1
|
Thadiyan V, Sharma V, Gupta R. Keratinase and its diverse applications. 3 Biotech 2025; 15:151. [PMID: 40336813 PMCID: PMC12052963 DOI: 10.1007/s13205-025-04319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
Keratinase is a proteolytic enzyme specialized in the degradation of keratin-rich materials and has garnered significant attention for its potential in various biotechnological applications. This review provides an overview of keratinase, focusing on its structure, classification, function, biochemical properties, mechanisms of action and diverse applications. Keratinase plays an important role in bioremediation and stands out prominently, as it facilitates the eco-friendly degradation of keratinaceous waste materials addressing environmental concerns by reducing pollution and waste accumulation. Moreover, in the textile industry, keratinase plays a pivotal role in bio-pretreatment processes, enhancing the dyeing and finishing properties of animal fibers such as wool and silk. Beyond textiles, this enzyme contributes significantly to animal feed production by hydrolyzing keratin-rich byproducts into digestible components, thereby fostering the creation of high-protein feeds. Its impact extends to the cosmetic and pharmaceutical realms, where keratinase finds use in skincare formulations and in treating certain dermatological conditions owing to its ability to modify and break down keratin structures. By assisting in the removal of dead tissue, it demonstrates potential in biological applications for wound healing. Additionally, the challenges and future perspectives on the commercial scalability of keratinase production and its integration into various sectors are discussed.
Collapse
Affiliation(s)
- Varsha Thadiyan
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005 India
| | - Vibhuti Sharma
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005 India
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005 India
| |
Collapse
|
2
|
Vikash VL, Kamini NR, Ponesakki G, Anandasadagopan SK. Keratinous bioresources: their generation, microbial degradation, and value enhancement for biotechnological applications. World J Microbiol Biotechnol 2025; 41:118. [PMID: 40155538 DOI: 10.1007/s11274-025-04336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Keratin is an important bioresource primarily found in feathers, hair, wool, nails, claws, hooves, horns, and beaks. These crucial protein sources are utilized in many ways for diverse applications. The peptides of keratin develop hierarchical complexity, which leads to the formation of these recalcitrant biomasses. Therefore, microbial breakdown of keratin is a complex process and involves important proteolytic enzymes and inorganic factors. Disulfide bond reduction is the key step in keratin degradation that is mainly facilitated by disulfide-reducing agents or disulfide reductases. Notably, α- and β-keratinous substrates exhibit different structural features; as a result, their disintegration processes make a diversity among keratinous biomass. Various studies have suggested that pretreatment can improve degradation yield following microbial processes. Keratin hydrolysates have been investigated for various uses that contribute to mitigating the environmental impact of these solid wastes. Furthermore, keratin peptides possess bioactive properties, including antioxidant, cytoprotective, and anticancer effects, making them potential candidates for biomedical and nutritional sectors. Microbial keratinases are known for a wide range of substrate specificity that significantly contributes to areas like prion decontamination, carcass processing, antimicrobial functions, and skin exfoliation. This review aims to examine keratin bioresources, their structure, and microbial mechanisms for keratin degradation, along with current insights and future applications of keratin hydrolysates and keratinases.
Collapse
Affiliation(s)
- Vijan Lal Vikash
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Numbi Ramudu Kamini
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ganesan Ponesakki
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suresh Kumar Anandasadagopan
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Das S, Das A, Das N, Nath T, Langthasa M, Pandey P, Kumar V, Choure K, Kumar S, Pandey P. Harnessing the potential of microbial keratinases for bioconversion of keratin waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57478-57507. [PMID: 38985428 DOI: 10.1007/s11356-024-34233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The increasing global consumption of poultry meat has led to the generation of a vast quantity of feather keratin waste daily, posing significant environmental challenges due to improper disposal methods. A growing focus is on utilizing keratinous polymeric waste, amounting to millions of tons annually. Keratins are biochemically rigid, fibrous, recalcitrant, physiologically insoluble, and resistant to most common proteolytic enzymes. Microbial biodegradation of feather keratin provides a viable solution for augmenting feather waste's nutritional value while mitigating environmental contamination. This approach offers an alternative to traditional physical and chemical treatments. This review focuses on the recent findings and work trends in the field of keratin degradation by microorganisms (bacteria, actinomycetes, and fungi) via keratinolytic and proteolytic enzymes, as well as the limitations and challenges encountered due to the low thermal stability of keratinase, and degradation in the complex environmental conditions. Therefore, recent biotechnological interventions such as designing novel keratinase with high keratinolytic activity, thermostability, and binding affinity have been elaborated here. Enhancing protein structural rigidity through critical engineering approaches, such as rational design, has shown promise in improving the thermal stability of proteins. Concurrently, metagenomic annotation offers insights into the genetic foundations of keratin breakdown, primarily predicting metabolic potential and identifying probable keratinases. This may extend the understanding of microbial keratinolytic mechanisms in a complex community, recognizing the significance of synergistic interactions, which could be further utilized in optimizing industrial keratin degradation processes.
Collapse
Affiliation(s)
- Sandeep Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Ankita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Nandita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Tamanna Nath
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | | | - Prisha Pandey
- Department of Biotechnology, Royal Global University, Guwahati, 781035, Assam, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India, 248016
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, 485001, Madhya Pradesh, India
| | - Sanjeev Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
4
|
Peng H, Liang M, Zhang J, Liu W, Yang Y, Sun Y, Ke F, Wen Y, Liu S, Xu B, Gao X. Identification and characterization of a versatile keratinase, KerZJ, from Stenotrophomonas sp. LMY. World J Microbiol Biotechnol 2023; 40:30. [PMID: 38057391 DOI: 10.1007/s11274-023-03836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Keratinases have drawn increasing attention in recent decades owing to their catalytic versatility and broad applications from agriculture to medicine. In the present study, we isolated a highly keratinolytic and fibrinolytic bacterium from the campus soil and named it Stenotrophomonas sp. LMY based on genetic information. To identify the potential keratinase genes, the genome sequence of the strain was obtained and analyzed. Sequence alignment and comparison revealed that the protein 1_737 (KerZJ) had the highest sequence homology to a reported keratinase KerBL. We recombinantly expressed KerZJ in Escherichia coli Origami™ (DE) pLysS and purified it to homogeneity. KerZJ showed the highest activity at 40 °C and pH 9.0, and metal ions exhibited no significant effects on its activity. Although reducing agents would break the disulfide bonds in KerZJ and reduce its activity, KerZJ still exhibited the ability to hydrolyze feather keratin in the presence of β-ME. KerZJ could efficiently digest human prion proteins. In addition, KerZJ showed fibrinolytic activity on fibrin plates and effectively eliminated blood clots in a thrombosis mouse model without side effects. Our results suggest that KerZJ is a versatile keratinase with significant potential for keratin treatment, decontamination of prions, and fibrinolytic therapy.
Collapse
Affiliation(s)
- Haixia Peng
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Manyu Liang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Zhang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wenbo Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanhong Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yingjie Sun
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Famin Ke
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yijiao Wen
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siyuan Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bilin Xu
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Key Laboratories of Economic Forest Germplasm Improvement and Comprehensive Resources Utilization of Hubei Province, College of Life Science, Huanggang Normal University, Huanggang, 438000, Hubei, China.
| | - Xiaowei Gao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Sypka M, Jodłowska I, Białkowska AM. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021; 11:1900. [PMID: 34944542 PMCID: PMC8699090 DOI: 10.3390/biom11121900] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
To reduce anthropological pressure on the environment, the implementation of novel technologies in present and future economies is needed for sustainable development. The food industry, with dairy and meat production in particular, has a significant environmental impact. Global poultry production is one of the fastest-growing meat producing sectors and is connected with the generation of burdensome streams of manure, offal and feather waste. In 2020, the EU alone produced around 3.2 million tonnes of poultry feather waste composed primarily of keratin, a protein biopolymer resistant to conventional proteolytic enzymes. If not managed properly, keratin waste can significantly affect ecosystems, contributing to environmental pollution, and pose a serious hazard to human and livestock health. In this article, the application of keratinolytic enzymes and microorganisms for promising novel keratin waste management methods with generation of new value-added products, such as bioactive peptides, vitamins, prion decontamination agents and biomaterials were reviewed.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (M.S.); (I.J.)
| |
Collapse
|
6
|
de Menezes CLA, Santos RDC, Santos MV, Boscolo M, da Silva R, Gomes E, da Silva RR. Industrial sustainability of microbial keratinases: production and potential applications. World J Microbiol Biotechnol 2021; 37:86. [DOI: 10.1007/s11274-021-03052-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
|
7
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Front Microbiol 2020; 11:580164. [PMID: 33391200 PMCID: PMC7775373 DOI: 10.3389/fmicb.2020.580164] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The search for novel renewable products over synthetics hallmarked this decade and those of the recent past. Most economies that are prospecting on biodiversity for improved bio-economy favor renewable resources over synthetics for the potential opportunity they hold. However, this field is still nascent as the bulk of the available resources are non-renewable based. Microbial metabolites, emphasis on secondary metabolites, are viable alternatives; nonetheless, vast microbial resources remain under-exploited; thus, the need for a continuum in the search for new products or bio-modifying existing products for novel functions through an efficient approach. Environmental distress syndrome has been identified as a factor that influences the emergence of genetic diversity in prokaryotes. Still, the process of how the change comes about is poorly understood. The emergence of new traits may present a high prospect for the industrially viable organism. Microbial enzymes have prominence in the bio-economic space, and proteases account for about sixty percent of all enzyme market. Microbial keratinases are versatile proteases which are continuously gaining momentum in biotechnology owing to their effective bio-conversion of recalcitrant keratin-rich wastes and sustainable implementation of cleaner production. Keratinase-assisted biodegradation of keratinous materials has revitalized the prospects for the utilization of cost-effective agro-industrial wastes, as readily available substrates, for the production of high-value products including amino acids and bioactive peptides. This review presented an overview of keratin structural complexity, the potential mechanism of keratin biodegradation, and the environmental impact of keratinous wastes. Equally, it discussed microbial keratinase; vis-à-vis sources, production, and functional properties with considerable emphasis on the ecological implication of microbial producers and catalytic tendency improvement strategies. Keratinase applications and prospective high-end use, including animal hide processing, detergent formulation, cosmetics, livestock feed, and organic fertilizer production, were also articulated.
Collapse
Affiliation(s)
- Nonso E. Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
9
|
Šnajder M, Carrillo Rincón AF, Magdevska V, Bahun M, Kranjc L, Paš M, Juntes P, Petković H, Poklar Ulrih N. Extracellular production of the engineered thermostable protease pernisine from Aeropyrum pernix K1 in Streptomyces rimosus. Microb Cell Fact 2019; 18:196. [PMID: 31699090 PMCID: PMC6839199 DOI: 10.1186/s12934-019-1245-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The thermostable serine protease pernisine originates from the hyperthermophilic Archaeaon Aeropyrum pernix and has valuable industrial applications. Due to its properties, A. pernix cannot be cultivated in standard industrial fermentation facilities. Furthermore, pernisine is a demanding target for heterologous expression in mesophilic heterologous hosts due to the relatively complex processing step involved in its activation. RESULTS We achieved production of active extracellular pernisine in a Streptomyces rimosus host through heterologous expression of the codon-optimised gene by applying step-by-step protein engineering approaches. To ensure secretion of fully active enzyme, the srT signal sequence from the S. rimosus protease was fused to pernisine. To promote correct processing and folding of pernisine, the srT functional cleavage site motif was fused directly to the core pernisine sequence, this way omitting the proregion. Comparative biochemical analysis of the wild-type and recombinant pernisine confirmed that the enzyme produced by S. rimosus retained all of the desired properties of native pernisine. Importantly, the recombinant pernisine also degraded cellular and infectious bovine prion proteins, which is one of the particular applications of this protease. CONCLUSION Functional pernisine that retains all of the advantageous properties of the native enzyme from the thermophilic host was successfully produced in a S. rimosus heterologous host. Importantly, we achieved extracellular production of active pernisine, which significantly simplifies further downstream procedures and also omits the need for any pre-processing step for its activation. We demonstrate that S. rimosus can be used as an attractive host for industrial production of recombinant proteins that originate from thermophilic organisms.
Collapse
Affiliation(s)
- Marko Šnajder
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.,Labena Ltd., Ljubljana, Slovenia
| | | | - Vasilka Magdevska
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.,AciesBio Ltd., Ljubljana, Slovenia
| | - Miha Bahun
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Luka Kranjc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maja Paš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Polona Juntes
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia. .,The Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Metkar SK, Ghosh S, Girigoswami A, Girigoswami K. The Potential of Serratiopetidase and Lumbrokinase for the Degradation of Prion Peptide 106-126 - an In Vitro and In Silico Perspective. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:723-731. [PMID: 31642793 DOI: 10.2174/1871527318666191021150002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/27/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND PrPC is a host-encoded prion protein, which gets post translationally modified into a transmissible, β-sheet rich disease associated protein called PrPSc, responsible for the Prion disease including mad cow disease in cattle and CJD in humans. The PrP 106-126 region in PrPSc peptide initiates the conformational change in that protein leading to fibrillation. Any agent that can destabilize or disintegrate such proteins can be served as a potential drug candidate for Prion diseases. METHODS In the present study, an enzyme Lumbrokinase (LK) was isolated from earthworm and its activity was exploited towards PrP 106-126 amyloids in vitro along with another enzyme Serratiopeptidase (SP) taking Nattokinase (NK) as a standard. RESULTS The results showed that PrP 106-126 amyloid formation was inhibited by both LK and SP, as evidenced from Thioflavin T fluorescence assay. Further, the size of fibrils as estimated by dynamic light scattering, was also found to be lower at different time intervals after incubation of the prion amyloids with LK and SP. Additionally, the molecular dynamics simulation revealed the thermodynamically favorable interaction of PrP 106-126 with LK as well as with SP with high affinity. CONCLUSION Finally, the toxicity of the disintegrated amyloids was assessed using PC12 cell lines which showed higher cell viability in case of LK and SP treated amyloids compared to only PrP 106- 126 amyloid treatment. Altogether, the study concluded that the serine proteases like LK and SP have the potential to disintegrate PrP 106-126 amyloids with improved cell viability. The in vivo studies are needed to be executed in future.
Collapse
Affiliation(s)
- Sanjay Kisan Metkar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Suparna Ghosh
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai-603103, India
| |
Collapse
|
11
|
Keratinolytic activity of Bacillus subtilis LFB-FIOCRUZ 1266 enhanced by whole-cell mutagenesis. 3 Biotech 2019; 9:2. [PMID: 30555768 DOI: 10.1007/s13205-018-1527-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Discarded feathers represent an important residue from the poultry industry and are a rich source of keratin. Bacillus subtilis LFB-FIOCRUZ 1266, previously isolated from industrial poultry wastes, was used in this work and, through random mutation using ethyl methanesulfonate, ten strains were selected based on the size of their degradation halos. The feather degradation was increased to 115% and all selected mutants showed 1.4- to 2.4-fold increase in keratinolytic activity compared to their wild-type counterparts. The protein concentrations in the culture supernatants increased approximately 2.5 times, as a result of feather degradation. The mutants produced more sulfide than the wild-type bacteria that produced 0.45 µg/ml, while mutant D8 produced 1.45 µg/ml. The best pH for enzyme production and feather degradation was pH 8. Zymography showed differences in the intensity and molecular mass of some bands. The peptidase activity of the enzyme blend was predominantly inhibited by PMSF and EDTA, suggesting the presence of serine peptidases. HPTLC analysis evidenced few differences in band intensities of the amino acid profiles produced by the mutant peptidase activities. The mutants showed an increase in keratinolytic and peptidase activities, demonstrating their biotechnological potential to recycle feather and help to reduce the environmental impact.
Collapse
|
12
|
da Silva RR. Keratinases as an Alternative Method Designed To Solve Keratin Disposal on the Environment: Its Relevance on Agricultural and Environmental Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7219-7221. [PMID: 29968474 DOI: 10.1021/acs.jafc.8b03152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas , Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) , São José do Rio Preto , São Paulo 14051130 , Brazil
| |
Collapse
|
13
|
Closing the phosphorus cycle in a food system: insights from a modelling exercise. Animal 2018; 12:1755-1765. [DOI: 10.1017/s1751731118001039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Sahoo DK, Thatoi HN, Mitra B, Mondal KC, Das Mohapatra PK. Advances in Microbial Keratinase and Its Potential Applications. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Botsios S, Tittman S, Manuelidis L. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms. Virulence 2016; 6:787-801. [PMID: 26556670 DOI: 10.1080/21505594.2015.1098804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections.
Collapse
Affiliation(s)
- Sotirios Botsios
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Sarah Tittman
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Laura Manuelidis
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| |
Collapse
|
16
|
Otzen DE. Biosurfactants and surfactants interacting with membranes and proteins: Same but different? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:639-649. [PMID: 27693345 DOI: 10.1016/j.bbamem.2016.09.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Abstract
Biosurfactants (BS) are surface-active molecules produced by microorganisms. For several decades they have attracted interest as promising alternatives to current petroleum-based surfactants. Aside from their green profile, they have remarkably low critical micelle concentrations, reduce the air/water surface tension to very low levels and are excellent emulsifiers, all of which make them comparable or superior to their synthetic counterparts. These remarkable physical properties derive from their more complex chemical structures in which hydrophilic and hydrophobic regions are not as clearly separated as chemical surfactants but have a more mosaic distribution of polarity as well as branched or circular structures. This allows the lipopeptide surfactin to adopt spherical structures to facilitate dense packing at interfaces. They are also more complex. Glycolipid BS, e.g. rhamnolipids (RL) and sophorolipids, are produced biologically as mixtures which vary in the size and saturation of the hydrophobic region as well as modifications in the hydrophilic headgroup, such as the number of sugar groups and different levels of acetylation, leading to variable surface-active properties. Their amphiphilicity allows RL to insert easily into membranes at sub-cmc concentrations to modulate membrane structure and extract lipopolysaccharides, leading to extensive biofilm remodeling in vivo, sometimes in collaboration with hydrophobic RL precursors. Thanks to their mosaicity, even anionic BS like RL only bind weakly to proteins and show much lower denaturing potency, even supporting membrane protein refolding. Nevertheless, they can promote protein degradation by proteases e.g. by neutralizing positive charges, which together with their biofilm-combating properties makes them very promising detergent surfactants. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Daniel E Otzen
- iNANO, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus, C, Denmark.
| |
Collapse
|
17
|
Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol 2013; 97:9931-40. [PMID: 24121933 DOI: 10.1007/s00253-013-5292-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 10/26/2022]
Abstract
Keratinases are well-recognized enzymes with the unique ability to attack highly cross-linked, recalcitrant structural proteins such as keratin. Their potential in environmental clean-up of huge amount of feather waste has been well established since long. Today, they have gained importance in various other biotechnological and pharmaceutical applications. However, commercial availability of keratinases is still limited. Hence, to attract entrepreneurs, investors and enzyme industries it is utmost important to explicitly present the market potential of keratinases through detailed account of its application sectors. Here, the application areas have been divided into three parts: the first one is dealing with the area of exclusive applications, the second emphasizes protease dominated sectors where keratinases would prove better substitutes, and the third deals with upcoming newer areas which still await practical documentation. An account of benefits of keratinase usage, existing market size, and available commercial sources and products has also been presented.
Collapse
|