1
|
Haws SA, Miller LJ, La Luz DR, Kuznetsov VI, Trievel RC, Craciun G, Denu JM. Intrinsic catalytic properties of histone H3 lysine-9 methyltransferases preserve monomethylation levels under low S-adenosylmethionine. J Biol Chem 2023; 299:104938. [PMID: 37331600 PMCID: PMC10404681 DOI: 10.1016/j.jbc.2023.104938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023] Open
Abstract
S-adenosylmethionine (SAM) is the methyl donor for site-specific methylation reactions on histone proteins, imparting key epigenetic information. During SAM-depleted conditions that can arise from dietary methionine restriction, lysine di- and tri-methylation are reduced while sites such as Histone-3 lysine-9 (H3K9) are actively maintained, allowing cells to restore higher-state methylation upon metabolic recovery. Here, we investigated if the intrinsic catalytic properties of H3K9 histone methyltransferases (HMTs) contribute to this epigenetic persistence. We employed systematic kinetic analyses and substrate binding assays using four recombinant H3K9 HMTs (i.e., EHMT1, EHMT2, SUV39H1, and SUV39H2). At both high and low (i.e., sub-saturating) SAM, all HMTs displayed the highest catalytic efficiency (kcat/KM) for monomethylation compared to di- and trimethylation on H3 peptide substrates. The favored monomethylation reaction was also reflected in kcat values, apart from SUV39H2 which displayed a similar kcat regardless of substrate methylation state. Using differentially methylated nucleosomes as substrates, kinetic analyses of EHMT1 and EHMT2 revealed similar catalytic preferences. Orthogonal binding assays revealed only small differences in substrate affinity across methylation states, suggesting that catalytic steps dictate the monomethylation preferences of EHMT1, EHMT2, and SUV39H1. To link in vitro catalytic rates with nuclear methylation dynamics, we built a mathematical model incorporating measured kinetic parameters and a time course of mass spectrometry-based H3K9 methylation measurements following cellular SAM depletion. The model revealed that the intrinsic kinetic constants of the catalytic domains could recapitulate in vivo observations. Together, these results suggest catalytic discrimination by H3K9 HMTs maintains nuclear H3K9me1, ensuring epigenetic persistence after metabolic stress.
Collapse
Affiliation(s)
- Spencer A Haws
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lillian J Miller
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Rojas La Luz
- Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vyacheslav I Kuznetsov
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gheorghe Craciun
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John M Denu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Bonnici J, Oueini R, Salah E, Johansson C, Schofield CJ, Kawamura A. The catalytic domains of all human KDM5 JmjC demethylases catalyse N-methyl arginine demethylation. FEBS Lett 2023; 597:933-946. [PMID: 36700827 PMCID: PMC10952680 DOI: 10.1002/1873-3468.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023]
Abstract
The demethylation of Nε -methyllysine residues on histones by Jumonji-C lysine demethylases (JmjC-KDMs) has been established. A subset of JmjC-KDMs has also been reported to have Nω -methylarginine residue demethylase (RDM) activity. Here, we describe biochemical screening studies, showing that the catalytic domains of all human KDM5s (KDM5A-KDM5D), KDM4E and, to a lesser extent, KDM4A/D, have both KDM and RDM activities with histone peptides. Ras GTPase-activating protein-binding protein 1 peptides were shown to be RDM substrates for KDM5C/D. No RDM activity was observed with KDM1A and the other JmjC-KDMs tested. The results highlight the potential of JmjC-KDMs to catalyse reactions other than Nε -methyllysine demethylation. Although our study is limited to peptide fragments, the results should help guide biological studies investigating JmjC functions.
Collapse
Affiliation(s)
- Joanna Bonnici
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Chemistry – School of Natural and Environmental SciencesNewcastle UniversityUK
| | - Razanne Oueini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Catrine Johansson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Botnar Research Centre, NIHR Oxford Biomedical Research UnitUniversity of OxfordUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordUK
- Chemistry – School of Natural and Environmental SciencesNewcastle UniversityUK
| |
Collapse
|
3
|
Scott V, Dey D, Kuwik J, Hinkelman K, Waldman M, Islam K. Allele-Specific Chemical Rescue of Histone Demethylases Using Abiotic Cofactors. ACS Chem Biol 2022; 17:3321-3330. [PMID: 34496208 DOI: 10.1021/acschembio.1c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Closely related protein families evolved from common ancestral genes present a significant hurdle in developing member- and isoform-specific chemical probes, owing to their similarity in fold and function. In this piece of work, we explore an allele-specific chemical rescue strategy to activate a "dead" variant of a wildtype protein using synthetic cofactors and demonstrate its successful application to the members of the alpha-ketoglutarate (αKG)-dependent histone demethylase 4 (KDM4) family. We show that a mutation at a specific residue in the catalytic site renders the variant inactive toward the natural cosubstrate. In contrast, αKG derivatives bearing appropriate stereoelectronic features endowed the mutant with native-like demethylase activity while remaining refractory to a set of wild type dioxygenases. The orthogonal enzyme-cofactor pairs demonstrated site- and degree-specific lysine demethylation on a full-length chromosomal histone in the cellular milieu. Our work offers a strategy to modulate a specific histone demethylase by identifying and engineering a conserved phenylalanine residue, which acts as a gatekeeper in the KDM4 subfamily, to sensitize the enzyme toward a novel set of αKG derivatives. The orthogonal pairs developed herein will serve as probes to study the role of degree-specific lysine demethylation in mammalian gene expression. Furthermore, this approach to overcome active site degeneracy is expected to have general application among all human αKG-dependent dioxygenases.
Collapse
Affiliation(s)
- Valerie Scott
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Debasis Dey
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan Kuwik
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kathryn Hinkelman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Megan Waldman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Meng F, Stamms K, Bennewitz R, Green A, Oback F, Turner P, Wei J, Oback B. Targeted histone demethylation improves somatic cell reprogramming into cloned blastocysts but not postimplantation bovine concepti†. Biol Reprod 2020; 103:114-125. [PMID: 32318688 DOI: 10.1093/biolre/ioaa053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
Correct reprogramming of epigenetic marks in the donor nucleus is a prerequisite for successful cloning by somatic cell transfer (SCT). In several mammalian species, repressive histone (H) lysine (K) trimethylation (me3) marks, in particular H3K9me3, form a major barrier to somatic cell reprogramming into pluripotency and totipotency. We engineered bovine embryonic fibroblasts (BEFs) for the doxycycline-inducible expression of a biologically active, truncated form of murine Kdm4b, a demethylase that removes H3K9me3 and H3K36me3 marks. Upon inducing Kdm4b, H3K9me3 and H3K36me3 levels were reduced about 3-fold and 5-fold, respectively, compared with noninduced controls. Donor cell quiescence has been previously associated with reduced somatic trimethylation levels and increased cloning efficiency in cattle. Simultaneously inducing Kdm4b expression (via doxycycline) and quiescence (via serum starvation) further reduced global H3K9me3 and H3K36me3 levels by a total of 18-fold and 35-fold, respectively, compared with noninduced, nonstarved control fibroblasts. Following SCT, Kdm4b-BEFs reprogrammed significantly better into cloned blastocysts than noninduced donor cells. However, detrimethylated donors and sustained Kdm4b-induction during embryo culture did not increase the rates of postblastocyst development from implantation to survival into adulthood. In summary, overexpressing Kdm4b in donor cells only improved their reprogramming into early preimplantation stages, highlighting the need for alternative experimental approaches to reliably improve somatic cloning efficiency in cattle.
Collapse
Affiliation(s)
- Fanli Meng
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Kathrin Stamms
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Institute of Nutrition, University Jena, Jena, Germany
| | - Romina Bennewitz
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Institute of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Andria Green
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Fleur Oback
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Pavla Turner
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Jingwei Wei
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Animal Science Institute, Guangxi University, Nanning, China
| | - Björn Oback
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194567. [PMID: 32360393 PMCID: PMC7294231 DOI: 10.1016/j.bbagrm.2020.194567] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The precise regulation of gene transcription is required to establish and maintain cell type-specific gene expression programs during multicellular development. In addition to transcription factors, chromatin, and its chemical modification, play a central role in regulating gene expression. In vertebrates, DNA is pervasively methylated at CG dinucleotides, a modification that is repressive to transcription. However, approximately 70% of vertebrate gene promoters are associated with DNA elements called CpG islands (CGIs) that are refractory to DNA methylation. CGIs integrate the activity of a range of chromatin-regulating factors that can post-translationally modify histones and modulate gene expression. This is exemplified by the trimethylation of histone H3 at lysine 4 (H3K4me3), which is enriched at CGI-associated gene promoters and correlates with transcriptional activity. Through studying H3K4me3 at CGIs it has become clear that CGIs shape the distribution of H3K4me3 and, in turn, H3K4me3 influences the chromatin landscape at CGIs. Here we will discuss our understanding of the emerging relationship between CGIs, H3K4me3, and gene expression.
Collapse
|
6
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
7
|
Hancock R, Masson N, Dunne K, Flashman E, Kawamura A. The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations. ACS Chem Biol 2017; 12:1011-1019. [PMID: 28051298 PMCID: PMC5404277 DOI: 10.1021/acschembio.6b00958] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
Abstract
The JmjC histone lysine demethylases (KDMs) are epigenetic regulators involved in the removal of methyl groups from post-translationally modified lysyl residues within histone tails, modulating gene transcription. These enzymes require molecular oxygen for catalytic activity and, as 2-oxoglutarate (2OG)-dependent oxygenases, are related to the cellular oxygen sensing HIF hydroxylases PHD2 and FIH. Recent studies have indicated that the activity of some KDMs, including the pseudogene-encoded KDM4E, may be sensitive to changing oxygen concentrations. Here, we report detailed analysis of the effect of oxygen availability on the activity of the KDM4 subfamily member KDM4A, importantly demonstrating a high level of O2 sensitivity both with isolated protein and in cells. Kinetic analysis of the recombinant enzyme revealed a high KMapp(O2) of 173 ± 23 μM, indicating that the activity of the enzyme is able to respond sensitively to a reduction in oxygen concentration. Furthermore, immunofluorescence experiments in U2OS cells conditionally overexpressing KDM4A showed that the cellular activity of KDM4A against its primary substrate, H3K9me3, displayed a graded response to depleting oxygen concentrations in line with the data obtained using isolated protein. These results suggest that KDM4A possesses the potential to act as an oxygen sensor in the context of chromatin modifications, with possible implications for epigenetic regulation in hypoxic disease states. Importantly, this correlation between the oxygen sensitivity of the catalytic activity of KDM4A in biochemical and cellular assays demonstrates the utility of biochemical studies in understanding the factors contributing to the diverse biological functions and varied activity of the 2OG oxygenases.
Collapse
Affiliation(s)
- Rebecca
L Hancock
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Norma Masson
- Target Discovery Institute, NDM Research Building, University
of Oxford, Roosevelt
Drive, Oxford OX3 7BN, United Kingdom
| | - Kate Dunne
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Emily Flashman
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Akane Kawamura
- Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust
Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
8
|
Lan J, Lepikhov K, Giehr P, Walter J. Histone and DNA methylation control by H3 serine 10/threonine 11 phosphorylation in the mouse zygote. Epigenetics Chromatin 2017; 10:5. [PMID: 28228845 PMCID: PMC5307733 DOI: 10.1186/s13072-017-0112-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Background
In the mammalian zygote, epigenetic reprogramming is a tightly controlled process of coordinated alterations of histone and DNA modifications. The parental genomes of the zygote show distinct patterns of histone H3 variants and distinct patterns of DNA and histone modifications. The molecular mechanisms linking histone variant-specific modifications and DNA methylation reprogramming during the first cell cycle remain to be clarified. Results Here, we show that the degree and distribution of H3K9me2 and of DNA modifications (5mC/5hmC) are influenced by the phosphorylation status of H3S10 and H3T11. The overexpression of the mutated histone variants H3.1 and 3.2 at either serine 10 or threonine 11 causes a decrease in H3K9me2 and 5mC and a concomitant increase in 5hmC in the maternal genome. Bisulphite sequencing results indicate an increase in hemimethylated CpG positions following H3.1T10A overexpression suggesting an impact of H3S10 and H3T11 phosphorylation on DNA methylation maintenance. Conclusions Our data suggest a crosstalk between the cell-cycle-dependent control of S10 and T11 phosphorylation of histone variants H3.1 and H3.2 and the maintenance of the heterochromatic mark H3K9me2. This histone H3 “phospho-methylation switch” also influences the oxidative control of DNA methylation in the mouse zygote. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0112-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Lan
- FR 8.3, Biological Sciences, Genetics/Epigenetics, University of Saarland, Campus A2.4, 66123 Saarbrücken, Germany.,Faculty of Medicine, Free University of Brussels, C.P. 614, Building GE, 5th floor, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Konstantin Lepikhov
- FR 8.3, Biological Sciences, Genetics/Epigenetics, University of Saarland, Campus A2.4, 66123 Saarbrücken, Germany
| | - Pascal Giehr
- FR 8.3, Biological Sciences, Genetics/Epigenetics, University of Saarland, Campus A2.4, 66123 Saarbrücken, Germany
| | - Joern Walter
- FR 8.3, Biological Sciences, Genetics/Epigenetics, University of Saarland, Campus A2.4, 66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Su Z, Wang F, Lee JH, Stephens KE, Papazyan R, Voronina E, Krautkramer KA, Raman A, Thorpe JJ, Boersma MD, Kuznetsov VI, Miller MD, Taverna SD, Phillips GN, Denu JM. Reader domain specificity and lysine demethylase-4 family function. Nat Commun 2016; 7:13387. [PMID: 27841353 PMCID: PMC5114558 DOI: 10.1038/ncomms13387] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
The KDM4 histone demethylases are conserved epigenetic regulators linked to development, spermatogenesis and tumorigenesis. However, how the KDM4 family targets specific chromatin regions is largely unknown. Here, an extensive histone peptide microarray analysis uncovers trimethyl-lysine histone-binding preferences among the closely related KDM4 double tudor domains (DTDs). KDM4A/B DTDs bind strongly to H3K23me3, a poorly understood histone modification recently shown to be enriched in meiotic chromatin of ciliates and nematodes. The 2.28 Å co-crystal structure of KDM4A-DTD in complex with H3K23me3 peptide reveals key intermolecular interactions for H3K23me3 recognition. Furthermore, analysis of the 2.56 Å KDM4B-DTD crystal structure pinpoints the underlying residues required for exclusive H3K23me3 specificity, an interaction supported by in vivo co-localization of KDM4B and H3K23me3 at heterochromatin in mammalian meiotic and newly postmeiotic spermatocytes. In vitro demethylation assays suggest H3K23me3 binding by KDM4B stimulates H3K36 demethylation. Together, these results provide a possible mechanism whereby H3K23me3-binding by KDM4B directs localized H3K36 demethylation during meiosis and spermatogenesis.
Collapse
Affiliation(s)
- Zhangli Su
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Fengbin Wang
- Biosciences at Rice, Rice University, Houston, Texas 77005, USA
| | - Jin-Hee Lee
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Kimberly E. Stephens
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Kimberly A. Krautkramer
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Ana Raman
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jeremy J. Thorpe
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Melissa D. Boersma
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Vyacheslav I. Kuznetsov
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | | | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - George N. Phillips
- Biosciences at Rice, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
| | - John M. Denu
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| |
Collapse
|
10
|
Pack LR, Yamamoto KR, Fujimori DG. Opposing Chromatin Signals Direct and Regulate the Activity of Lysine Demethylase 4C (KDM4C). J Biol Chem 2016; 291:6060-70. [PMID: 26747609 DOI: 10.1074/jbc.m115.696864] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/23/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 9 trimethylation (H3K9me3) are epigenetic marks with opposing roles in transcription regulation. Whereas colocalization of these modifications is generally excluded in the genome, how this preclusion is established remains poorly understood. Lysine demethylase 4C (KDM4C), an H3K9me3 demethylase, localizes predominantly to H3K4me3-containing promoters through its hybrid tandem tudor domain (TTD) (1, 2), providing a model for how these modifications might be excluded. We quantitatively investigated the contribution of the TTD to the catalysis of H3K9me3 demethylation by KDM4C and demonstrated that TTD-mediated recognition of H3K4me3 stimulates demethylation of H3K9me3 in cis on peptide and mononucleosome substrates. Our findings support a multivalent interaction mechanism, by which an activating mark, H3K4me3, recruits and stimulates KDM4C to remove the repressive H3K9me3 mark, thus facilitating exclusion. In addition, our work suggests that differential TTD binding properties across the KDM4 demethylase family may differentiate their targets in the genome.
Collapse
Affiliation(s)
- Lindsey R Pack
- From the Department of Cellular and Molecular Pharmacology, the Tetrad Graduate Program, and
| | | | - Danica Galonić Fujimori
- From the Department of Cellular and Molecular Pharmacology, the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
11
|
Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 2015; 35:68-75. [PMID: 26496625 DOI: 10.1016/j.sbi.2015.09.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/18/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022]
Abstract
DNA and histone lysine methylation are dynamic chemical modifications that play a crucial role in the establishment of gene expression patterns during development. Both types of genomic methylation patterns are enzymatically regulated by the opposing activities of enzymes that introduce and remove these marks, known as methylation 'writers' and 'erasers', respectively. The appropriate localization and activity of these enzymes on chromatin is, in part, regulated by chromatin 'readers', protein modules that recognize histone and DNA modifications. Such reading modules are either encoded within the same polypeptide as the catalytic domains of writers and erasers, or present in protein partners that associate with them. Here, we review recent structural, biochemical and biological studies that demonstrate that there are multiple mechanisms by which reader domains can regulate the writers and erasers of histone and DNA methylation.
Collapse
Affiliation(s)
- Idelisse Ortiz Torres
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, Yi W, Zhou S, Chen T, Lu C, Atadja P, Liu XS, Li E, Zhang Y, Shou J. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res 2015; 25:1325-35. [PMID: 26160163 PMCID: PMC4561491 DOI: 10.1101/gr.177576.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/08/2015] [Indexed: 11/25/2022]
Abstract
SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks. The solo peaks were devoid of H3K9me3 and enriched near developmental regulators while the ensemble peaks were associated with H3K9me3. A subset of the SETDB1 solo peaks, particularly those near neural development–related genes, was found to be associated with Polycomb Repressive Complex 2 (PRC2) as well as PRC2-interacting proteins JARID2 and MTF2. Genetic deletion of Setdb1 reduced EZH2 binding as well as histone 3 lysine 27 (H3K27) trimethylation level at SETDB1 solo peaks and facilitated neural differentiation. Furthermore, we found that H3K27me3 inhibits SETDB1 methyltransferase activity. The currently identified reciprocal action between SETDB1 and PRC2 reveals a novel mechanism underlying ES cell pluripotency and differentiation regulation.
Collapse
Affiliation(s)
- Qi Fei
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Xiaoqin Yang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hua Jiang
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Qian Wang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanyan Yu
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Yiling Yu
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Wei Yi
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Shaolian Zhou
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Taiping Chen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA
| | - Chris Lu
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Peter Atadja
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Xiaole Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - En Li
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Yong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jianyong Shou
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| |
Collapse
|
13
|
Torres IO, Kuchenbecker KM, Nnadi CI, Fletterick RJ, Kelly MJS, Fujimori DG. Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism. Nat Commun 2015; 6:6204. [PMID: 25686748 DOI: 10.1038/ncomms7204] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022] Open
Abstract
The retinoblastoma binding protein KDM5A removes methyl marks from lysine 4 of histone H3 (H3K4). Misregulation of KDM5A contributes to the pathogenesis of lung and gastric cancers. In addition to its catalytic jumonji C domain, KDM5A contains three PHD reader domains, commonly recognized as chromatin recruitment modules. It is unknown whether any of these domains in KDM5A have functions beyond recruitment and whether they regulate the catalytic activity of the demethylase. Here using biochemical and nuclear magnetic resonance (NMR)-based structural studies, we show that the PHD1 preferentially recognizes unmethylated H3K4 histone tail, product of KDM5A-mediated demethylation of tri-methylated H3K4 (H3K4me3). Binding of unmodified H3 peptide to the PHD1 stimulates catalytic domain-mediated removal of methyl marks from H3K4me3 peptide and nucleosome substrates. This positive-feedback mechanism--enabled by the functional coupling between a reader and a catalytic domain in KDM5A--suggests a model for the spread of demethylation on chromatin.
Collapse
Affiliation(s)
- Idelisse Ortiz Torres
- 1] Department of Cellular and Molecular Pharmacology, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA [2] Chemistry and Chemical Biology Graduate Program, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA
| | - Kristopher M Kuchenbecker
- 1] Department of Biochemistry and Biophysics, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA [2] Biophysics Graduate Program, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA
| | - Chimno I Nnadi
- 1] Department of Cellular and Molecular Pharmacology, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA [2] Chemistry and Chemical Biology Graduate Program, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA [3] UCSF Medical Scientist Training Program, University of California, 513 Parnassus Avenue, San Francisco, California 94143, USA
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA
| | - Danica Galonić Fujimori
- 1] Department of Cellular and Molecular Pharmacology, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA [2] Department of Pharmaceutical Chemistry, University of California, 600 16th Street, Genentech Hall, San Francisco, California 94158, USA
| |
Collapse
|
14
|
Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. The role of the histone demethylase KDM4A in cancer. Cancer Genet 2014; 208:215-24. [PMID: 25633974 DOI: 10.1016/j.cancergen.2014.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
Histone posttranslational modifications are important components of epigenetic regulation. One extensively studied modification is the methylation of lysine residues. These modifications were thought to be irreversible. However, several proteins with histone lysine demethylase functions have been discovered and characterized. Among these proteins, KDM4A is the first histone lysine demethylase shown to demethylate trimethylated residues. This enzyme plays an important role in gene expression, cellular differentiation, and animal development. Recently, it has also been shown to be involved in cancer. In this review, we focus on describing the structure, mechanisms, and function of KDM4A. We primarily discuss the role of KDM4A in cancer development and the importance of KDM4A as a potential therapeutic target.
Collapse
Affiliation(s)
- Lissania Guerra-Calderas
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - David Cantú de León
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
15
|
Leurs U, Lohse B, Ming S, Cole PA, Clausen RP, Kristensen JL, Rand KD. Dissecting the binding mode of low affinity phage display peptide ligands to protein targets by hydrogen/deuterium exchange coupled to mass spectrometry. Anal Chem 2014; 86:11734-41. [PMID: 25325890 PMCID: PMC4255673 DOI: 10.1021/ac503137u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Phage
display (PD) is frequently used to discover peptides capable
of binding to biological protein targets. The structural characterization
of peptide–protein complexes is often challenging due to their
low binding affinities and high structural flexibility. Here, we investigate
the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS)
to characterize interactions of low affinity peptides with their cognate
protein targets. The HDX-MS workflow was optimized to accurately detect
low-affinity peptide–protein interactions by use of ion mobility,
electron transfer dissociation, nonbinding control peptides, and statistical
analysis of replicate data. We show that HDX-MS can identify regions
in the two epigenetic regulator proteins KDM4C and KDM1A that are
perturbed through weak interactions with PD-identified peptides. Two
peptides cause reduced HDX on opposite sides of the active site of
KDM4C, indicating distinct binding modes. In contrast, the perturbation
site of another PD-selected peptide inhibiting the function of KDM1A
maps to a GST-tag. Our results demonstrate that HDX-MS can validate
and map weak peptide–protein interactions and pave the way
for understanding and optimizing the binding of peptide scaffolds
identified through PD and similar ligand discovery approaches.
Collapse
Affiliation(s)
- Ulrike Leurs
- Department of Pharmacy, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
16
|
Chamberlain P, Delker S, Pagarigan B, Mahmoudi A, Jackson P, Abbasian M, Muir J, Raheja N, Cathers B. Crystal structures of PRK1 in complex with the clinical compounds lestaurtinib and tofacitinib reveal ligand induced conformational changes. PLoS One 2014; 9:e103638. [PMID: 25111382 PMCID: PMC4128815 DOI: 10.1371/journal.pone.0103638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C related kinase 1 (PRK1) is a component of Rho-GTPase, androgen receptor, histone demethylase and histone deacetylase signaling pathways implicated in prostate and ovarian cancer. Herein we describe the crystal structure of PRK1 in apo form, and also in complex with a panel of literature inhibitors including the clinical candidates lestaurtinib and tofacitinib, as well as the staurosporine analog Ro-31-8220. PRK1 is a member of the AGC-kinase class, and as such exhibits the characteristic regulatory sequence at the C-terminus of the catalytic domain – the ‘C-tail’. The C-tail fully encircles the catalytic domain placing a phenylalanine in the ATP-binding site. Our inhibitor structures include examples of molecules which both interact with, and displace the C-tail from the active site. This information may assist in the design of inhibitors targeting both PRK and other members of the AGC kinase family.
Collapse
Affiliation(s)
- Philip Chamberlain
- Celgene Corporation, San Diego, California, United States of America
- Department of Biochemistry and Structural Biology, Celgene Corporation, San Diego, California, United States of America
- * E-mail:
| | - Silvia Delker
- Celgene Corporation, San Diego, California, United States of America
| | - Barbra Pagarigan
- Celgene Corporation, San Diego, California, United States of America
| | - Afshin Mahmoudi
- Celgene Corporation, San Diego, California, United States of America
| | - Pilgrim Jackson
- Celgene Corporation, San Diego, California, United States of America
| | - Mahan Abbasian
- Celgene Corporation, San Diego, California, United States of America
| | - Jeff Muir
- Celgene Corporation, San Diego, California, United States of America
| | - Neil Raheja
- Celgene Corporation, San Diego, California, United States of America
| | - Brian Cathers
- Celgene Corporation, San Diego, California, United States of America
| |
Collapse
|
17
|
Li L, Lorzadeh A, Hirst M. Regulatory variation: an emerging vantage point for cancer biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:37-59. [DOI: 10.1002/wsbm.1250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luolan Li
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
| | - Alireza Lorzadeh
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
| | - Martin Hirst
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
- Canada's Michael Smith Genome Sciences Centre; BC Cancer Agency; Vancouver, British Columbia Canada
| |
Collapse
|
18
|
Pieters B, Belle R, Mecinović J. The effect of the length of histone H3K4me3 on recognition by reader proteins. Chembiochem 2013; 14:2408-12. [PMID: 24307373 DOI: 10.1002/cbic.201300525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Bas Pieters
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (The Netherlands)
| | | | | |
Collapse
|