1
|
Beerkens SJ, King JJ, Irving KL, Bhatia S, Thompson EW, Smith NM, Iyer KS, Evans CW. Docetaxel Inhibits Epithelial-Mesenchymal Transition in Human Mammary Cells. Mol Pharm 2024; 21:53-61. [PMID: 38029291 DOI: 10.1021/acs.molpharmaceut.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible and dynamic biological process in which epithelial cells acquire mesenchymal characteristics including enhanced stemness and migratory ability. EMT can facilitate cancer metastasis and is a known driver of cellular resistance to common chemotherapeutic drugs, such as docetaxel. Current chemotherapeutic practices such as docetaxel treatment can promote EMT and increase the chance of tumor recurrence and resistance, calling for new approaches in cancer treatment. Here we show that prolonged docetaxel treatment at a sub-IC50 concentration inhibits EMT in immortalized human mammary epithelial (HMLE) cells. Using immunofluorescence, flow cytometry, and bulk transcriptomic sequencing to assess EMT progression, we analyzed a range of cellular markers of EMT in docetaxel-treated cells and observed an upregulation of epithelial markers and downregulation of mesenchymal markers in the presence of docetaxel. This finding suggests that docetaxel may have clinical applications not only as a cytotoxic drug but also as an inhibitor of EMT-driven metastasis and multidrug resistance depending on the concentration of its use.
Collapse
Affiliation(s)
- Samuel J Beerkens
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Jessica J King
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Kelly L Irving
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Sugandha Bhatia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- School of Biological/Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- School of Biological/Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- Translational Research Institute, Brisbane, Queensland 4102, Australia
- Invasion and Metastasis Unit, St Vincent's Institute, Melbourne, Victoria 3065, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| |
Collapse
|
2
|
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, Chubarev V, Fan R, Liu J. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13:6147-6175. [PMID: 38187051 PMCID: PMC10767355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regulation of most biological functions via post-translational inhibition of protein expression. Increased expression of pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-cancer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Vladimir Chubarev
- Sechenov First Moscow State Medical University (Sechenov University)8-2 Trubetskaya St., Moscow 119991, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
3
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
4
|
Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance. Cancers (Basel) 2022; 14:cancers14092115. [PMID: 35565245 PMCID: PMC9100048 DOI: 10.3390/cancers14092115] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite tremendous efforts devoted to research in pancreatic cancer (PC), the mechanism underlying the tumorigenesis and progression of PC is still not completely clear. Additionally, ideal biomarkers and satisfactory therapeutic strategies for clinical application in PC are still lacking. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) might participate in the pathogenesis of diverse cancers, including PC. The abnormal expression of lncRNAs in PC is considered a vital factor during tumorigenesis that affects tumor cell proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. With this review of relevant articles published in recent years, we aimed to summarize the biogenesis mechanism, classifications, and modes of action of lncRNAs and to review the functions and mechanisms of lncRNAs in PC. Additionally, the clinical significance of lncRNAs in PC was discussed. Finally, we pointed out the questions remaining from recent studies and anticipated that further investigations would address these gaps in knowledge in this field.
Collapse
|
5
|
Sone M, Nakamura S, Umeda S, Ginya H, Oshima M, Kanashiro MA, Paul SK, Hashimoto K, Nakamura E, Harada Y, Tsujimura K, Saraya A, Yamaguchi T, Sugimoto N, Sawaguchi A, Iwama A, Eto K, Takayama N. Silencing of p53 and CDKN1A establishes sustainable immortalized megakaryocyte progenitor cells from human iPSCs. Stem Cell Reports 2021; 16:2861-2870. [PMID: 34861163 PMCID: PMC8693651 DOI: 10.1016/j.stemcr.2021.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/25/2022] Open
Abstract
Platelet transfusions are critical for severe thrombocytopenia but depend on blood donors. The shortage of donors and the potential of universal HLA-null platelet products have stimulated research on the ex vivo differentiation of human pluripotent stem cells (hPSCs) to platelets. We recently established expandable immortalized megakaryocyte cell lines (imMKCLs) from hPSCs by transducing MYC, BMI1, and BCL-XL (MBX). imMKCLs can act as cryopreservable master cells to supply platelet concentrates. However, the proliferation rates of the imMKCLs vary with the starting hPSC clone. In this study, we reveal from the gene expression profiles of several MKCL clones that the proliferation arrest is correlated with the expression levels of specific cyclin-dependent kinase inhibitors. Silencing CDKN1A and p53 with the overexpression of MBX was effective at stably inducing imMKCLs that generate functional platelets irrespective of the hPSC clone. Collectively, this improvement in generating imMKCLs should contribute to platelet industrialization and platelet biology.
Collapse
Affiliation(s)
- Masamitsu Sone
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Sachiko Umeda
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Sudip Kumar Paul
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kanae Hashimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Emiri Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuo Harada
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kyoko Tsujimura
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akira Sawaguchi
- Ultrastructural Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
6
|
Sarkar A, Das S, Rahaman A, Das Talukdar A, Bhattacharjee S, Mandal DP. Eugenol and capsaicin exhibit anti-metastatic activity via modulating TGF-β signaling in gastric carcinoma. Food Funct 2021; 11:9020-9034. [PMID: 33016967 DOI: 10.1039/d0fo00887g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling is considered to be a key player in gastric cancer metastasis, and the inhibition of the TGF-β/SMAD4 signaling pathway may be a novel strategy for therapeutic interventions in cancer. Here, the anti-metastatic activity of two phytochemicals, eugenol and capsaicin, has been studied, and their potential to antagonize TGF-β has been investigated in gastric cancer cells. Both the phytochemicals exhibited anti-metastatic activity by inhibiting the TGF-β signaling pathway independent of P21 or P53, with capsaicin proving to be more potent than eugenol. However, unlike eugenol, the inhibitory effect of capsaicin on the TGF-β signaling pathway and metastasis was found to be dependent on SMAD4, which was validated in SMAD4-knocked down AGS cell and SMAD4-null SW620 cell line. Furthermore, the use of recombinant TGF-β and TGF-β receptor inhibitor LY2109761 confirmed that the anti-metastatic activity of eugenol is partially and that of capsaicin is principally mediated through the TGF-β signaling pathway. Identifying phytochemicals with the potential to inhibit cancer metastasis by targeting the TGF-β signaling pathway has immense scope for developing a therapeutic strategy against cancer metastasis.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata-700126, West Bengal, India.
| | - Subrata Das
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata-700126, West Bengal, India.
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata-700126, West Bengal, India.
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata-700126, West Bengal, India.
| |
Collapse
|
7
|
Ojima T, Kawami M, Yumoto R, Takano M. Differential mechanisms underlying methotrexate-induced cell death and epithelial-mesenchymal transition in A549 cells. Toxicol Res 2020; 37:293-300. [PMID: 34295794 DOI: 10.1007/s43188-020-00067-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a biological process through which epithelial cells transdifferentiate into mesenchymal cells, is involved in several pathological events, such as cancer progression and organ fibrosis. So far, we have found that methotrexate (MTX), an anticancer drug, induced EMT in the human A549 alveolar adenocarcinoma cell line. However, the relationship between EMT and the cytotoxicity induced by MTX remains unclear. In this study, we compared the processes of MTX-induced EMT and apoptosis in A549 cells. Q-VD-Oph, a caspase inhibitor, suppressed MTX-induced apoptosis, but not the increase in mRNA expression of α-smooth muscle actin (SMA), a representative EMT marker. In addition, SB431542, an EMT inhibitor, did not inhibit MTX-induced apoptosis. By using isolated clonal cells from wild-type A549 cells, the induction of EMT and apoptosis by MTX in each clone was analyzed, and no significant correlation was observed between the MTX-induced increase in α-SMA mRNA expression and the proportion of cells undergoing apoptosis. Furthermore, the increase in the mRNA expression of α-SMA was well correlated with cyclin-dependent kinase inhibitor 1A, a cell cycle arrest marker, but not with BCL-2 binding component 3 and Fas cell surface death receptor, which are both pro-apoptotic factors, indicating that the MTX-induced EMT may be related to cell cycle arrest, but not to apoptosis. These findings suggested that different mechanisms were involved in the MTX-induced EMT and apoptosis.
Collapse
Affiliation(s)
- Takamichi Ojima
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| |
Collapse
|
8
|
Folic Acid Induces Intake-Related Changes in the Mammary Tissue Transcriptome of C57BL/6 Mice. Nutrients 2020; 12:nu12092821. [PMID: 32942660 PMCID: PMC7551343 DOI: 10.3390/nu12092821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Folic acid (FA) intake has been associated with increased breast cancer risk in some studies. Although underlying mechanisms are unknown, epigenetic modifications that persistently alter transcription have been suggested. We tested the hypothesis that high FA (HFA) intake alters the adult mammary transcriptome in a manner consistent with increased potential for carcinogenesis, detectable beyond the period of intake. C57BL/6 mice were fed control FA (CFA) (1 mg/kg diet) or HFA (5 mg/kg diet) diets for 4 weeks, followed by AIN93M maintenance diet for 4 weeks. Plasma 5-methyltetrahydrofolate, p-aminobenzoylglutamate and unmetabolised FA concentrations were greater (1.62, 1.56, 5.80-fold, respectively) in HFA compared to CFA mice. RNA sequencing of the mammary transcriptome (~20 million reads) showed 222 transcripts (191 upregulated) differentially expressed between groups. Gene Set Enrichment showed upregulated genes significantly enriched in Epithelial Mesenchymal Transition, Myogenesis and Apical Junction and downregulated genes in E2F targets, MYC targets and G2M checkpoint. Cancer was the most altered Disease and Disorder pathway, with Metastasis, Mammary Tumour and Growth of Tumour the most upregulated pathways. ChIP-seq enrichment analysis showed that targets of histone methyltransferase EZH2 were enriched in HFA mice. This study demonstrates HFA intake during adulthood induces mammary transcriptome changes, consistent with greater tumorigenic potential.
Collapse
|
9
|
Zhang Y, Yan W, Jung YS, Chen X. Correction: PUMA Cooperates with p21 to Regulate Mammary Epithelial Morphogenesis and Epithelial-To-Mesenchymal Transition. PLoS One 2020; 15:e0237624. [PMID: 32764807 PMCID: PMC7413548 DOI: 10.1371/journal.pone.0237624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0066464.].
Collapse
|
10
|
Kreis NN, Louwen F, Yuan J. The Multifaceted p21 (Cip1/Waf1/ CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091220. [PMID: 31438587 PMCID: PMC6770903 DOI: 10.3390/cancers11091220] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | - Frank Louwen
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
11
|
Hamilton DH, McCampbell KK, Palena C. Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack. Front Oncol 2018; 8:143. [PMID: 29774202 PMCID: PMC5943507 DOI: 10.3389/fonc.2018.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8+ T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8+ T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial–mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of brachyury could be alleviated via the use of a WEE1 inhibitor. Several vaccine platforms targeting brachyury have been developed and are undergoing clinical evaluation. These studies provide further rationale for the use of WEE1 inhibition in combination with brachyury-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kristen K McCampbell
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Chen KHE, Bustamante K, Nguyen V, Walker AM. Involvement of miR-106b in tumorigenic actions of both prolactin and estradiol. Oncotarget 2018; 8:36368-36382. [PMID: 28422740 PMCID: PMC5482661 DOI: 10.18632/oncotarget.16755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
Prolactin promotes a variety of cancers by an array of different mechanisms. Here, we have investigated prolactin's inhibitory effect on expression of the cell cycle-regulating protein, p21. Using a miRNA array, we identified a number of miRNAs upregulated by prolactin treatment, but one in particular that was strongly induced by prolactin and predicted to bind to the 3′UTR of p21 mRNA, miR-106b. By creating a p21 mRNA 3′UTR-luciferase mRNA construct, we demonstrated degradation of the construct in response to prolactin in human breast, prostate and ovarian cancer cell lines. Increased expression of miR-106b replicated, and anti-miR-106b counteracted, the effects of prolactin on degradation of the 3′UTR construct, p21 mRNA levels, and cell proliferation in breast (T47D) and prostate (PC3) cancer cells. Increased expression of miR-106b also stimulated migration of the very epithelioid T47D cell line. By contrast, anti-miR-106b dramatically decreased expression of the mesenchymal markers, SNAIL-2, TWIST-2, VIMENTIN, and FIBRONECTIN. Using signaling pathway inhibitors and the 3′UTR construct, induction of miR-106b by prolactin was determined to be mediated through the MAPK/ERK and PI3K/Akt pathways and not through Jak2/Stat5 in both T47D and PC3 cells. Prolactin activation of MAPK/ERK and PI3K/Akt also activates ERα in the absence of an ERα ligand. 17β-estradiol promoted degradation of the construct in both cell lines and pre-incubation in the estrogen antagonist, Fulvestrant, blocked the ability of both prolactin and 17β-estradiol to induce the construct-degrading activity. Together, these data support a convergence of the prolactin and 17β-estradiol miR-106b-elevating signaling pathways at ERα.
Collapse
Affiliation(s)
- Kuan-Hui Ethan Chen
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Karissa Bustamante
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Vi Nguyen
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Kim EM, Jung CH, Kim J, Hwang SG, Park JK, Um HD. The p53/p21 Complex Regulates Cancer Cell Invasion and Apoptosis by Targeting Bcl-2 Family Proteins. Cancer Res 2017; 77:3092-3100. [PMID: 28377455 DOI: 10.1158/0008-5472.can-16-2098] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 03/30/2017] [Indexed: 01/16/2023]
Abstract
The tumor suppressor p53 binds prosurvival Bcl-2 family proteins such as Bcl-w and Bcl-XL to liberate Bax, which in turn exerts proapoptotic or anti-invasive functions depending on stress context. On the basis of our previous finding that p53 interacts with p21, we investigated the possible involvement of p21 in these functions. Here, we report that although p53 can bind Bcl-w alone, it requires p21 to liberate Bax to suppress cell invasion and promote cell death. p21 bound Bcl-w, forming a p53/p21/Bcl-w complex in a manner that maintained all pairwise p53/p21, p21/Bcl-w, and p53/Bcl-w interactions. This allowed Bax liberation from the complex. Accordingly, a p53 derivative incapable of binding p21 failed to mediate radiotherapy-induced tumor cell death in mice. Bcl-XL also served as a target of the cooperative action of p53 and p21. Overall, our findings indicate that the p53/p21 complex rather than p53 itself regulates cell invasion and death by targeting Bcl-2 proteins. We propose that the p53/p21 complex is a functional unit that acts on multiple cell components, providing a new foundation for understanding the tumor-suppressing functions of p53 and p21. Cancer Res; 77(11); 3092-100. ©2017 AACR.
Collapse
Affiliation(s)
- Eun Mi Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Chan-Hun Jung
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jongdoo Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sang-Gu Hwang
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jong Kuk Park
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hong-Duck Um
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
14
|
Wu BQ, Jiang Y, Zhu F, Sun DL, He XZ. Long Noncoding RNA PVT1 Promotes EMT and Cell Proliferation and Migration Through Downregulating p21 in Pancreatic Cancer Cells. Technol Cancer Res Treat 2017; 16:819-827. [PMID: 28355965 PMCID: PMC5762037 DOI: 10.1177/1533034617700559] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background and Aim: Long noncoding RNA-plasmacytoma variant translocation 1 is identified to be highly expressed and exhibits oncogenic activity in a variety of human malignancies, including pancreatic cancer. However, little is known about the overall biological role and mechanism of plasmacytoma variant translocation 1 in pancreatic cancer so far. In this study, we investigated the effect of plasmacytoma variant translocation 1 on pancreatic cancer cell proliferation and migration as well as epithelial–mesenchymal transition. Methods: Pancreatic cancer tissue specimens and cell line were used in this study, with normal tissue and cell line acting as control. Results: It showed that plasmacytoma variant translocation 1 expression was significantly upregulated in pancreatic cancer tissues or cell line compared to normal groups. Plasmacytoma variant translocation 1 downregulation significantly inhibited zinc finger E-box-binding protein 1/Snail expression but promoted p21 expression, and it also inhibited the cell proliferation and migration. Additionally, p21 downregulation enhanced, and p21 overexpression repressed, zinc finger E-box-binding protein 1/Snail expression and cells proliferation in PANC-1 cells. However, p21 downregulation reversed the effect of plasmacytoma variant translocation 1 downregulation on zinc finger E-box-binding protein 1/Snail expression and cell proliferation and migration. Conclusion: Plasmacytoma variant translocation 1 promoted epithelial–mesenchymal transition and cell proliferation and migration through downregulating p21 in pancreatic cancer cells.
Collapse
Affiliation(s)
- Bao-Qiang Wu
- Department of Hepatatobiliary Surgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu Province, China
| | - Yong Jiang
- Department of Hepatatobiliary Surgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu Province, China
| | - Feng Zhu
- Department of Hepatatobiliary Surgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu Province, China
| | - Dong-Lin Sun
- Department of Hepatatobiliary Surgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu Province, China
| | - Xiao-Zhou He
- Department of Hepatatobiliary Surgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Al-Khalaf HH, Aboussekhra A. p16INK4Ainduces senescence and inhibits EMT through microRNA-141/microRNA-146b-5p-dependent repression of AUF1. Mol Carcinog 2016; 56:985-999. [DOI: 10.1002/mc.22564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/16/2016] [Accepted: 09/04/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Huda H. Al-Khalaf
- The National Center for Genomics Research; King Abdulaziz City for Science and Technology; Riyadh Saudi Arabia
- Department of Molecular Oncology; King Faisal Specialist Hospital Research Center; Riyadh Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology; King Faisal Specialist Hospital Research Center; Riyadh Saudi Arabia
| |
Collapse
|
16
|
P73 tumor suppressor and its targets, p21 and PUMA, are required for madin-darby canine kidney cell morphogenesis by maintaining an appropriate level of epithelial to mesenchymal transition. Oncotarget 2016; 6:13994-4004. [PMID: 26101856 PMCID: PMC4546446 DOI: 10.18632/oncotarget.4374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
P73, a member of p53 tumor suppressor family, plays a crucial role in tumor suppression and neural development. Due to the usage of two promoters, p73 is expressed as two isoforms, TAp73 and ΔNp73, with opposing functions. Here, we investigated the potential role of p73 in epithelial polarity and morphogenesis by using Madin-Darby canine kidney (MDCK) cells as a model system. We found that knockdown of TAp73 enhances, whereas knockdown of ΔNp73 inhibits, MDCK cell proliferation and migration in two-dimensional (2-D) culture. We also found that knockdown of TAp73, but not ΔNp73, disrupts cyst formation of MDCK cells in three-dimensional (3-D) culture. Interestingly, we found that p21 and PUMA, both of which are induced by TAp73 but repressed by ΔNp73, are required for suppressing cell proliferation and migration in 2-D culture and for MDCK ce ll morphogenesis in 3-D culture. Finally, we showed knockdown of TAp73, p21 or PUMA induces epithelial to mesenchymal transition (EMT) with a decrease in E-cadherin and an increase in EMT transcription factors. Together, our data suggest that TAp73, p21 and PUMA play a critical role in modulating MDCK cell morphogenesis by maintaining an appropriate level of the EMT.
Collapse
|
17
|
Yeo SY, Itahana Y, Guo AK, Han R, Iwamoto K, Nguyen HT, Bao Y, Kleiber K, Wu YJ, Bay BH, Voorhoeve M, Itahana K. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation. eLife 2016; 5:e07101. [PMID: 26956429 PMCID: PMC4798945 DOI: 10.7554/elife.07101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
Genetic alterations which impair the function of the TP53 signaling pathway in TP53 wild-type human tumors remain elusive. To identify new components of this pathway, we performed a screen for genes whose loss-of-function debilitated TP53 signaling and enabled oncogenic transformation of human mammary epithelial cells. We identified transglutaminase 2 (TGM2) as a putative tumor suppressor in the TP53 pathway. TGM2 suppressed colony formation in soft agar and tumor formation in a xenograft mouse model. The depletion of growth supplements induced both TGM2 expression and autophagy in a TP53-dependent manner, and TGM2 promoted autophagic flux by enhancing autophagic protein degradation and autolysosome clearance. Reduced expression of both CDKN1A, which regulates the cell cycle downstream of TP53, and TGM2 synergized to promote oncogenic transformation. Our findings suggest that TGM2-mediated autophagy and CDKN1A-mediated cell cycle arrest are two important barriers in the TP53 pathway that prevent oncogenic transformation. DOI:http://dx.doi.org/10.7554/eLife.07101.001 Cancers grow from rogue cells that manage to defy the strict rules that normally stop a cell from dividing when it should not. Each cell contains many proteins that are responsible for implementing these rules, and thus help to prevent tumors from forming. One of these proteins – p53 (which is also called TP53) – plays a central role in this process. Information about many processes within and around a cell filters through the p53 protein, before being passed on to a range of different proteins. The proteins that are alerted by p53 are commonly referred to as its 'downstream effectors', and it is these proteins that stop cells from dividing too much. For example, the protein p21 (also called CDKN1A) – which is the best understood of p53’s downstream effectors – hinders the machinery that causes cells to divide. Other p53 effectors can cause cells to kill themselves to prevent cancer growth. However, recent experiments with mice predicted that there may be other p53’s effectors that are important too. Yeo, Itahana et al. have now depleted the proteins that potentially work in p53’s network, one by one, in human cells called mammary epithelial cells, to test if these cells can become cancerous in the laboratory. The experiments showed that another downstream effector protein of p53 – an enzyme called transglutaminase 2 – contributes to prevent these mammary epithelial cells from becoming cancerous. Transglutaminase 2 promotes a process known as autophagy, which recycles damaged and old components of the cell, and therefore normally helps to keep cells healthy. Yeo, Itahana et al. also demonstrated that the effects of both p21 and transglutaminase 2 are critical to stop human mammary epithelial cells grown in the laboratory from dividing too much and from forming tumors when injected into mice. These experiments provide a deeper understanding of how most cells manage to remain healthy rather than becoming cancerous and reveal a potential new target for the early detection of cancer. Further investigations could now explore whether therapies could re-activate this enzyme to prevent or treat cancer. DOI:http://dx.doi.org/10.7554/eLife.07101.002
Collapse
Affiliation(s)
- Shi Yun Yeo
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Yoko Itahana
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Alvin Kunyao Guo
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Rachel Han
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Kozue Iwamoto
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Hung Thanh Nguyen
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Yi Bao
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Kai Kleiber
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Ya Jun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, , Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, , Singapore
| | - Mathijs Voorhoeve
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| | - Koji Itahana
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, , Singapore
| |
Collapse
|
18
|
Basak P, Dillon R, Leslie H, Raouf A, Mowat MRA. The Deleted in Liver Cancer 1 (Dlc1) tumor suppressor is haploinsufficient for mammary gland development and epithelial cell polarity. BMC Cancer 2015; 15:630. [PMID: 26353792 PMCID: PMC4565020 DOI: 10.1186/s12885-015-1642-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/01/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deleted in Liver Cancer 1 (Dlc1) is a tumor suppressor gene, which maps to human chromosome 8p21-22 and is found frequently deleted in many cancers including breast cancer. The promoter of the remaining allele is often found methylated. The Dlc1 gene encodes a RhoGAP protein that regulates cell proliferation, migration and inhibits cell growth and invasion when restored in Dlc1 deficient tumor cell lines. This study focuses on determining the role of Dlc1 in normal mammary gland development and epithelial cell polarity in a Dlc1 gene trapped (gt) mouse. METHODS Mammary gland whole mount preparations from 10-week virgin heterozygous Dlc1(gt/+) gene-trapped mice were compared with age-matched wild type (WT) controls. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining of histological sections were carried out. Mammary glands from Dlc1(gt/+) mice and WT controls were enzymatically digested with collagenase and dispase and then cultured overnight to deplete hematopoietic and endothelial cells. The single cell suspensions were then cultured in Matrigel for 12 days. To knockdown Dlc1 expression, primary WT mammary epithelial cells were infected with short hairpin (sh) RNA expressing lentivirus or with a scrambled shRNA control. RESULTS Dlc1(gt/+) mice showed anomalies in the mammary gland that included increased ductal branching and deformities in terminal end buds and branch points. Compared to the WT controls, Masson's Trichrome staining showed a thickened stromal layer with increased collagen deposition in mammary glands from Dlc1(gt/+) mice. Dlc1(gt/+) primary mammary epithelial cells formed increased solid acinar spheres in contrast with WT and scrambled shRNA control cells, which mostly formed hollow acinar structures when plated in 3D Matrigel cultures. These solid acinar structures were similar to the acinar structures formed when Dlc1 gene expression was knocked down in WT mammary cells by shRNA lentiviral transduction. The solid acinar structures were not due to a defect in apoptosis as determined by a lack of detectible cleaved caspase 3 antibody staining. Primary mammary cells from Dlc1(gt/+) mice showed increased RhoA activity compared with WT cells. CONCLUSIONS The results illustrate that decreased Dlc1 expression can disrupt the normal cell polarization and mammary ductal branching. Altogether this study suggests that Dlc1 plays a role in maintaining normal mammary epithelial cell polarity and that Dlc1 is haploinsufficient.
Collapse
Affiliation(s)
- Pratima Basak
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Rachelle Dillon
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| | - Heather Leslie
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| | - Afshin Raouf
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Michael R A Mowat
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
19
|
Engelmann D, Meier C, Alla V, Pützer BM. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 2014; 34:4287-99. [PMID: 25381823 DOI: 10.1038/onc.2014.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022]
Abstract
p73 is the older sibling of p53 and mimics most of its tumor-suppressor functions. Through alternative promoter usage and splicing, the TP73 gene generates more than two dozen isoforms of which N-terminal truncated DNp73 variants have a decisive role in cancer pathogenesis as they outweigh the positive effects of full-length TAp73 and p53 in acting as a barrier to tumor development. Beyond the prevailing view that DNp73 predominantly counteract cell cycle arrest and apoptosis, latest progress indicates that these isoforms acquire novel functions in epithelial-to-mesenchymal transition, metastasis and therapy resistance. New insight into the mechanisms underlying this behavior reinforced the expectation that DNp73 variants contribute to aggressive cellular traits through both loss of wild-type tumor-suppressor activity and gain-of-function, suggesting an equally important role in cancer progression as mutant p53. In this review, we describe the novel properties of DNp73 in the invasion metastasis cascade and outline the comprehensive p73 regulatome with an emphasis on molecular processes putting TAp73 out of action in advanced tumors. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by cancer cells and may help to set novel therapies for a broad range of metastatic tumors.
Collapse
Affiliation(s)
- D Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - C Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - V Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - B M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
20
|
The opposite prognostic significance of nuclear and cytoplasmic p21 expression in resectable gastric cancer patients. J Gastroenterol 2014; 49:1441-52. [PMID: 24127074 DOI: 10.1007/s00535-013-0900-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/06/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Protein p21(Cip1/Waf1) is a cyclin-dependent kinase inhibitor, which plays important roles in cell cycle arrest, senescence, and apoptosis. Interestingly, the nuclear and cytoplasmic p21 executes various functions in the cell. In this study, we investigated the prognostic impact of subcellular p21 expression in gastric cancer (GC). METHODS Expressions of subcellular p21 was assessed by immunohistochemistry using a tissue microarray in a training cohort and it went into a second testing cohort and finally to a validating cohort. Prognostic and predictive role of subcellular p21 expression status was evaluated. We also studied the roles of subcellular p21 in GC cell migration and invasion. RESULTS Nuclear and cytoplasmic p21 protein levels were significantly reduced and increased in GC lesions compared with adjacent non-cancerous tissues, respectively. Low nuclear p21 or high cytoplasmic p21 expression significantly correlated with shorter overall survival (OS), as well as with clinicopathologic characteristics in patients. Multivariate regression analysis showed that low nuclear and high cytoplasmic p21 expression, separately and together, were independent negative markers of OS. Finally, we found that nuclear p21 inhibits but cytoplasmic p21 promotes cell migration and invasion abilities. CONCLUSIONS These findings suggest that nuclear and cytoplasmic p21 protein expression in tumor are novel candidate prognostic markers in resectable human gastric carcinoma, and they exert distinct roles in cell migration and invasion.
Collapse
|
21
|
Engelmann D, Pützer BM. Emerging from the shade of p53 mutants: N-terminally truncated variants of the p53 family in EMT signaling and cancer progression. Sci Signal 2014; 7:re9. [PMID: 25270260 DOI: 10.1126/scisignal.2005699] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevailing view has been that N-terminally truncated p53 family isoforms (ΔNp53, ΔNp63, and DNp73) predominantly counteract cell cycle arrest and apoptosis. Recent progress in the field extend these well-known functions and place these isoforms in the center of a comprehensive regulatory network controlling major epithelial-to-mesenchymal transition (EMT)-relevant signaling pathways [such as transforming growth factor-β (TGF-β), wingless-int (WNT), insulin-like growth factor (IGF), and signal transducer and activator of transcription (STAT)], microRNAs, and EMT-associated transcription factors that promote invasion, loss of tumor cell polarity, and metastatic behavior in conjunction with a chemoresistant phenotype. These observations add new weight to the concept that currently underappreciated truncated forms of this tumor suppressor family play an equally important role in promoting cancer aggressiveness as do mutant p53 proteins, and illustrate how the consequences of ΔN/DN expression depend on cellular contexts. The tumor microenvironment contributes to the emergence of these variants, thereby linking inflammation to the activation of the mesenchymal program. In addition, molecular connections between ΔN/DN forms and self-renewal have arisen, suggesting their potential function in the generation of cancer stem cells (CSCs) from bulk tumor cells. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by carcinoma cells in the absence of p53 mutations, and may help direct the development of new therapies for a broad range of cancers.
Collapse
Affiliation(s)
- David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
22
|
Al-Khalaf HH, Aboussekhra A. MicroRNA-141 and microRNA-146b-5p inhibit the prometastatic mesenchymal characteristics through the RNA-binding protein AUF1 targeting the transcription factor ZEB1 and the protein kinase AKT. J Biol Chem 2014; 289:31433-47. [PMID: 25261470 DOI: 10.1074/jbc.m114.593004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
miR-141 and miR-146b-5p are two important tumor suppressor microRNAs, which control several cancer-related genes and processes. In the present report, we have shown that these microRNAs bind specific sites at the 3'-untranslated region (UTR) of the mRNA-binding protein AUF1, leading to its down-regulation. This inverse correlation between the levels of these microRNAs and AUF1 has been identified in various osteosarcoma cell lines. Additionally, we present clear evidence that AUF1 promotes mesenchymal features in osteosarcoma cells and that miR-141 and miR-146b-5p suppress this prometastatic process through AUF1 repression. Indeed, both microRNAs suppressed the invasion/migration and proliferation abilities of osteosarcoma cells through inhibiting the AKT protein kinase in an AUF1-dependent manner. We have also shown that AUF1 binds to and stabilizes the mRNA of the AKT activator phosphoinositide-dependent kinase-1 (PDK1). Furthermore, miR-141 and miR-146b-5p positively regulate the epithelial markers (E-cadherin and Epcam) and repress the mesenchymal markers (N-cadherin, Vimentin, Twist2, and ZEB1). These effects were mediated via the repression of the epithelial-to-mesenchymal inducer ZEB1 through targeting AUF1, which binds the 3'-UTR of the ZEB1 mRNA and reduces its turnover. These results indicate that at least some tumor suppressor functions of miR-141 and miR-146b-5p are mediated through the repression of the oncogenic potentials of AUF1. Therefore, these 3'-UTR-directed post-transcriptional gene expression regulators constitute promising new targets for diagnostic and/or therapeutic interventions.
Collapse
Affiliation(s)
- Huda H Al-Khalaf
- From the Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia and the Joint Center for Genomics Research, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- From the Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia and
| |
Collapse
|
23
|
Becker LE, Takwi AAL, Lu Z, Li Y. The role of miR-200a in mammalian epithelial cell transformation. Carcinogenesis 2014; 36:2-12. [PMID: 25239643 DOI: 10.1093/carcin/bgu202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cancer is a multistep disease that begins with malignant cell transformation and frequently culminates in metastasis. MicroRNAs (miRNAs) are small regulatory 21-25 nt RNA molecules and are frequently deregulated in cancer. miR-200a is a member of the miR-200 family, which are known inhibitors of the epithelial-to-mesenchymal transition. As such, the tumor-suppressive role of miR-200a in oncogenesis has been well documented; however, recent studies have found a proliferative role for this miRNA as well as a prometastatic role in the later steps of cancer progression. Little is known about the role of this miRNA in the early stages of cancer, namely, malignant cell transformation. Here, we show that miR-200a alone transforms an immortalized rat epithelial cell line, and miR-200a cooperates with Ras to enhance malignant transformation of an immortalized human epithelial cell line. Furthermore, miR-200a induces cell transformation and tumorigenesis in immunocompromised mice by cooperating with a Ras mutant that activates only the RalGEF effector pathway, but not Ras mutants activating PI3K or Raf effector pathways. This transformative ability is in accordance with miR-200a targeting Fog2 and p53 to activate Akt and directly repress p53 protein levels, respectively. These results demonstrate an oncogenic role for miR-200a and provide a specific cellular context where miR-200a acts as an oncomiR rather than a tumor suppressor by cooperating with an oncogene in malignant cell transformation.
Collapse
Affiliation(s)
- Lindsey E Becker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Apana Agha L Takwi
- St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA and
| | - Zhongxin Lu
- Department of Medical Laboratory and Central Laboratory, The Central Hospital of Wuhan, Wuhan, Hubei 430014, China
| | - Yong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA, Department of Medical Laboratory and Central Laboratory, The Central Hospital of Wuhan, Wuhan, Hubei 430014, China
| |
Collapse
|
24
|
A p21-ZEB1 complex inhibits epithelial-mesenchymal transition through the microRNA 183-96-182 cluster. Mol Cell Biol 2013; 34:533-50. [PMID: 24277930 DOI: 10.1128/mcb.01043-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor p21 acts as a cell cycle inhibitor and has also been shown to regulate gene expression by functioning as a transcription corepressor. Here, we identified p21-regulated microRNAs (miRNAs) by sequencing small RNAs from isogenic p21(+/+) and p21(-/-) cells. Three abundant miRNA clusters, miR-200b-200a-429, miR-200c-141, and miR-183-96-182, were downregulated in p21-deficient cells. Consistent with the known function of the miR-200 family and p21 in inhibition of the epithelial-mesenchymal transition (EMT), we observed EMT upon loss of p21 in multiple model systems. To explore a role of the miR-183-96-182 cluster in EMT, we identified its genome-wide targets and found that miR-183 and miR-96 repressed common targets, including SLUG, ZEB1, ITGB1, and KLF4. Reintroduction of miR-200, miR-183, or miR-96 in p21(-/-) cells inhibited EMT, cell migration, and invasion. Conversely, antagonizing miR-200 and miR-183-96-182 cluster miRNAs in p21(+/+) cells increased invasion and elevated the levels of VIM, ZEB1, and SLUG mRNAs. Furthermore, we found that p21 forms a complex with ZEB1 at the miR-183-96-182 cluster promoter to inhibit transcriptional repression of this cluster by ZEB1, suggesting a reciprocal feedback loop.
Collapse
|