CXCR4 with a ∼1.4-fold increase. The improved stability together with the higher ligand binding affinity suggests more efficient folding. The essential chaperonin GroEL was shown to be partially effective on its own, but for maximum efficiency both GroEL and its co-chaperonin GroES were necessary. The method reported here should prove generally useful for cell-free production of large amounts of natively folded GPCRs, and even other classes of membrane proteins.
Collapse
Affiliation(s)
- Haixia Chi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, Qingdao 266580, PR China.
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, Qingdao 266580, PR China; College of Science, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, Qingdao 266580, PR China.
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, Qingdao 266580, PR China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, Qingdao 266580, PR China.
| |
Collapse
|
12
|
He H, Wang X, Cheng T, Xia Y, Lao J, Ge B, Ren H, Khan NU, Huang F. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4. Chemistry 2016; 22:5863-7. [DOI: 10.1002/chem.201600245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| | - Tiantian Cheng
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| | - Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| | - Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| | - Naseer Ullah Khan
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao 266580 P. R. China
| |
Collapse
|
13
|
Chi H, Wang X, Li J, Ren H, Huang F. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES. Sci Rep 2015; 5:17037. [PMID: 26585937 PMCID: PMC4653635 DOI: 10.1038/srep17037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/23/2015] [Indexed: 01/20/2023] Open
Abstract
The in vitro folding of newly translated human CC chemokine receptor type 5
(CCR5), which belongs to the physiologically important family of G protein-coupled
receptors (GPCRs), has been studied in a cell-free system supplemented with the
surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its
biologically active state but only slowly and inefficiently. However, on addition of
the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was
significantly enhanced, as was the structural stability and functional expression of
the soluble form of CCR5. The chaperonin GroEL was partially effective on its own,
but for maximum efficiency both the GroEL and its GroES lid were necessary. These
results are direct evidence for chaperone-assisted membrane protein folding and
therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane
proteins.
Collapse
Affiliation(s)
- Haixia Chi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
14
|
Ge B, Wang M, Li J, Liu J, Huang F. Maltose binding protein facilitates functional production of engineered human chemokine receptor 3 in Escherichia coli. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Structural analysis of bacteriorhodopsin solubilized by lipid-like phosphocholine biosurfactants with varying micelle concentrations. J Colloid Interface Sci 2015; 437:170-180. [DOI: 10.1016/j.jcis.2014.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/18/2022]
|