1
|
Chuerduangphui J, Ekalaksananan T, Heawchaiyaphum C, Vatanasapt P, Teeramatwanich W, Phusingha P, Pientong C. Zinc-alpha-2-glycoprotein overexpression and maintaining anti-apoptotic function in oral squamous cell carcinoma. Arch Oral Biol 2025; 176:106298. [PMID: 40398100 DOI: 10.1016/j.archoralbio.2025.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVE Overexpression of zinc-alpha-2-glycoprotein (ZAG) can be induced by various factors and has potential to be a biomarker in certain malignancies. However, in oral squamous cell carcinoma (OSCC), the risks and effects associated with ZAG overexpression are still poorly known. Here, we investigated the effect of HPV16 oncogenes and arecoline on the expression levels of ZAG and the possible effects of ZAG in OSCC cell lines. DESIGN The level of ZAG expression was determined in protein extracted from exfoliated buccal cells from cancer-free control individuals and oral lesion cells from OSCC. Oral cell lines expressing HPV16E6/E7, and treated with arecoline were prepared to investigate ZAG expression. The effects of ZAG on cell biological activity and its targeting of UCP1 were determined in ZAG-overexpressing and ZAG-knockdown cells. RESULTS The expression of ZAG protein was significantly increased in oral lesion cells from OSCC relative to controls. Notably, the expression level of ZAG in OSCC positive for HPV, betel-quid chewing, and combination of both factors, was slightly higher than in cancer-free controls. ZAG expression was upregulated in oral cells treated with HPV16 oncoproteins E6 and/or E7, and treatment with arecoline (25 μg/ml). Interestingly, ZAG overexpression significantly increased UCP1 and decreased apoptosis, whereas decreased UCP1 and increased apoptosis were found in ZAG-knockdown cells. The mRNA expression levels of TP53, STAT3, BCL2, and NFKB1 corresponded to observed anti-apoptosis function. CONCLUSIONS HPV oncoproteins and high doses of arecoline are risk factors for an overexpressed ZAG protein that has an anti-apoptotic function in OSCC.
Collapse
Affiliation(s)
- Jureeporn Chuerduangphui
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patravoot Vatanasapt
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watchareporn Teeramatwanich
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pensiri Phusingha
- National Institute of Health, Department of Medical Sciences, Tiwanond Road, Nonthaburi 11000, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Verma S, Giagnocavo SD, Curtin MC, Arumugam M, Osburn-Staker SM, Wang G, Atkinson A, Nix DA, Lum DH, Cox JE, Hilgendorf KI. Zinc-alpha-2-glycoprotein Secreted by Triple-Negative Breast Cancer Promotes Peritumoral Fibrosis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1655-1666. [PMID: 38888911 PMCID: PMC11224648 DOI: 10.1158/2767-9764.crc-24-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Obesity is a modifiable predisposition factor for postmenopausal breast cancer. This suggests a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of 10 human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells. The screen identified an adipogenic modulator, zinc-alpha-2-glycoprotein (ZAG/AZGP1) that is secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG is linked to poor prognosis in patients with TNBC but not in patients with other clinical subtypes of breast cancer. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of adipocyte stem and progenitor cells into cancer-associated fibroblasts to support tumorigenesis. SIGNIFICANCE Functional screening of breast cancer secretomes revealed that triple-negative breast cancer promotes fibrosis in the adipose tissue microenvironment by secreting zinc-alpha-2-glycoprotein and promoting the transdifferentiation of adipocyte stem cells into myofibroblasts.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
| | | | - Meghan C. Curtin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Menusha Arumugam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Sandra M. Osburn-Staker
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, Utah.
| | - Guoying Wang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Aaron Atkinson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - David A. Nix
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - David H. Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - James E. Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, Utah.
| | - Keren I. Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
3
|
Wen RM, Qiu Z, Marti GEW, Peterson EE, Marques FJG, Bermudez A, Wei Y, Nolley R, Lam N, Polasko AL, Chiu CL, Zhang D, Cho S, Karageorgos GM, McDonough E, Chadwick C, Ginty F, Jung KJ, Machiraju R, Mallick P, Crowley L, Pollack JR, Zhao H, Pitteri SJ, Brooks JD. AZGP1 deficiency promotes angiogenesis in prostate cancer. J Transl Med 2024; 22:383. [PMID: 38659028 PMCID: PMC11044612 DOI: 10.1186/s12967-024-05183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Loss of AZGP1 expression is a biomarker associated with progression to castration resistance, development of metastasis, and poor disease-specific survival in prostate cancer. However, high expression of AZGP1 cells in prostate cancer has been reported to increase proliferation and invasion. The exact role of AZGP1 in prostate cancer progression remains elusive. METHOD AZGP1 knockout and overexpressing prostate cancer cells were generated using a lentiviral system. The effects of AZGP1 under- or over-expression in prostate cancer cells were evaluated by in vitro cell proliferation, migration, and invasion assays. Heterozygous AZGP1± mice were obtained from European Mouse Mutant Archive (EMMA), and prostate tissues from homozygous knockout male mice were collected at 2, 6 and 10 months for histological analysis. In vivo xenografts generated from AZGP1 under- or over-expressing prostate cancer cells were used to determine the role of AZGP1 in prostate cancer tumor growth, and subsequent proteomics analysis was conducted to elucidate the mechanisms of AZGP1 action in prostate cancer progression. AZGP1 expression and microvessel density were measured in human prostate cancer samples on a tissue microarray of 215 independent patient samples. RESULT Neither the knockout nor overexpression of AZGP1 exhibited significant effects on prostate cancer cell proliferation, clonal growth, migration, or invasion in vitro. The prostates of AZGP1-/- mice initially appeared to have grossly normal morphology; however, we observed fibrosis in the periglandular stroma and higher blood vessel density in the mouse prostate by 6 months. In PC3 and DU145 mouse xenografts, over-expression of AZGP1 did not affect tumor growth. Instead, these tumors displayed decreased microvessel density compared to xenografts derived from PC3 and DU145 control cells, suggesting that AZGP1 functions to inhibit angiogenesis in prostate cancer. Proteomics profiling further indicated that, compared to control xenografts, AZGP1 overexpressing PC3 xenografts are enriched with angiogenesis pathway proteins, including YWHAZ, EPHA2, SERPINE1, and PDCD6, MMP9, GPX1, HSPB1, COL18A1, RNH1, and ANXA1. In vitro functional studies show that AZGP1 inhibits human umbilical vein endothelial cell proliferation, migration, tubular formation and branching. Additionally, tumor microarray analysis shows that AZGP1 expression is negatively correlated with blood vessel density in human prostate cancer tissues. CONCLUSION AZGP1 is a negative regulator of angiogenesis, such that loss of AZGP1 promotes angiogenesis in prostate cancer. AZGP1 likely exerts heterotypical effects on cells in the tumor microenvironment, such as stromal and endothelial cells. This study sheds light on the anti-angiogenic characteristics of AZGP1 in the prostate and provides a rationale to target AZGP1 to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Zhengyuan Qiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - G Edward W Marti
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Eric E Peterson
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fernando Jose Garcia Marques
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abel Bermudez
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yi Wei
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nathan Lam
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alex LaPat Polasko
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | | | | | - Chrystal Chadwick
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | - Kyeong Joo Jung
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Raghu Machiraju
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laura Crowley
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan R Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Verma S, Giagnocavo SD, Curtin MC, Arumugam M, Osburn-Staker SM, Wang G, Atkinson A, Nix DA, Lum DH, Cox JE, Hilgendorf KI. Zinc Alpha-2-Glycoprotein (ZAG/AZGP1) secreted by triple-negative breast cancer promotes tumor microenvironment fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583349. [PMID: 38496643 PMCID: PMC10942361 DOI: 10.1101/2024.03.04.583349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Obesity is a predisposition factor for breast cancer, suggesting a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of ten human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells (ASPC). The screen identified a key adipogenic modulator, Zinc Alpha-2-Glycoprotein (ZAG/AZGP1), secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG in TNBC patients, but not other clinical subtypes of breast cancer, is linked to poor prognosis. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of ASPCs into cancer-associated fibroblasts to support tumorigenesis.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Meghan C Curtin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Menusha Arumugam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sandra M Osburn-Staker
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Guoying Wang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Aaron Atkinson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David A Nix
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David H Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Lead contact:
| |
Collapse
|
5
|
Yun H, Jeong H, Kim DY, You J, Lee J, Kang D, Koh D, Ryu YS, Bae S, Jin D. Degradation of AZGP1 suppresses apoptosis and facilitates cholangiocarcinoma tumorigenesis via TRIM25. J Cell Mol Med 2024; 28:e18104. [PMID: 38183356 PMCID: PMC10844717 DOI: 10.1111/jcmm.18104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024] Open
Abstract
Alpha-2-Glycoprotein 1, Zinc-binding (AZGP1, ZAG) is a secreted protein that is synthesized by adipocytes and epithelial cells; it is downregulated in several malignancies such as breast, prostate, liver and lung cancers. However, its function remains unclear in cholangiocarcinoma (CCA). Here, we evaluated the impact AZGP1 in CCA using Gene Expression Omnibus (GEO) and GEPIA. In addition, we analysed AZGP1 expression using quantitative reverse transcription PCR and western blotting. Expression of AZGP1 was nearly deficient in CCA patients and cell lines and was associated with poor prognosis. AZGP1 overexpression upregulated apoptosis markers. Co-immunoprecipitation experiments showed that AZGP1 interacts with tripartite motif-containing protein 25 (TRIM25), and tissue microarray and bioinformatic analysis showed that AZGP1 is negatively correlated with TRIM25 expression in CCA. Thereafter, TRIM25 knockdown led to AZGP1 upregulation and induced cancer cell apoptosis. TRIM25 targets AZGP1 for degradation by catalysing its ubiquitination. AZGP1 overexpression significantly suppressed tumour growth in a xenograft mouse model. This study findings suggest that AZGP1 is a potential therapeutic target or a diagnostic biomarker for treating patients with CCA.
Collapse
Affiliation(s)
- Hyeseon Yun
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hong‐Rae Jeong
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| | - Do Yeon Kim
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Ji‐Eun You
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Ji‐U Lee
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Dong‐Hee Kang
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Dong‐In Koh
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| | - Yea Seong Ryu
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| | - SeungGeon Bae
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| | - Dong‐Hoon Jin
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of Convergence Medicine, Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| |
Collapse
|
6
|
Jiang X, Dong L, Wang S, Wen Z, Chen M, Xu L, Xiao G, Li Q. Reconstructing Spatial Transcriptomics at the Single-cell Resolution with BayesDeep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570715. [PMID: 38106214 PMCID: PMC10723442 DOI: 10.1101/2023.12.07.570715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Spatially resolved transcriptomics (SRT) techniques have revolutionized the characterization of molecular profiles while preserving spatial and morphological context. However, most next-generation sequencing-based SRT techniques are limited to measuring gene expression in a confined array of spots, capturing only a fraction of the spatial domain. Typically, these spots encompass gene expression from a few to hundreds of cells, underscoring a critical need for more detailed, single-cell resolution SRT data to enhance our understanding of biological functions within the tissue context. Addressing this challenge, we introduce BayesDeep, a novel Bayesian hierarchical model that leverages cellular morphological data from histology images, commonly paired with SRT data, to reconstruct SRT data at the single-cell resolution. BayesDeep effectively model count data from SRT studies via a negative binomial regression model. This model incorporates explanatory variables such as cell types and nuclei-shape information for each cell extracted from the paired histology image. A feature selection scheme is integrated to examine the association between the morphological and molecular profiles, thereby improving the model robustness. We applied BayesDeep to two real SRT datasets, successfully demonstrating its capability to reconstruct SRT data at the single-cell resolution. This advancement not only yields new biological insights but also significantly enhances various downstream analyses, such as pseudotime and cell-cell communication.
Collapse
Affiliation(s)
- Xi Jiang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
- Department of Statistics and Data Science, Southern Methodist University, Dallas, Texas, U.S.A
| | - Lei Dong
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Zhuoyu Wen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Mingyi Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, Texas, U.S.A
| |
Collapse
|
7
|
Deng L, Bao W, Zhang B, Zhang S, Chen Z, Zhu X, He B, Wu L, Chen X, Deng T, Chen B, Yu Z, Wang Y, Chen G. AZGP1 activation by lenvatinib suppresses intrahepatic cholangiocarcinoma epithelial-mesenchymal transition through the TGF-β1/Smad3 pathway. Cell Death Dis 2023; 14:590. [PMID: 37669935 PMCID: PMC10480466 DOI: 10.1038/s41419-023-06092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary liver malignancy and is characterized by highly aggressive and malignant biological behavior. Currently, effective treatment strategies are limited. The effect of lenvatinib on ICC is unknown. In this study, we found that AZGP1 was the key target of lenvatinib in ICC, and its low expression in ICC cancer tissues was associated with a poor prognosis in patients. Lenvatinib is a novel AZGP1 agonist candidate for ICC that inhibits ICC-EMT by regulating the TGF-β1/Smad3 signaling pathway in an AZGP1-dependent manner. Furthermore, we found that lenvatinib could increase AZGP1 expression by increasing the acetylation level of H3K27Ac in the promoter region of the AZGP1 gene, thereby inhibiting EMT in ICC cells. In conclusion, lenvatinib activates AZGP1 by increasing the acetylation level of H3K27Ac on the AZGP1 promoter region and regulates the TGF-β1/Smad3 signaling pathway in an AZGP1-dependent manner to inhibit ICC-EMT. This study offers new insight into the mechanism of lenvatinib in the treatment of ICC and provides a theoretical basis for new treatment methods.
Collapse
Affiliation(s)
- Liming Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- The Second Affiliated Hospital, Department of General Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Baofu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Sina Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuewen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bangjie He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaohu Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Hepatobiliary Pancreatic Tumor Bioengineering Cross International Joint Laboratory of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
LncRNA LINC01094 Promotes Cells Proliferation and Metastasis through the PTEN/AKT Pathway by Targeting AZGP1 in Gastric Cancer. Cancers (Basel) 2023; 15:cancers15041261. [PMID: 36831602 PMCID: PMC9954187 DOI: 10.3390/cancers15041261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were recently reported to play an essential role in multiple cancer types. Herein, through next-generation sequencing, we screened metastasis-driving molecules by using tissues from early-stage gastric cancer (GC) patients with lymph node metastasis, and we identified a lncRNA LINC01094, which was associated with the metastasis of GC. According to the clinical data from the TCGA, GSE15459, and GSE62254 cohorts, the high expression of LINC01094 was associated with an unfavorable prognosis. Moreover, 106 clinical GC and paired normal samples were collected, and the qRT-PCR results showed that the high expression of LINC01094 was associated with high T and N stages and a poor prognosis. We found that LINC01094 promotes the proliferation and metastasis of GC in vitro and in vivo. AZGP1 was found as the protein-binding partner of LINC01094 by using RNA pulldown and RNA-binding protein immunoprecipitation (RIP) assays. LINC01094 antagonizes the function of AZGP1, downregulates the expression of PTEN, and further upregulates the AKT pathway. Collectively, our results suggested that LINC01094 might predict the prognosis of GC patients and become the therapy target for GC.
Collapse
|
9
|
The Theory of Carcino-Evo-Devo and Its Non-Trivial Predictions. Genes (Basel) 2022; 13:genes13122347. [PMID: 36553613 PMCID: PMC9777766 DOI: 10.3390/genes13122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
To explain the sources of additional cell masses in the evolution of multicellular organisms, the theory of carcino-evo-devo, or evolution by tumor neofunctionalization, has been developed. The important demand for a new theory in experimental science is the capability to formulate non-trivial predictions which can be experimentally confirmed. Several non-trivial predictions were formulated using carcino-evo-devo theory, four of which are discussed in the present paper: (1) The number of cellular oncogenes should correspond to the number of cell types in the organism. The evolution of oncogenes, tumor suppressor and differentiation gene classes should proceed concurrently. (2) Evolutionarily new and evolving genes should be specifically expressed in tumors (TSEEN genes). (3) Human orthologs of fish TSEEN genes should acquire progressive functions connected with new cell types, tissues and organs. (4) Selection of tumors for new functions in the organism is possible. Evolutionarily novel organs should recapitulate tumor features in their development. As shown in this paper, these predictions have been confirmed by the laboratory of the author. Thus, we have shown that carcino-evo-devo theory has predictive power, fulfilling a fundamental requirement for a new theory.
Collapse
|
10
|
Zhou W, Li J. Integrated Analysis of Genes Associated With Immune Microenvironment and Distant Metastasis in Uveal Melanoma. Front Cell Dev Biol 2022; 10:874839. [PMID: 35433689 PMCID: PMC9006059 DOI: 10.3389/fcell.2022.874839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Inflammatory infiltration plays an essential role in the progression of tumor malignancy. The aim of this study was to identify genes associated with inflammatory microenvironment and clinical traits for survival prediction of uveal melanoma (UVM) patients. The datasets and clinical characteristics of UVM were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We divided the UVM patients into low and high immune cell infiltration groups, identified differentially expressed genes (DEGs), constructed weighted gene co-expression network, and established prognostic prediction model and nomogram for UVM. Our analysis showed that DEGs were enriched in cytokine signaling in immune system, positive regulation of immune response and adaptive immune system. A total of fifteen candidate genes were extracted from DEGs and genes that were positively associated with tumor metastasis. Subsequently, five prognostic genes were selected to construct the final prognostic prediction model, including two up-regulated genes LHFPL3 antisense RNA 1 (LHFPL3-AS1) and LYN proto-oncogene (LYN), and three down-regulated genes SLCO4A1 antisense RNA 1 (SLCO4A1-AS1), Zinc-α2-glycoprotein 1 (AZGP1) and Deleted in Liver Cancer-1 (DLC1) in the high risk group. The model showed an Area Under Curve (AUC) value of 0.877. Our analysis highlighted the importance of immune-related genes in the progression of UVM and also provided potential targets for the immunotherapy of UVM.
Collapse
|
11
|
Jain A, Kotimoole CN, Ghoshal S, Bakshi J, Chatterjee A, Prasad TSK, Pal A. Identification of potential salivary biomarker panels for oral squamous cell carcinoma. Sci Rep 2021; 11:3365. [PMID: 33564003 PMCID: PMC7873065 DOI: 10.1038/s41598-021-82635-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide with the maximum number of incidences and deaths reported from India. One of the major causes of poor survival rate associated with OSCC has been attributed to late presentation due to non-availability of a biomarker. Identification of early diagnostic biomarker will help in reducing the disease morbidity and mortality. We validated 12 salivary proteins using targeted proteomics, identified initially by relative quantification of salivary proteins on LC-MS, in OSCC patients and controls. Salivary AHSG (p = 0.0041**) and KRT6C (p = 0.002**) were upregulated in OSCC cases and AZGP1 (p ≤ 0.0001***), KLK1 (p = 0.006**) and BPIFB2 (p = 0.0061**) were downregulated. Regression modelling resulted in a significant risk prediction model (p < 0.0001***) consisting of AZGP1, AHSG and KRT6C for which ROC curve had AUC, sensitivity and specificity of 82.4%, 78% and 73.5% respectively for all OSCC cases and 87.9%, 87.5% and 73.5% respectively for late stage (T3/T4) OSCC. AZGP1, AHSG, KRT6C and BPIFB2 together resulted in ROC curve (p < 0.0001***) with AUC, sensitivity and specificity of 94%, 100% and 77.6% respectively for N0 cases while KRT6C and AZGP1 for N+ cases with ROC curve (p < 0.0001***) having AUC sensitivity and specificity of 76.8%, 73% and 69.4%. Our data aids in the identification of biomarker panels for the diagnosis of OSCC cases with a differential diagnosis between early and late-stage cases.
Collapse
Affiliation(s)
- Anu Jain
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Chinmaya Narayana Kotimoole
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jaimanti Bakshi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | | | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
12
|
Tian B, Han X, Li G, Jiang H, Qi J, Li J, Tian Y, Wang C. A Long Intergenic Non-coding RNA, LINC01426, Promotes Cancer Progression via AZGP1 and Predicts Poor Prognosis in Patients with LUAD. Mol Ther Methods Clin Dev 2020; 18:765-780. [PMID: 32953928 PMCID: PMC7476811 DOI: 10.1016/j.omtm.2020.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
Various long non-coding RNAs (lncRNAs) are closely associated with lung adenocarcinoma (LUAD), playing oncogenic or anti-oncogenic roles in tumorigenesis and progression. Herein, we report a novel lncRNA-long intergenic non-protein coding RNA 1426 (LINC01426)-that has not yet been characterized in LUAD. We note that LINC01426 expression was markedly upregulated in LUAD tissues, and that functional assays verified that LINC01426 knockdown markedly inhibited cell proliferation, migration, and invasion in vitro. Xenografts derived from A549 cells knocked down of LINC01426 had evidently lower tumor weights and smaller tumor volumes. Our study also found that LINC01426 bound to hsa-miR-30b-3p as a competitive endogenous RNA in LUAD. Moreover, LINC01426 affected LUAD wound healing by interacting and combining with AZGP1, and LINC01426 expression was significantly associated with tumor-node-metastasis (TNM) staging and prognosis in patients with LUAD. To summarize, our study elucidates the oncogenic roles of LINC01426 in LUAD tumorigenesis and progression. We think that LINC01426 can serve as a potential diagnostic biomarker and therapeutic target in patients with LUAD.
Collapse
Affiliation(s)
- Baorui Tian
- Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaoyang Han
- Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Guanzhen Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Hua Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jianni Qi
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiamei Li
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yingying Tian
- Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Chuanxi Wang
- Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| |
Collapse
|
13
|
Winther MD, Kristensen G, Stroomberg HV, Berg KD, Toft BG, Brooks JD, Brasso K, Røder MA. AZGP1 Protein Expression in Hormone-Naïve Advanced Prostate Cancer Treated with Primary Androgen Deprivation Therapy. Diagnostics (Basel) 2020; 10:E520. [PMID: 32726925 PMCID: PMC7460336 DOI: 10.3390/diagnostics10080520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Biomarkers for predicting the risk of castration-resistant prostate cancer (CRPC) in men treated with primary androgen deprivation therapy (ADT) are lacking. We investigated whether Zinc-alpha 2 glycoprotein (AZGP1) expression in the diagnostic biopsies of men with hormone-naïve prostate cancer (PCa) undergoing primary ADT was predictive of the development of CRPC and PCa-specific mortality. The study included 191 patients who commenced ADT from 2000 to 2011. The AZGP1 expression was evaluated using immunohistochemistry and scored as high or low expression. The risks of CRPC and PCa-specific mortality were analyzed using stratified cumulative incidences and a cause-specific COX regression analysis for competing risk assessment. The median follow-up time was 9.8 (IQR: 6.1-12.7) years. In total, 94 and 97 patients presented with low and high AZGP1 expression, respectively. A low AZGP1 expression was found to be associated with a shorter time to CRPC when compared to patients with a high AZGP1 expression (HR: 1.5; 95% CI: 1.0-2.1; p = 0.03). However, the multivariable analysis demonstrated no added benefit by adding the AZGP1 expression to prediction models for CRPC. No differences for PCa-specific mortality between the AZGP1 groups were observed. In conclusion, a low AZGP1 expression was associated with a shorter time to CRPC for PCa patients treated with first-line ADT but did not add any predictive information besides well-established clinicopathological variables.
Collapse
Affiliation(s)
- Mads Dochedahl Winther
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (M.D.W.); (H.V.S.); (K.D.B.); (K.B.); (M.A.R.)
| | - Gitte Kristensen
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (M.D.W.); (H.V.S.); (K.D.B.); (K.B.); (M.A.R.)
| | - Hein Vincent Stroomberg
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (M.D.W.); (H.V.S.); (K.D.B.); (K.B.); (M.A.R.)
| | - Kasper Drimer Berg
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (M.D.W.); (H.V.S.); (K.D.B.); (K.B.); (M.A.R.)
| | - Birgitte Grønkær Toft
- Department of Pathology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - James D. Brooks
- Department of Urology, Stanford University, Stanford, CA 94305, USA;
| | - Klaus Brasso
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (M.D.W.); (H.V.S.); (K.D.B.); (K.B.); (M.A.R.)
| | - Martin Andreas Røder
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; (M.D.W.); (H.V.S.); (K.D.B.); (K.B.); (M.A.R.)
| |
Collapse
|
14
|
Poropatich K, Paunesku T, Zander A, Wray B, Schipma M, Dalal P, Agulnik M, Chen S, Lai B, Antipova O, Maxey E, Brown K, Wanzer MB, Gursel D, Fan H, Rademaker A, Woloschak GE, Mittal BB. Elemental Zn and its Binding Protein Zinc-α2-Glycoprotein are Elevated in HPV-Positive Oropharyngeal Squamous Cell Carcinoma. Sci Rep 2019; 9:16965. [PMID: 31740720 PMCID: PMC6861298 DOI: 10.1038/s41598-019-53268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is biologically distinct from HPV-negative HNSCC. Outside of HPV-status, few tumor-intrinsic variables have been identified that correlate to improved survival. As part of exploratory analysis into the trace elemental composition of oropharyngeal squamous cell carcinoma (OPSCC), we performed elemental quanitification by X-ray fluorescence microscopy (XFM) on a small cohort (n = 32) of patients with HPV-positive and -negative OPSCC and identified in HPV-positive cases increased zinc (Zn) concentrations in tumor tissue relative to normal tissue. Subsequent immunohistochemistry of six Zn-binding proteins—zinc-α2-glycoprotein (AZGP1), Lipocalin-1, Albumin, S100A7, S100A8 and S100A9—revealed that only AZGP1 expression significantly correlated to HPV-status (p < 0.001) and was also increased in tumor relative to normal tissue from HPV-positive OPSCC tumor samples. AZGP1 protein expression in our cohort significantly correlated to a prolonged recurrence-free survival (p = 0.029), similar to HNSCC cases from the TCGA (n = 499), where highest AZGP1 mRNA levels correlated to improved overall survival (p = 0.023). By showing for the first time that HPV-positive OPSCC patients have increased intratumoral Zn levels and AZGP1 expression, we identify possible positive prognostic biomarkers in HNSCC as well as possible mechanisms of increased sensitivity to chemoradiation in HPV-positive OPSCC.
Collapse
Affiliation(s)
- Kate Poropatich
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alia Zander
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian Wray
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Schipma
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prarthana Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mark Agulnik
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Koshonna Brown
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Beau Wanzer
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Demirkan Gursel
- Northwestern University Pathology Core Facility, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hanli Fan
- Northwestern University Pathology Core Facility, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfred Rademaker
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gayle E Woloschak
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bharat B Mittal
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Ji M, Li W, He G, Zhu D, Lv S, Tang W, Jian M, Zheng P, Yang L, Qi Z, Mao Y, Ren L, Zhong Y, Tu Y, Wei Y, Xu J. Zinc-α2-glycoprotein 1 promotes EMT in colorectal cancer by filamin A mediated focal adhesion pathway. J Cancer 2019; 10:5557-5566. [PMID: 31632499 PMCID: PMC6775688 DOI: 10.7150/jca.35380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
Liver metastasis is the main reason for the poor prognosis of colorectal cancer, and identifying molecules involved in liver metastases of colorectal cancer may provide effective therapeutic targets. Zinc-α2-glycoprotein 1(AZGP1) is a candidate biomarker for diagnosis and prognosis in cancer. However, its function and molecular mechanism in metastatic colorectal cancer remains largely unknown. We previously found that up-regulated AZGP1 promotes proliferation, migration and invasion in colorectal cancer cell line, here we elucidated the mechanism of AZGP1 in regulating metastasis. In this article, we found that AZGP1 was also highly expressed in colorectal cancer tissues with liver metastasis relative to those without metastasis, and abundant expression of AZGP1 was associated with poor prognosis, also, AZGP1 down regulation prevented cell metastasis in vivo and in vitro. We further demonstrated that AZGP1 promotes metastasis by regulating the epithelial-mesenchymal transition (EMT) and associating with molecules involved in the focal adhesion pathway, including the adhesion molecule FLNA, which acts as an important protein interactor. More importantly, AZGP1 down regulation inhibited the phosphorylation of FLNA mediated by the restrain of PAK2 kinase, thereby inducing its proteolysis and subsequently affecting its subcellular localization, where it regulates the EMT and promotes metastasis. Collectively, these results highlight AZGP1 as a new and promising therapeutic molecule for liver metastatic colorectal cancer.
Collapse
Affiliation(s)
- Meiling Ji
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Wenxiang Li
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Guodong He
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shixu Lv
- Department of Surgical Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wentao Tang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Mi Jian
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Peng Zheng
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Liangliang Yang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhipeng Qi
- Departmentof Endoscopic Center, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yihao Mao
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Li Ren
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yunshi Zhong
- Departmentof Endoscopic Center, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yongjiu Tu
- Surgical Department, Hospital 174 of PLA, Xiamen, Fujian, China
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
16
|
Kristensen G, Berg KD, Toft BG, Stroomberg HV, Nolley R, Brooks JD, Brasso K, Roder MA. Predictive value of AZGP1 following radical prostatectomy for prostate cancer: a cohort study and meta-analysis. J Clin Pathol 2019; 72:696-704. [PMID: 31331953 DOI: 10.1136/jclinpath-2019-205940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
AIMS Zinc-alpha 2-glycoprotein (AZGP1) is a promising tissue biomarker to predict outcomes in men undergoing treatment for localised prostate cancer (PCa). We aimed to examine the association between AZGP1 expression and the endpoints: risk of biochemical failure (BF), initiating castration-based treatment, developing castration-resistant PCa (CRPC) and PCa-specific mortality following radical prostatectomy (RP). METHODS The study included a prospective cohort of 302 patients who underwent RP for PCa from 2002 to 2005. AZGP1 expression was analysed using immunohistochemistry on tissue microarray RP specimens and was scored semiquantitively as low or high expression. Risk of all endpoints was analysed using stratified cumulative incidences and cause-specific Cox regression, and validated with receiver operating curves, calibration and discrimination in competing-risk analyses. A meta-analysis was performed including previous studies investigating AZGP1 expression and risk of BF following RP. RESULTS Median time of follow-up was 14.0 years. The cumulative incidence of all endpoints was significantly higher in patients with low AZGP1 expression compared with patients with high AZGP1 expression (p<0.001). In a multivariate analysis, low AZGP1 expression increases the risk of BF (HR 2.7; 95% CI 1.9 to 3.8; p<0.0001), castration-based treatment (HR 2.2; 95% CI 1.2 to 4.2; p=0.01) and CRPC (HR 2.3; 95% CI 1.1 to 5.0; p=0.03). Validation showed a low risk of prediction error and a high model performance for all endpoints. In a meta-analysis, low AZGP1 was associated with BF (HR 1.7; 95% CI 1.2 to 2.5). CONCLUSIONS Low AZGP1 expression is associated with the risk of aggressive time-dependent outcomes in men undergoing RP for localised PCa.
Collapse
Affiliation(s)
- Gitte Kristensen
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Drimer Berg
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitte Grønkær Toft
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hein Vincent Stroomberg
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rosalie Nolley
- Department of Urology, Stanford Medicine, Stanford, California, USA
| | - James D Brooks
- Department of Urology, Stanford Medicine, Stanford, California, USA
| | - Klaus Brasso
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Andreas Roder
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Liu J, Han H, Fan Z, El Beaino M, Fang Z, Li S, Ji J. AZGP1 inhibits soft tissue sarcoma cells invasion and migration. BMC Cancer 2018; 18:89. [PMID: 29357838 PMCID: PMC5778744 DOI: 10.1186/s12885-017-3962-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Background One of the major challenges in soft tissue sarcomas is to identify factors that predict metastasis. AZGP1 is a potential biomarker of cancer progression, but its value in soft tissue sarcomas remains unknown. The aim of this study is to determine the expression level of AZGP1 in soft tissue sarcomas, and to analyze its influence on tumor progression. Methods AZGP1 immunohistochemistry (IHC) and RT-PCR were performed in 86 patients with soft tissue sarcomas. The relationships between AZGP1 levels and clinicopathologic features were analyzed. In vitro experiments were performed using fibrosarcoma (HT1080), rhabdomyosarcoma (RD) and synovial sarcoma (SW982) cell lines to corroborate our findings. We used lentiviral over-expression and knockdown assays to examine how changes of AZGP1 expressions might affect cellular migration and invasion. Results The quantitative RT-PCR results showed that AZGP1 expression was negatively correlated with metastasis and overall survival in soft tissue sarcomas (p < 0.05). Immunohistochemical staining showed lower expression of AZGP1 in patients with metastasis than in those without. Kaplan-Meier survival analysis showed that patients with low expression of AZGP1 had shorter overall (p = 0.056) and metastasis-free survivals (p = 0.038). These findings were corroborated by our in vitro experiments. Over-expression of AZGP1 significantly decreased RD cellular migration and invasion by 64% and 78%, respectively. HT1080 cells migration was inhibited by 2-fold, whereas their invasion was repressed by 7-fold after AZGP1 knockdown. Conclusions Our study reveals that reduced AZGP1 expression correlates with in vitro cellular migration and invasion. In vivo, it is associated with higher metastatic risk and shorter survival in patients with soft tissue sarcomas. Electronic supplementary material The online version of this article (10.1186/s12885-017-3962-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiayong Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fucheng Rd., Beijing, 100142, People's Republic of China
| | - Haibo Han
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biobank, Peking University Cancer Hospital & Institute, 52 Fucheng Rd., Beijing, 100142, People's Republic of China
| | - Zhengfu Fan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fucheng Rd., Beijing, 100142, People's Republic of China
| | - Marc El Beaino
- Department of Orthopedic Oncology, MD Anderson Cancer Center, Unit 1448, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | - Zhiwei Fang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fucheng Rd., Beijing, 100142, People's Republic of China
| | - Shu Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fucheng Rd., Beijing, 100142, People's Republic of China
| | - Jiafu Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, 52 Fucheng Rd., Beijing, 100142, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, 52 Fucheng Rd., Beijing, 100142, People's Republic of China.
| |
Collapse
|
18
|
Philley JV, Kannan A, Griffith DE, Devine MS, Benwill JL, Wallace RJ, Brown-Elliott BA, Thakkar F, Taskar V, Fox JG, Alqaid A, Bains H, Gupta S, Dasgupta S. Exosome secretome and mediated signaling in breast cancer patients with nontuberculous mycobacterial disease. Oncotarget 2017; 8:18070-18081. [PMID: 28160560 PMCID: PMC5392308 DOI: 10.18632/oncotarget.14964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/10/2017] [Indexed: 12/03/2022] Open
Abstract
Bronchiectasis Nontuberculous mycobacterium (NTMnb) infection is an emerging health problem in breast cancer (BCa) patients. We measured sera exosome proteome in BCa-NTMnb subjects and controls by Mass Spectroscopy. Extracellular matrix protein 1 (ECM1) was detected exclusively in the circulating exosomes of 82% of the BCa-NTMnb cases. Co-culture of ECM1+ exosomes with normal human mammary epithelial cells induced epithelial to mesenchymal transition accompanied by increased Vimentin/CDH1 expression ratio and Glutamate production. Co-culture of the ECM1+ exosomes with normal human T cells modulated their cytokine production. The ECM1+ exosomes were markedly higher in sera obtained from BCa-NTMnb subjects. Exclusive expression of APN, APOC4 and AZGP1 was evident in the circulating exosomes of these BCa-NTMnb cases, which predicts disease prevalence independent of the body max index in concert with ECM1. Monitoring ECM1, APN, APOC4 and AZGP1 in the circulating exosomes could be beneficial for risk assessment, monitoring and surveillance of BCa-NTMnb.
Collapse
Affiliation(s)
- Julie V Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Anbarasu Kannan
- Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - David E Griffith
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Megan S Devine
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Jeana L Benwill
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Richard J Wallace
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA.,The Mycobacteria/Nocardia Research Laboratory Department of Microbiology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Barbara A Brown-Elliott
- The Mycobacteria/Nocardia Research Laboratory Department of Microbiology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Foram Thakkar
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Varsha Taskar
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - James G Fox
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Ammar Alqaid
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Hernaina Bains
- Department of Medicine, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Sudeep Gupta
- Medical Oncology, Tata Memorial Center, Mumbai, India
| | - Santanu Dasgupta
- Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| |
Collapse
|
19
|
Tian H, Ge C, Zhao F, Zhu M, Zhang L, Huo Q, Li H, Chen T, Xie H, Cui Y, Yao M, Li J. Downregulation of AZGP1 by Ikaros and histone deacetylase promotes tumor progression through the PTEN/Akt and CD44s pathways in hepatocellular carcinoma. Carcinogenesis 2017; 38:207-217. [PMID: 27993894 DOI: 10.1093/carcin/bgw125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/30/2016] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence has shown that zinc-alpha2-glycoprotein (AZGP1) is associated with the progression and prognosis of several tumor types. However, little is known regarding the underlying molecular mechanisms of AZGP1 in hepatocellular carcinoma (HCC). In this study, we report that transcription factor Ikaros bound to the AZGP1 promoter and increased its expression in HCC cells. The downregulation of AZGP1 was associated with histone deacetylation in HCC. In addition, the positive feedback regulation via acetylation of histone H4-mediated transactivation of the Ikaros promoter and the Ikaros-mediated transactivation of the acetylation of histone H4 were crucial for regulating AZGP1 expression in HCC cells. Moreover, low serum AZGP1 level in HCC patients was associated with poor prognosis. The ectopic overexpression of AZGP1 or recombinant AZGP1 protein inhibited HCC cell proliferation, migration and invasion in vitro and in vivo, whereas silencing AZGP1 expression resulted in increased cell proliferation, migration and invasion in vitro. In addition, we found that AZGP1 inhibited cell migration and invasion through the regulation of the PTEN/Akt and CD44s pathways. Collectively, our findings revealed the molecular mechanism of AZGP1 expression in HCC, providing new insights into the mechanisms underlying tumor progression.
Collapse
Affiliation(s)
- Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| | - Miaoxin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| | - Lin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| | - Qi Huo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong 226200, Jiangsu Province, China
| | - Haiyang Xie
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China and
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning 530000, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai 200032, China
| |
Collapse
|
20
|
Tang H, Wu Y, Qin Y, Wang H, Wang L, Guan X, Luo S, Wang Q. Reduction of AZGP1 predicts poor prognosis in esophageal squamous cell carcinoma patients in Northern China. Onco Targets Ther 2017; 10:85-94. [PMID: 28053542 PMCID: PMC5189973 DOI: 10.2147/ott.s113932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND As a key regulator in lipid mobilization, AZGP1 has been reported to play a significant role in various cancers. This study was carried out to investigate the role of AZGP1 in the development of esophageal squamous cell carcinoma (ESCC) patients in Northern China. MATERIALS AND METHODS Through the application of quantitative real-time polymerase chain reaction and immunohistochemical staining, AZGP1 expression in ESCC tissues from Northern China was examined. RESULTS Decreased expression of AZGP1 was observed in ~60% ESCC patients. AZGP1 downregulation was significantly associated with lymph node metastasis (P=0.035), advanced clinical stage (P=0.018), poor prognosis for 5-year disease-specific survival (DSS; P<0.001), local recurrence-free survival (LRFS; P=0.016), and metastasis-free survival (MeFS; P=0.014). In addition, Cox multivariate analysis revealed that AZGP1 downregulation remained to be an independent prognosticator for shorter DSS (P=0.001), LRFS (P=0.011), and MeFS (P=0.004). CONCLUSION AZGP1 might be a candidate tumor suppressor and a potential novel prognostic biomarker for ESCC patients in Northern China.
Collapse
Affiliation(s)
- Hong Tang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital
| | - Yufeng Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital
| | - Yanru Qin
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Haiying Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital
| | - Lili Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Suxia Luo
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital
| |
Collapse
|
21
|
Us Altay D, Keha EE, Ozer Yaman S, Ince I, Alver A, Erdogan B, Canpolat S, Cobanoglu U, Mentese A. Investigation of the expression of irisin and some cachectic factors in mice with experimentally induced gastric cancer. QJM 2016; 109:785-790. [PMID: 27256459 DOI: 10.1093/qjmed/hcw074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine whether irisin is secreted by gastric tumor cells experimentally induced in mice, and also if it has any effect on cancer cachexia. DESIGN AND METHODS 12 out of 60 BALB/c mice were used as a control group, while N-nitroso-N-methylurea (MNU) was administered orally to the remaining 48. After 150 days, the surviving mice were sacrificed by decapitation, blood and stomach, skeletal muscle, brown and white adipose tissue specimens were collected. Following histopathological evaluation of the stomach tissues, it was decided to create four groups, one control group and three consisting of mice administered MNU, no cancer, pre-cancer and cancer. Gene expression analyses of fibronectin type III domain containing protein 5 (FNDC5) and some cachexia-related proteins were performed in tissue samples, while levels of irisin, and various inflammatory and tumor markers together with cachectic factors were determined in serum samples. RESULTS The levels of inflammatory, tumor markers and cachectic factors in serum samples were significantly higher in the cancer group compared with the control group. No expression of FNDC5 or zinc-α-2 glycoprotein, a cachectic factor, was observed in gastric tissues from the control and MNU groups, whereas significantly increased FNDC5 expression was determined in the both white and brown adipose tissues from the cancer group. CONCLUSION Increased FNDC5 expression in white and brown adipose tissues may have a cachectic effect in mice with induced cancer. However, it is not possible to explain the mechanism of the relationship between irisin and gastric cancer development on the basis of the results of this study.
Collapse
Affiliation(s)
- Diler Us Altay
- From the Ulubey Vocational School, Chemistry and Chemical Processing Technology Department, Laboratory Technology Program, Ordu, Turkey
| | - E Edip Keha
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Imran Ince
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | | | - Sinan Canpolat
- Department of Physiology, Fırat University, Faculty of Medicine, Elazıg, Turkey
| | - Umit Cobanoglu
- Department of Pathology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Ahmet Mentese
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| |
Collapse
|
22
|
Patel SJ, Darie CC, Clarkson BD. Effect of purified fractions from cell culture supernate of high-density pre-B acute lymphoblastic leukemia cells (ALL3) on the growth of ALL3 cells at low density. Electrophoresis 2016; 38:417-428. [PMID: 27804141 DOI: 10.1002/elps.201600399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/02/2023]
Abstract
The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed.
Collapse
Affiliation(s)
- Sapan J Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA.,Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Bayard D Clarkson
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
| |
Collapse
|
23
|
Brooks JD, Wei W, Pollack JR, West RB, Shin JH, Sunwoo JB, Hawley SJ, Auman H, Newcomb LF, Simko J, Hurtado-Coll A, Troyer DA, Carroll PR, Gleave ME, Lin DW, Nelson PS, Thompson IM, True LD, McKenney JK, Feng Z, Fazli L. Loss of Expression of AZGP1 Is Associated With Worse Clinical Outcomes in a Multi-Institutional Radical Prostatectomy Cohort. Prostate 2016; 76:1409-19. [PMID: 27325561 PMCID: PMC5557496 DOI: 10.1002/pros.23225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Given the uncertainties inherent in clinical measures of prostate cancer aggressiveness, clinically validated tissue biomarkers are needed. We tested whether Alpha-2-Glycoprotein 1, Zinc-Binding (AZGP1) protein levels, measured by immunohistochemistry, and RNA expression, by RNA in situ hybridization (RISH), predict recurrence after radical prostatectomy independent of clinical and pathological parameters. METHODS AZGP1 IHC and RISH were performed on a large multi-institutional tissue microarray resource including 1,275 men with 5 year median follow-up. The relationship between IHC and RISH expression levels was assessed using the Kappa analysis. Associations with clinical and pathological parameters were tested by the Chi-square test and the Wilcoxon rank sum test. Relationships with outcome were assessed with univariable and multivariable Cox proportional hazards models and the Log-rank test. RESULTS Absent or weak expression of AZGP1 protein was associated with worse recurrence free survival (RFS), disease specific survival, and overall survival after radical prostatectomy in univariable analysis. AZGP1 protein expression, along with pre-operative serum PSA levels, surgical margin status, seminal vesicle invasion, extracapsular extension, and Gleason score predicted RFS on multivariable analysis. Similarly, absent or low AZGP1 RNA expression by RISH predicted worse RFS after prostatectomy in univariable and multivariable analysis. CONCLUSIONS In our large, rigorously designed validation cohort, loss of AZGP1 expression predicts RFS after radical prostatectomy independent of clinical and pathological variables. Prostate 76:1409-1419, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James D Brooks
- Department of Urology, Stanford University, Stanford, California.
| | - Wei Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Robert B West
- Department of Pathology, Stanford University, Stanford, California
| | - Jun Ho Shin
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Sarah J Hawley
- Canary Foundation, Canary Center at Stanford, Palo Alto, California
| | - Heidi Auman
- Canary Foundation, Canary Center at Stanford, Palo Alto, California
| | - Lisa F Newcomb
- Department of Urology, University of Washington Medical Center, Seattle, Washington
| | - Jeff Simko
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Antonio Hurtado-Coll
- Department of Urologic Sciences and Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Dean A Troyer
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Eastern Virginia Medical School, Pathology and Microbiology and Molecular Biology, Norfolk, Virginia
| | - Peter R Carroll
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Martin E Gleave
- Department of Urologic Sciences and Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Daniel W Lin
- Department of Urology, University of Washington Medical Center, Seattle, Washington
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lawrence D True
- Department of Pathology, University of Washington Medical Center, Seattle, Washington
| | | | - Ziding Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ladan Fazli
- Department of Urologic Sciences and Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Integration of Breast Cancer Secretomes with Clinical Data Elucidates Potential Serum Markers for Disease Detection, Diagnosis, and Prognosis. PLoS One 2016; 11:e0158296. [PMID: 27355404 PMCID: PMC4927101 DOI: 10.1371/journal.pone.0158296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer cells secrete factors that influence adjacent cell behavior and can lead to enhanced proliferation and metastasis. To better understand the role of these factors in oncogenesis and disease progression, estrogen and progesterone receptor positive MCF-7 cells, triple negative breast cancer MDA-MB-231, DT22, and DT28 cells, and MCF-10A non-transformed mammary epithelial cells were grown in 3D cultures. A special emphasis was placed on triple negative breast cancer since these tumors are highly aggressive and no targeted treatments are currently available. The breast cancer cells secreted factors of variable potency that stimulated proliferation of the relatively quiescent MCF-10A cells. The conditioned medium from each cell line was subjected to mass spectrometry analysis and a variety of secreted proteins were identified including glycolytic enzymes, proteases, protease inhibitors, extracellular matrix proteins, and insulin-like growth factor binding proteins. An investigation of the secretome from each cell line yielded clues about strategies used for breast cancer proliferation and metastasis. Some of the proteins we identified may be useful in the development of a serum-based test for breast cancer detection, diagnosis, prognosis, and monitoring.
Collapse
|
25
|
Xu MY, Chen R, Yu JX, Liu T, Qu Y, Lu LG. AZGP1 suppresses epithelial-to-mesenchymal transition and hepatic carcinogenesis by blocking TGFβ1-ERK2 pathways. Cancer Lett 2016; 374:241-9. [PMID: 26902423 DOI: 10.1016/j.canlet.2016.02.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/31/2016] [Accepted: 02/14/2016] [Indexed: 01/10/2023]
Abstract
Zinc-α2-glycoprotein 1 (AZGP1) has been found to play important roles in TGF-β1 induced epithelial-to-mesenchymal transition (EMT). However, the mechanisms of AZGP1 inhibiting EMT and its therapeutic potential remain unknown in hepatocellular carcinoma (HCC). AZGP1, TGF-β1 or ERK2 expressions were examined in liver tissues of HCC patients and rat model. The effect of AZGP1 on EMT and crosstalking of TGFβ1-ERK2 signaling in human hepatic cancer cell was tested in vitro and in vivo. Hepatic expression of AZGP1 was nearly deficient in HCC patients and rats. It was proved that AZGP1 has the ability of down-regulating mesenchymal markers, up-regulating epithelial marker, inhibiting cell invasion and suppressing EMT in human HCC cells. The results clarified that AZGP1 has the effect on blocking TGF-β1 mediated ERK2 phosphorylation leading to depressing EMT and invasive potential in vitro. Local injection of AZGP1 mimic in vivo could significantly withhold lung metastasis in HCC. In conclusion, loss of AZGP1 could trigger EMT induced by TGFβ1-ERK2 signaling, confuse in energy metabolism, reduce cell proliferation and apoptosis, activate survival signals and promote invasion. Up-regulation of AZGP1 should be proposed to reverse EMT and might be a new promising therapy for HCC.
Collapse
Affiliation(s)
- Ming-Yi Xu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Rong Chen
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jing-Xia Yu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ting Liu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
26
|
Sörensen-Zender I, Bhayana S, Susnik N, Rolli V, Batkai S, Baisantry A, Bahram S, Sen P, Teng B, Lindner R, Schiffer M, Thum T, Melk A, Haller H, Schmitt R. Zinc-α2-Glycoprotein Exerts Antifibrotic Effects in Kidney and Heart. J Am Soc Nephrol 2015; 26:2659-68. [PMID: 25788525 DOI: 10.1681/asn.2014050485] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
Zinc-α2-glycoprotein (AZGP1) is a secreted protein synthesized by epithelial cells and adipocytes that has roles in lipid metabolism, cell cycling, and cancer progression. Our previous findings in AKI indicated a new role for AZGP1 in the regulation of fibrosis, which is a unifying feature of CKD. Using two models of chronic kidney injury, we now show that mice with genetic AZGP1 deletion develop significantly more kidney fibrosis. This destructive phenotype was rescued by injection of recombinant AZGP1. Exposure of AZGP1-deficient mice to cardiac stress by thoracic aortic constriction revealed that antifibrotic effects were not restricted to the kidney but were cardioprotective. In vitro, recombinant AZGP1 inhibited kidney epithelial dedifferentiation and antagonized fibroblast activation by negatively regulating TGF-β signaling. Patient sera with high levels of AZGP1 similarly attenuated TGF-β signaling in fibroblasts. Taken together, these findings indicate a novel role for AZGP1 as a negative regulator of fibrosis progression, suggesting that recombinant AZGP1 may have translational effect for treating fibrotic disease.
Collapse
Affiliation(s)
| | | | | | - Veronique Rolli
- Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; and
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies, Integriertes Forschungs- und Behandlungszentrum Transplantation, Hannover Medical School, Hannover, Germany
| | - Arpita Baisantry
- Departments of Nephrology and Hypertension, Pediatric Kidney, Liver, and Metabolic Diseases, and
| | - Siamak Bahram
- Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; and
| | - Payel Sen
- Departments of Nephrology and Hypertension
| | - Beina Teng
- Departments of Nephrology and Hypertension
| | | | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Integriertes Forschungs- und Behandlungszentrum Transplantation, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Anette Melk
- Pediatric Kidney, Liver, and Metabolic Diseases, and
| | | | | |
Collapse
|
27
|
Jin Y, Yu Y, Shao Q, Ma Y, Zhang R, Yao H, Xu Y. Up-regulation of ECT2 is associated with poor prognosis in gastric cancer patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8724-8731. [PMID: 25674238 PMCID: PMC4313974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the expression of ECT2 in gastric cancer and its clinical significance. METHODS AND RESULTS We investigated the differentially expressed genes between gastric cancer tissues and normal gastric mucosa by cDNA microarray, and then we found ECT2 was up-regulated in gastric cancer. What is more, we verified ECT2 expression level by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and measured its protein level by immunohistochemistry (IHC). qRT-PCR analysis indicated ECT2 was significantly up-regulated in gastric cancer and Immunohistochemistry confirmed the percentage of ECT2-positive specimens was significantly higher in gastric carcinoma than in non-tumor tissues. Up-regulation of ECT2 is associated with the degree of histological differentiation (P = 0.007), invasion depth (P = 0.047), lymph node metastasis (P = 0.016), distant metastasis (P = 0.021) and TNM stage (P = 0.016), patients with up-regulated ECT2 had a lower overall survival rate (P = 0.000). Cox regression analysis revealed that up-regulation of ECT2 is an independent prognostic factor in gastric cancer patients (P = 0.012). CONCLUSION Up-regulation of ECT2 might contribute to the progression of gastric carcinogenesis and may be a useful prognostic indicator in gastric cancer.
Collapse
Affiliation(s)
- Yi Jin
- Department of Gastrointestinal Surgery, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, China
| | - Yuhui Yu
- Department of Gastrointestinal Surgery, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, China
| | - Qinshu Shao
- Department of Gastrointestinal Surgery, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, China
| | - Yingyu Ma
- Key Laboratory of Gastroenterology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, China
| | - Ruxuan Zhang
- Key Laboratory of Gastroenterology, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, China
| | - Haibo Yao
- Department of Gastrointestinal Surgery, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, Zhejiang Provincial People’s HospitalHangzhou 310014, Zhejiang, China
| |
Collapse
|
28
|
Mechanisms of carcinogenesis in human skin against the background of papillomavirus infection. Bull Exp Biol Med 2014; 157:628-33. [PMID: 25257428 DOI: 10.1007/s10517-014-2631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 10/24/2022]
Abstract
The cells in the skin tumor developing under conditions of persisting papillomavirus infection are morphologically identical to blast cells in a blood smear from a leukemia patient. The cells filling the lesion focus are morphologically and immunohistochemically related to blood stem cells. A mechanism of epithelial layer modification under conditions of papillomavirus infection leading to carcinogenesis is proposed. The dynamics of structural changes in the skin is characterized by disturbed interactions between the epithelium and adjacent connective tissue, destruction of the basal membrane, disorders in the cambial keratinocyte differentiation, and absence of the spinous and granular layers. We conclude that detection of blast leukocytes in the human skin lesion can be explained by disorders in the cell-cell interactions in the epithelium-mesenchymal tissue system. High proliferative activity followed by death of cambial keratinocytes, migration of effector antigen-presenting CD68 cells to the adjacent connective tissue are the factors inducing migration of blast leukocytic forms to the focus. Not only keratinocyte restitution capacity, but also epithelium-dependent differentiation of young leukocytes disappeared. Undifferentiated cells are migrated from the blood to the epithelium alteration zone, but not in the reverse direction. The insufficiency or the absence of blood blast cell differentiation of the in the focus of epidermal injury and adjacent tissue triggers carcinogenesis. The authors suggest their model of carcinogenesis. The conclusions offer a new concept of cancer pathogenesis and suggest a new strategy in the search for methods for early diagnosis of carcinogenesis.
Collapse
|
29
|
Chang L, Tian X, Lu Y, Jia M, Wu P, Huang P. Alpha-2-glycoprotein 1(AZGP1) regulates biological behaviors of LoVo cells by down-regulating mTOR signaling pathway and endogenous fatty acid synthesis. PLoS One 2014; 9:e99254. [PMID: 24918753 PMCID: PMC4053402 DOI: 10.1371/journal.pone.0099254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/13/2014] [Indexed: 02/05/2023] Open
Abstract
AZGP1 is a multifaceted protein associated with lipid mobilization, a process that is regulated by FASN and other metabolic pathways such as mTOR signaling. The active mTOR signaling pathway has been found to be involved in a variety of tumors. However, it remains unclear whether it is involved in the regulation of AZGP1 and FASN. An AZGP1-expressing plasmid was transfected into a human colorectal cancer cell line (LoVo) with a low expression of AZGP1. The expression of AZGP1, FASN, eIF4E, p-mTOR, p-S6,and S6K1 were measured by Western blot analysis, and target genes were detected by RT-PCR. Cell proliferation was studied using the MTT and colony formation assays. The analysis of apoptosis and the cell cycle phase were assessed by flow cytometry. The capacity of cell migration was investigated using the transwell migration assay. We found that the expression of AZGP1 was up-regulated while the expression of FASN, eIF4E, p-mTOR, p-S6, and S6K1 were down-regulated in LoVo cells after AZGP1 was expressed. The proliferation of malignant cells was reduced in AZGP1-overexpression cells, which is consistent with an increased in the G2-arrest and apoptosis rate. Furthermore, the migration of AZGP1-overexpression cells was decreased. The overexpression of AZGP1 suppressed the activation of the mTOR pathway and endogenous FASN-regulated fatty acid synthesis, mitigating the malignant phenotype of LoVo cells. Herein, we provide evidence that AZGP1 may constitute a novel tumor suppressor for LoVo colorectal cancer cells.
Collapse
Affiliation(s)
- Ligong Chang
- Department of Internal Medicine, Medicine School of Southeast University, Nanjing, China
| | - Xiaoqiang Tian
- The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - Yinghui Lu
- Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Min Jia
- Department of Internal Medicine, Medicine School of Southeast University, Nanjing, China
| | - Peng Wu
- Jiangsu Jiankang Vocational College, Department of Pathology, Nanjing, China
| | - Peilin Huang
- Department of Internal Medicine, Medicine School of Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
30
|
Xu Y, Shao QS, Yao HB, Jin Y, Ma YY, Jia LH. Overexpression of FOXC1 correlates with poor prognosis in gastric cancer patients. Histopathology 2014; 64:963-70. [PMID: 24329718 DOI: 10.1111/his.12347] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/08/2013] [Indexed: 01/14/2023]
Abstract
AIMS The aim of this study was to determine FOXC1 expression in gastric tissues, and the clinical significance of FOXC1 in the development, progression and metastasis of gastric cancer (GC). METHODS AND RESULTS We screened GCs for the expression of FOXC1 using the Affymetrix U133 plus 2.0 Gene Chip Array, and found that expression was significantly higher in GC tissues than in controls. Furthermore, we validated the expression levels of FOXC1 using real-time quantitative RT-PCR (qRT-PCR), and of FOXC1 using immunohistochemistry (IHC). Our study showed that expression levels of FOXC1 mRNA and FOXC1 in GC tissues were significantly higher than those in corresponding non-tumour tissues. High FOXC1 expression correlated with the degree of histological differentiation (P < 0.01), TNM stage (P < 0.001), invasive depth (P < 0.05), lymph node metastasis (P < 0.05), and distant metastasis (P < 0.01). Survival analysis revealed that patients with high FOXC1 expression had shorter overall survival than those with low expression (P < 0.001). Multivariate analysis showed that high FOXC1 expression was an independent prognostic factor for GC patients (P < 0.01). CONCLUSIONS Overexpression of FOXC1 may play a key role in the progression of GC, and FOXC1 expression may serve as a useful marker for predicting the outcome of patients with GC.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | | | | | | | | | | |
Collapse
|