1
|
Guo Y, Wang Y, Zang X, Luo C, Huang C, Cong K, Guo X. Transcriptomic analysis of Amaranthus retroflex resistant to PPO-inhibitory herbicides. PLoS One 2023; 18:e0288775. [PMID: 37616256 PMCID: PMC10449157 DOI: 10.1371/journal.pone.0288775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/04/2023] [Indexed: 08/26/2023] Open
Abstract
Amaranthus retroflexus L. is one of the malignant weeds which can cause a reduction in the soybean yield. We found a population of A. retroflexus (R-Q) resistant to fomesafen through the initial screening of whole-plant dose response bioassay in the research. The resistance index of the population (R-Q) was 183 times of the sensitive population (S-N). The resistant and sensitive populations were used as experimental materials in the paper. Strand-specific RNA-Seq analyses of R‒Q and S‒N populations obtained from herbicide-treated and mock-treated leaf samples after treatment were conducted to generate a full-length transcriptome database. We analyzed differentially expressed genes (DEGs) among the R-Q and S‒N A. retroflexus populations treated with recommended dose and mock-treated on the 1st (24 h) and 3rd (72 h) days to identify genes involved in fomesafen resistance. All 82,287 unigenes were annotated by Blastx search with E-value < 0.00001 from 7 databases. A total of 94,815 DEGs among the three group comparisons were identified. Two nuclear genes encoding PPO (PPX1 and PPX2) and five unigenes belonging to the AP2-EREBP, GRAS, NAC, bHLH and bZIP families exhibited different expression patterns between individuals of S‒N and R-Q populations. The A. retroflexus transcriptome and specific transcription factor families which can respond to fomesafen in resistant and susceptible genotypes were reported in this paper. The PPX1 and PPX2 genes of the target enzyme were identified. The study establishes the foundation for future research and provides opportunities to manage resistant weeds better.
Collapse
Affiliation(s)
- Yulian Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Yu Wang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Xiangyun Zang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Chan Luo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Chunyan Huang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Keqiang Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Xiaotong Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Wrzesińska-Krupa B, Szmatoła T, Praczyk T, Obrępalska-Stęplowska A. Transcriptome analysis indicates the involvement of herbicide-responsive and plant-pathogen interaction pathways in the development of resistance to ACCase inhibitors in Apera spica-venti. PEST MANAGEMENT SCIENCE 2023; 79:1944-1962. [PMID: 36655853 DOI: 10.1002/ps.7370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The continuous use of the herbicides contributes to the emergence of the resistant populations of numerous weed species that are tolerant to multiple herbicides with different modes of action (multiple resistance) which is provided by non-target-site resistance mechanisms. In this study, we addressed the question of rapid acquisition of herbicide resistance to pinoxaden (acetyl CoA carboxylase inhibitor) in Apera spica-venti, which endangers winter cereal crops and has high adaptation capabilities to inhabit many rural locations. To this end, de novo transcriptome of Apera spica-venti was assembled and RNA-sequencing analysis of plants resistant and susceptible to pinoxaden treated with this herbicide was performed. RESULTS The obtained data showed that the prime candidate genes responsible for herbicide resistance were those encoding 3-ketoacyl-CoA synthase 12-like, UDP-glycosyltransferases (UGT) including UGT75K6, UGT75E2, UGT83A1-like, and glutathione S-transferases (GSTs) such as GSTU1 and GSTU6. Also, such highly accelerated herbicide resistance emergence may result from the enhanced constitutive expression of a wide range of genes involved in detoxification already before herbicide treatment and may also influence response to biotic stresses, which was assumed by the detection of expression changes in genes encoding defence-related proteins, including receptor kinase-like Xa21. Moreover, alterations in the expression of genes associated with methylation in non-treated herbicide-resistant populations were identified. CONCLUSION The obtained results indicated genes that may be involved in herbicide resistance. Moreover, they provide valuable insight into the possible effect of resistance on the weed interaction with the other stresses by indicating pathways associated with both abiotic and biotic stresses. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Barbara Wrzesińska-Krupa
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, Poznań, Poland
| | - Tomasz Szmatoła
- Centre for Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Tadeusz Praczyk
- Department of Weed Science and Plant Protection Techniques, Institute of Plant Protection - National Research Institute, Poznań, Poland
| | | |
Collapse
|
3
|
Ajeesh Krishna TP, Maharajan T, Ceasar SA. Improvement of millets in the post-genomic era. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:669-685. [PMID: 35465206 PMCID: PMC8986959 DOI: 10.1007/s12298-022-01158-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
Millets are food and nutrient security crops in the semi-arid tropics of developing countries. Crop improvement using modern tools is one of the priority areas of research in millets. The whole-genome sequence (WGS) of millets provides new insight into understanding and studying the genes, genome organization and genomic-assisted improvement of millets. The WGS of millets helps to carry out genome-wide comparison and co-linearity studies among millets and other cereal crops. This approach might lead to the identification of genes underlying biotic and abiotic stress tolerance in millets. The available genome sequence of millets can be used for SNP identification, allele discovery, association and linkage mapping, identification of valuable candidate genes, and marker-assisted breeding (MAB) programs. Next generation sequencing (NGS) technology provides opportunities for genome-assisted breeding (GAB) through genomic selection (GS) and genome-wide association studies (GAWS) for crop improvement. Clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing (GE) system provides new opportunities for millet improvement. In this review, we discuss the details on the WGS available for millets and highlight the importance of utilizing such resources in the post-genomic era for millet improvement. We also draw inroads on the utilization of various approaches such as GS, GWAS, functional genomics, gene validation and GE for millet improvement. This review might be helpful for understanding the developments in the post-genomic era of millet improvement.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| |
Collapse
|
4
|
Yang X, Han H, Cao J, Li Y, Yu Q, Powles SB. Exploring quinclorac resistance mechanisms in Echinochloa crus-pavonis from China. PEST MANAGEMENT SCIENCE 2021; 77:194-201. [PMID: 32652760 DOI: 10.1002/ps.6007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Barnyardgrass (Echinochloa spp.) is a global weed in rice fields. Quinclorac is commonly used to control barnyardgrass. However, due to persistent use, quinclorac resistance has evolved. We obtained quinclorac-susceptible (QS) and -resistant (QR1, QR2) lines from the progeny of a single resistant E. crus-pavonis for a resistance mechanism study. RESULTS Line QR1 exhibited resistance to high quinclorac rates (up to 6400 g ha-1 ), whereas line QR2 exhibited a resistance/susceptibility segregation ratio of 3:1 at the field or lower rates (400, 100 g ha-1 ). Intriguingly, a lower level of 14 C-quinclorac metabolism and hence a higher level of 14 C-quinclorac translocation was observed in QR1 than QS plants. The basal expression levels of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase 2 (ACO2) genes did not differ significantly between the QR1 and QS lines. However, more expression of ACS and ACO genes was induced by quinclorac treatment in QS than in QR1. Basal levels of β-cyanoalanine synthase (β-CAS) gene expression were similar in QS and QR1 plants, but a greater level of down-regulation was detected in QS than in QR1 plants after quinclorac treatment. CONCLUSION These results indicate QR plants are less responsive to quinclorac than QS plants in terms of up-regulating quinclorac metabolism and ethylene synthesis. Resistance in this E. crus-pavonis line is likely controlled by a single major gene, involving possibly an alteration in auxin signal perception/transduction to the ethylene biosynthesis pathway. The β-CAS is unlikely to play a major role in quinclorac resistance in this particular population.
Collapse
Affiliation(s)
- Xia Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| | - Jingjing Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongfeng Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Agricultural Engineering Research Institute, Jiangsu University, Zhenjiang, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| |
Collapse
|
5
|
Transcriptome analysis identified the mechanism of synergy between sethoxydim herbicide and a mycoherbicide on green foxtail. Sci Rep 2020; 10:21690. [PMID: 33303778 PMCID: PMC7730142 DOI: 10.1038/s41598-020-78290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
Certain synthetic herbicides can act synergistically with specific bioherbicides. In this study, a sethoxydim herbicide at 0.1× label rate improved biocontrol of herbicide-sensitive green foxtail (Setaria viridis, GFT) by Pyricularia setariae (a fungal bioherbicide agent), but did not change the efficacy on a herbicide-resistant GFT biotype. Reference transcriptomes were constructed for both GFT biotypes via de novo assembly of RNA-seq data. GFT plants treated with herbicide alone, fungus alone and herbicide + fungus were compared for weed-control efficacy and differences in transcriptomes. On herbicide-sensitive GFT, sethoxydim at the reduced rate induced ABA-activated signaling pathways and a bZIP transcription factor 60 (TF bZIP60), while improved the efficacy of biocontrol. The herbicide treatment did not increase these activities or improve biocontrol efficacy on herbicide-resistant plants. An exogenous application of ABA to herbicide-sensitive plants also enhanced bZIP60 expression and improved biocontrol efficacy, which supported the results of transcriptome analysis that identified the involvement of ABA and bZIP60 in impaired plant defense against P. setariae. It is novel to use transcriptome analysis to decipher the molecular basis for synergy between a synthetic herbicide and a bioherbicide agent. A better understanding of the mechanism underlining the synergy may facilitate the development of weed biocontrol.
Collapse
|
6
|
Bai S, Zhao Y, Zhou Y, Wang M, Li Y, Luo X, Li L. Identification and expression of main genes involved in non-target site resistance mechanisms to fenoxaprop-p-ethyl in Beckmannia syzigachne. PEST MANAGEMENT SCIENCE 2020; 76:2619-2626. [PMID: 32083373 DOI: 10.1002/ps.5800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Non-target-site resistance (NTSR) to herbicides is a serious threat to global agriculture. Although metabolic resistance is the dominant mechanism of NTSR, the molecular mechanisms are not yet well-characterized. This study aimed to uncover the likely metabolism-related genes in Beckmannia syzigachne (American sloughgrass) resistant to fenoxaprop-p-ethyl. RESULTS Ultra-performance liquid chromatography - tandem mass spectrometry experiments showed that the resistant American sloughgrass biotype (R, SD-04-SS) showed enhanced degradation of this herbicide compared to the susceptible biotype (S, SD-12). R and S biotype were harvested at 24 h after fenoxaprop-p-ethyl treatment to conduct RNA sequencing (RNA-Seq) analysis to investigate the likely fenoxaprop-p-ethyl metabolic genes. The RNA-Seq libraries yield 417 969 980 clean reads. The de novo assembly generated 115 112 unigenes, of which 57 906 unigenes were annotated. Finally, we identified 273 cytochrome P450s, 178 oxidases, 47 glutathione S-transferases (GSTs), 166 glucosyltransferases (GTs) and 180 ABC transporter genes to determine the likely fenoxaprop-p-ethyl metabolism-related genes in R biotype. Twelve overlapping up-regulated genes in the R biotype (fenoxaprop-p-ethyl-treated R/non-treated R, fenoxaprop-p-ethyl-treated R/fenoxaprop-p-ethyl-treated S) were identified by RNA-Seq and the results were validated using qRT-PCR. Ten were identified as fenoxaprop-p-ethyl metabolism-related genes, including three P450s (homologous to CYP71D7, CYP99A2 and CYP71D10), one GST (homologous to GSTF1), two GTs (homologous to UGT90A1 and UGT83A1) and four oxidase genes. CONCLUSION This work demonstrates that the NTSR mechanism by means of enhanced detoxification of fenoxaprop-p-ethyl in American sloughgrass is very likely driven by herbicide metabolism related genes. The RNA-Seq data presented here provide a valuable resource for understanding the molecular mechanism of NTSR in American sloughgrass. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Bai
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| | - Yanfang Zhao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Yuanming Zhou
- Central Laboratory of Qingdao Agricultural University, Qingdao, China
| | - Mingliang Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| | - Yihui Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| | - Xiaoyong Luo
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| | - Lingxu Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| |
Collapse
|
7
|
Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J. Barnyard Millet for Food and Nutritional Security: Current Status and Future Research Direction. Front Genet 2020; 11:500. [PMID: 32655612 PMCID: PMC7325689 DOI: 10.3389/fgene.2020.00500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 01/09/2023] Open
Abstract
Barnyard millet (Echinochloa species) has become one of the most important minor millet crops in Asia, showing a firm upsurge in world production. The genus Echinochloa comprises of two major species, Echinochloa esculenta and Echinochloa frumentacea, which are predominantly cultivated for human consumption and livestock feed. They are less susceptible to biotic and abiotic stresses. Barnyard millet grain is a good source of protein, carbohydrate, fiber, and, most notably, contains more micronutrients (iron and zinc) than other major cereals. Despite its nutritional and agronomic benefits, barnyard millet has remained an underutilized crop. Over the past decades, very limited attempts have been made to study the features of this crop. Hence, more concerted research efforts are required to characterize germplasm resources, identify trait-specific donors, develop mapping population, and discover QTL/gene (s). The recent release of genome and transcriptome sequences of wild and cultivated Echinochloa species, respectively has facilitated in understanding the genetic architecture and decoding the rapport between genotype and phenotype of micronutrients and agronomic traits in this crop. In this review, we highlight the importance of barnyard millet in the current scenario and discuss the up-to-date status of genetic and genomics research and the research gaps to be worked upon by suggesting directions for future research to make barnyard millet a potential crop in contributing to food and nutritional security.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jegadeesan Ramalingam
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
8
|
Fang J, Zhang Y, Liu T, Yan B, Li J, Dong L. Target-Site and Metabolic Resistance Mechanisms to Penoxsulam in Barnyardgrass ( Echinochloa crus-galli (L.) P. Beauv). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8085-8095. [PMID: 31265279 DOI: 10.1021/acs.jafc.9b01641] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Herbicide resistance identification is essential for effective chemical weed control. In this study, we quantified the differences in growth response between penoxsulam resistant (R) and sensitive (S) Echinochloa crus-galli populations, explored the changes in ALS, and performed genetic analyses to identify metabolic genes that are up-regulated by the application of penoxsulam and other common herbicides. The R population showed a 26.0-fold higher resistance to penoxsulam and varied resistance to most tested herbicides with indices ranging from 4.9 to 145.9. A Trp-574-Arg amino acid mutation in ALS and low penoxsulam ALS sensitivity were the main mechanisms underlying herbicide resistance. The penoxsulam resistance can be significantly reversed by two P450s inhibitors and one GST inhibitor. By RNA-Seq, thirty-six highly expressed contigs were selected, and 30 of them were up-regulated in the R population treated by penoxsulam. Many of these genes were significantly expressed when treated with pyroxsulam, metamifop, and quinclorac. These upregulated genes appear to be complementary for plant resistance to penoxsulam and other common herbicides.
Collapse
Affiliation(s)
- Jiapeng Fang
- College of Plant Protection , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095 , People's Republic of China
| | - Yuhua Zhang
- College of Plant Protection , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095 , People's Republic of China
| | - Tingting Liu
- College of Plant Protection , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095 , People's Republic of China
| | - Bojun Yan
- College of Plant Protection , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095 , People's Republic of China
| | - Jun Li
- College of Plant Protection , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095 , People's Republic of China
| | - Liyao Dong
- College of Plant Protection , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing 210095 , People's Republic of China
| |
Collapse
|
9
|
Liu W, Bai S, Zhao N, Jia S, Li W, Zhang L, Wang J. Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC PLANT BIOLOGY 2018; 18:225. [PMID: 30305027 PMCID: PMC6180388 DOI: 10.1186/s12870-018-1451-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/27/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND Water chickweed (Myosoton aquaticum (L.)) is a dicot broadleaf weed that is widespread in winter fields in China, and has evolved serious resistance to acetolactate synthase (ALS) inhibiting herbicides. RESULTS We identified a M. aquaticum population exhibiting moderate (6.15-fold) resistance to tribenuron-methyl (TM). Target-site ALS gene sequencing revealed no known resistance mutations in these plants, and the in vitro ALS activity assays showed no differences in enzyme sensitivity between susceptible and resistant populations; however, resistance was reversed by pretreatment with the cytochrome P450 (CYP) monooxygenase inhibitor malathion. An RNA sequencing transcriptome analysis was performed to identify candidate genes involved in metabolic resistance, and the unigenes obtained by de novo transcriptome assembly were annotated across seven databases. In total, 34 differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time (qRT)-PCR. Ten consistently overexpressed contigs, including four for CYP, four for ATP-binding cassette (ABC) transporter, and two for peroxidase were further validated by qRT-PCR using additional plants from resistant and susceptible populations. Three CYP genes (with homology to CYP734A1, CYP76C1, and CYP86B1) and one ABC transporter gene (with homology to ABCC10) were highly expressed in all resistant plants. CONCLUSION The mechanism of TM resistance in M. aquaticum is controlled by NTSR rather than TSR. Four genes, CYP734A1, CYP76C1, CYP86B1, and ABCC10 could play essential role in metabolic resistance to TM and justify further functional studies. To our knowledge, this is the first large-scale transcriptome analysis of genes associated with NTSR in M. aquaticum using the Illumina platform. Our data provide resource for M. aquaticum biology, and will facilitate the study of herbicide resistance mechanism at the molecular level in this species as well as in other weeds.
Collapse
Affiliation(s)
- Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Shuang Bai
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Ning Zhao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Sisi Jia
- Taian Customs, Taian, 271000 Shandong China
| | - Wei Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Lele Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
10
|
Peterson MA, Collavo A, Ovejero R, Shivrain V, Walsh MJ. The challenge of herbicide resistance around the world: a current summary. PEST MANAGEMENT SCIENCE 2018; 74:2246-2259. [PMID: 29222931 DOI: 10.1002/ps.4821] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 05/23/2023]
Abstract
Herbicide-resistant weeds have been observed since the early years of synthetic herbicide development in the 1950s and 1960s. Since that time there has been a consistent increase in the number of cases of herbicide resistance and the impact of herbicide-resistant weeds. Although the nature of crop production varies widely around the world, herbicides have become a primary tool for weed control in most areas. Dependence on herbicides continues to increase as global populations migrate away from rural areas to cities and the agricultural labor force declines. This increased use of herbicides and the concurrent selection pressure have resulted in a rise in cases of multiple resistance, leaving some farmers with few or no herbicide options for certain weed infestations. Global population and economic forces drive many farmer choices regarding crop production and weed control. The challenge is how to insert best management practices into the decision-making process while addressing various economic and regulatory needs. This review endeavors to provide a current overview of herbicide resistance challenges in the major crop production areas of the world and discusses some research initiatives designed to address portions of the problem. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Michael J Walsh
- School of Life and Environmental Sciences, University of Sydney, Narrabri, Australia
| |
Collapse
|
11
|
Tétard‐Jones C, Sabbadin F, Moss S, Hull R, Neve P, Edwards R. Changes in the proteome of the problem weed blackgrass correlating with multiple-herbicide resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:709-720. [PMID: 29575327 PMCID: PMC5969246 DOI: 10.1111/tpj.13892] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 05/02/2023]
Abstract
Herbicide resistance in grass weeds is now one of the greatest threats to sustainable cereal production in Northern Europe. Multiple-herbicide resistance (MHR), a poorly understood multigenic and quantitative trait, is particularly problematic as it provides tolerance to most classes of chemistries currently used for post-emergence weed control. Using a combination of transcriptomics and proteomics, the evolution of MHR in populations of the weed blackgrass (Alopecurus myosuroides) has been investigated. While over 4500 genes showed perturbation in their expression in MHR versus herbicide sensitive (HS) plants, only a small group of proteins showed >2-fold changes in abundance, with a mere eight proteins consistently associated with this class of resistance. Of the eight, orthologues of three of these proteins are also known to be associated with multiple drug resistance (MDR) in humans, suggesting a cross-phyla conservation in evolved tolerance to chemical agents. Proteomics revealed that MHR could be classified into three sub-types based on the association with resistance to herbicides with differing modes of action (MoA), being either global, specific to diverse chemistries acting on one MoA, or herbicide specific. Furthermore, the proteome of MHR plants were distinct from that of HS plants exposed to a range of biotic (insect feeding, plant-microbe interaction) and abiotic (N-limitation, osmotic, heat, herbicide safening) challenges commonly encountered in the field. It was concluded that MHR in blackgrass is a uniquely evolving trait(s), associated with changes in the proteome that are distinct from responses to conventional plant stresses, but sharing common features with MDR in humans.
Collapse
Affiliation(s)
- Catherine Tétard‐Jones
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| | | | - Stephen Moss
- Stephen Moss Consulting7 Alzey GardensHarpendenHertfordshireAL5 5SZUK
| | - Richard Hull
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Paul Neve
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| |
Collapse
|
12
|
Salas-Perez RA, Saski CA, Noorai RE, Srivastava SK, Lawton-Rauh AL, Nichols RL, Roma-Burgos N. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PLoS One 2018; 13:e0195488. [PMID: 29672568 PMCID: PMC5908165 DOI: 10.1371/journal.pone.0195488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2018] [Indexed: 11/24/2022] Open
Abstract
Amaranthus palmeri (Amaranthaceae) is a noxious weed in several agroecosystems and in some cases seriously threatens the sustainability of crop production in North America. Glyphosate-resistant Amaranthus species are widespread, prompting the use of alternatives to glyphosate such as glufosinate, in conjunction with glufosinate-resistant crop cultivars, to help control glyphosate-resistant weeds. An experiment was conducted to analyze the transcriptome of A. palmeri plants that survived exposure to 0.55 kg ha-1 glufosinate. Since there was no record of glufosinate use at the collection site, survival of plants within the population are likely due to genetic expression that pre-dates selection; in the formal parlance of weed science this is described as natural tolerance. Leaf tissues from glufosinate-treated and non-treated seedlings were harvested 24 h after treatment (HAT) for RNA-Seq analysis. Global gene expression was measured using Illumina DNA sequence reads from non-treated and treated surviving (presumably tolerant, T) and susceptible (S) plants. The same plants were used to determine the mechanisms conferring differential tolerance to glufosinate. The S plants accumulated twice as much ammonia as did the T plants, 24 HAT. The relative copy number of the glufosinate target gene GS2 did not differ between T and S plants, with 1 to 3 GS2 copies in both biotypes. A reference cDNA transcriptome consisting of 72,780 contigs was assembled, with 65,282 sequences putatively annotated. Sequences of GS2 from the transcriptome assembly did not have polymorphisms unique to the tolerant plants. Five hundred sixty-seven genes were differentially expressed between treated T and S plants. Of the upregulated genes in treated T plants, 210 were more highly induced than were the upregulated genes in the treated S plants. Glufosinate-tolerant plants had greater induction of ABC transporter, glutathione S-transferase (GST), NAC transcription factor, nitronate monooxygenase (NMO), chitin elicitor receptor kinase (CERK1), heat shock protein 83, ethylene transcription factor, heat stress transcription factor, NADH-ubiquinone oxidoreductase, ABA 8'-hydroxylase, and cytochrome P450 genes (CYP72A, CYP94A1). Seven candidate genes were selected for validation using quantitative real time-PCR. While GST was upregulated in treated tolerant plants in at least one population, CYP72A219 was consistently highly expressed in all treated tolerant biotypes. These genes are candidates for contributing tolerance to glufosinate. Taken together, these results show that differential induction of stress-protection genes in a population can enable some individuals to survive herbicide application. Elevated expression of detoxification-related genes can get fixed in a population with sustained selection pressure, leading to evolution of resistance. Alternatively, sustained selection pressure could select for mutation(s) in the GS2 gene with the same consequence.
Collapse
Affiliation(s)
- Reiofeli A. Salas-Perez
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Christopher A. Saski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Rooksana E. Noorai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Subodh K. Srivastava
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Amy L. Lawton-Rauh
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | | | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
13
|
Keith BK, Burns EE, Bothner B, Carey CC, Mazurie AJ, Hilmer JK, Biyiklioglu S, Budak H, Dyer WE. Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L. PEST MANAGEMENT SCIENCE 2017; 73:2267-2281. [PMID: 28485049 DOI: 10.1002/ps.4605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Intensive use of herbicides has led to the evolution of two multiple herbicide-resistant (MHR) Avena fatua (wild oat) populations in Montana that are resistant to members of all selective herbicide families available for A. fatua control in US small grain crops. We used transcriptome and proteome surveys to compare constitutive changes in MHR and herbicide-susceptible (HS) plants associated with non-target site resistance. RESULTS Compared to HS plants, MHR plants contained constitutively elevated levels of differentially expressed genes (DEGs) with functions in xenobiotic catabolism, stress response, redox maintenance and transcriptional regulation that are similar to abiotic stress-tolerant phenotypes. Proteome comparisons identified similarly elevated proteins including biosynthetic and multifunctional enzymes in MHR plants. Of 25 DEGs validated by RT-qPCR assay, differential regulation of 21 co-segregated with flucarbazone-sodium herbicide resistance in F3 families, and a subset of 10 of these were induced or repressed in herbicide-treated HS plants. CONCLUSION Although the individual and collective contributions of these DEGs and proteins to MHR remain to be determined, our results support the idea that intensive herbicide use has selected for MHR populations with altered, constitutively regulated patterns of gene expression that are similar to those in abiotic stress-tolerant plants. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Barbara K Keith
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Erin E Burns
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry Research, Montana State University, Bozeman, MT, USA
| | - Charles C Carey
- Research Cyberinfrastructure, Montana State University, Bozeman, MT, USA
| | - Aurélien J Mazurie
- Research Cyberinfrastructure, Montana State University, Bozeman, MT, USA
| | - Jonathan K Hilmer
- Information Technology Center, Montana State University, Bozeman, MT, USA
| | - Sezgi Biyiklioglu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - William E Dyer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
14
|
Babineau M, Mahmood K, Mathiassen SK, Kudsk P, Kristensen M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genomics 2017; 18:128. [PMID: 28166737 PMCID: PMC5294808 DOI: 10.1186/s12864-017-3538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. RESULTS Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. CONCLUSIONS De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.
Collapse
Affiliation(s)
- Marielle Babineau
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Khalid Mahmood
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | | | - Per Kudsk
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Michael Kristensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| |
Collapse
|
15
|
Chen J, Huang H, Wei S, Huang Z, Wang X, Zhang C. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:407-415. [PMID: 27743420 DOI: 10.1111/tpj.13395] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Glyphosate is an important non-selective herbicide that is in common use worldwide. However, evolved glyphosate-resistant (GR) weeds significantly affect crop yields. Unfortunately, the mechanisms underlying resistance in GR weeds, such as goosegrass (Eleusine indica (L.) Gaertn.), an annual weed found worldwide, have not been fully elucidated. In this study, transcriptome analysis was conducted to further assess the potential mechanisms of glyphosate resistance in goosegrass. The RNA sequencing libraries generated 24 597 462 clean reads. De novo assembly analysis produced 48 852 UniGenes with an average length of 847 bp. All UniGenes were annotated using seven databases. Sixteen candidate differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time PCR (qRT-PCR). Among these UniGenes, the EPSPS and PFK genes were constitutively up-regulated in resistant (R) individuals and showed a higher copy number than that in susceptible (S) individuals. The expressions of four UniGenes relevant to photosynthesis were inhibited by glyphosate in S individuals, and this toxic response was confirmed by gas exchange analysis. Two UniGenes annotated as glutathione transferase (GST) were constitutively up-regulated in R individuals, and were induced by glyphosate both in R and S. In addition, the GST activities in R individuals were higher than in S. Our research confirmed that two UniGenes (PFK, EPSPS) were strongly associated with target resistance, and two GST-annotated UniGenes may play a role in metabolic glyphosate resistance in goosegrass.
Collapse
Affiliation(s)
- Jingchao Chen
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongjuan Huang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shouhui Wei
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaofeng Huang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xu Wang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaoxian Zhang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
16
|
Zhao N, Li W, Bai S, Guo W, Yuan G, Wang F, Liu W, Wang J. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis. FRONTIERS IN PLANT SCIENCE 2017; 8:1391. [PMID: 28848590 PMCID: PMC5552757 DOI: 10.3389/fpls.2017.01391] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 05/04/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol.) population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length) that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK), water-only control (WCK), and mesosulfuron-methyl treatment (T) of R and susceptible (S). Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR) validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450) genes, two glutathione S-transferase (GST) genes, two glucosyltransferase (GT) genes, two ATP-binding cassette (ABC) transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence they deserve further functional study. This is the first large-scale transcriptome-sequencing study to identify NTSR genes in A. aequalis that uses the Illumina platform. This work demonstrates that NTSR is likely driven by the differences in the expression patterns of a set of genes. The assembled transcriptome data presented here provide a valuable resource for A. aequalis biology, and should facilitate the study of herbicide resistance at the molecular level in this and other weed species.
Collapse
Affiliation(s)
- Ning Zhao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Wei Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Shuang Bai
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Wenlei Guo
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Guohui Yuan
- Eco-environment and Plant Protection Research Institute, Shanghai Academy of Agricultural SciencesShanghai, China
| | - Fan Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
- *Correspondence: Jinxin Wang
| |
Collapse
|
17
|
Yang X, Zhang Z, Gu T, Dong M, Peng Q, Bai L, Li Y. Data for iTRAQ-based quantitative proteomics analysis of different biotypes in Echinochloa crus-galli with multi-herbicide treatment. Data Brief 2016; 9:741-745. [PMID: 27830171 PMCID: PMC5094685 DOI: 10.1016/j.dib.2016.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023] Open
Abstract
Barnyardgrass (Echinochloa crus-galli) is one of the most troublesome herbicide-resistant weeds worldwide that interferes with rice growth and rice yield. Here we provide the data from a comparative proteomic analysis of leaves in resistant (R) and susceptible (S) biotypes of Echinochloa crus-galli both with and without multi-herbicide treatment in two independent biological experiments using iTRAQ. The distribution of length and number of peptides, mass and sequence coverage of proteins were presented, and the repeatability of the replicates was analyzed. 1342 differential accumulated proteins were identified from 2248 unique peptides by searching uniprot database and data analysis. These results are associated with the research article "Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.)" (X. Yang, Z. Zhang, T. Gu, M. Dong, Q. Peng, L. Bai, Y Li, 2017) [1].
Collapse
Affiliation(s)
- Xia Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zichang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tao Gu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingchao Dong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qiong Peng
- Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lianyang Bai
- Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yongfeng Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
18
|
Yang Q, Deng W, Li X, Yu Q, Bai L, Zheng M. Target-site and non-target-site based resistance to the herbicide tribenuron-methyl in flixweed (Descurainia sophia L.). BMC Genomics 2016; 17:551. [PMID: 27495977 PMCID: PMC4974779 DOI: 10.1186/s12864-016-2915-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022] Open
Abstract
Background Flixweed (Descurainia sophia L.) is a troublesome and widespread broadleaf weed in winter fields in China, and has evolved high level resistance to acetolactate synthase (ALS)-inhibiting sulfonylurea herbicide tribenuron-methyl. Results We identified a resistant flixweed population (N11) exhibiting 116.3-fold resistance to tribenuron-methyl relative to the susceptible population (SD8). Target-site ALS gene mutation Pro-197-Thr was identified in resistant plants. Moreover, the resistance can be reversed to 28.7-fold by the cytochrome P450 inhibitor malathion. The RNA-Sequencing was employed to identify candidate genes involved in non-target-site metabolic resistance in this population. Total 26 differentially expressed contigs were identified and eight of them (four P450s, one ABC transporter, three glycosyltransferase) verified by qRT-PCR. Consistent over-expression of the two contigs homology to CYP96A13 and ABCC1 transporter, respectively, were further qRT-PCR validated using additional plants from the resistant and susceptible populations. Conclusions Tribenuron-methyl resistance in flixweed is controlled by target-site ALS mutation and non-target-site based mechanisms. Two genes, CYP96A13 and ABCC1 transporter, could play an important role in metabolic resistance to tribenuron-methyl in the resistant flixweed population and justify further functional studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2915-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Wei Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Lianyang Bai
- Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Mingqi Zheng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Amaradasa BS, Amundsen K. Transcriptome Profiling of Buffalograss Challenged with the Leaf Spot Pathogen Curvularia inaequalis. FRONTIERS IN PLANT SCIENCE 2016; 7:715. [PMID: 27252728 PMCID: PMC4879344 DOI: 10.3389/fpls.2016.00715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/09/2016] [Indexed: 05/31/2023]
Abstract
Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.
Collapse
Affiliation(s)
- Bimal S. Amaradasa
- Department of Plant Pathology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| |
Collapse
|
20
|
Chen S, McElroy JS, Dane F, Goertzen LR. Transcriptome Assembly and Comparison of an Allotetraploid Weed Species, Annual Bluegrass, with its Two Diploid Progenitor Species, Schrad and Kunth. THE PLANT GENOME 2016; 9. [PMID: 27898765 DOI: 10.3835/plantgenome2015.06.0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Annual bluegrass ( L.) is one of the most widespread weed species in this world. As a young allotetraploid, has occupied diverse environments from Antarctic area to subtropical regions. To unveil the evolutionary mystery behind 's wide distribution, extensive adaptability and phenotypic plasticity needs collaboration from multiple research scopes from ecology and plant physiology to population genetics and molecular biology. However, the lack of omic data and reference has greatly hampered the study. This is the first comprehensive transcriptome study on species. Total RNA was extracted from and its two proposed diploid parents, Schrad and Kunth, and sequenced in Illumina Hiseq2000. Optimized, nonredundant transcriptome references were generated for each species using four de novo assemblers (Trinity, Velvet, SOAPdenovo, and CLC Genomics Workbench) and a redundancy-reducing pipeline (CD-HIT-EST and EvidentialGene tr2aacds). Using the constructed transcriptomes together with sequencing reads, we found high similarity in nucleotide sequences and homeologous polymorphisms between and the two proposed parents. Comparison of chloroplast and mitochondrion genes further confirmed as the maternal parent. Less nucleotide percentage differences were observed between and homeologs than between and homeologs, indicating a higher nucleotide substitution rates in homeologs than in homeologs. Gene ontology (GO) enrichment analysis suggested the more compatible cytoplasmic environment and cellular apparatus for homeologs as the major cause for this phenomenon.
Collapse
|
21
|
Xu W, Di C, Zhou S, Liu J, Li L, Liu F, Yang X, Ling Y, Su Z. Rice transcriptome analysis to identify possible herbicide quinclorac detoxification genes. Front Genet 2015; 6:306. [PMID: 26483837 PMCID: PMC4586585 DOI: 10.3389/fgene.2015.00306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/13/2015] [Indexed: 12/25/2022] Open
Abstract
Quinclorac is a highly selective auxin-type herbicide and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world's rice yield. The herbicide mode of action of quinclorac has been proposed, and hormone interactions affecting quinclorac signaling has been identified. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and other environmental health problems. In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate genes of P450 families such as CYP81, CYP709C, and CYP72A were universally induced by different herbicides. Some Arabidopsis genes of the same P450 family were up-regulated under quinclorac treatment. We conducted rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.
Collapse
Affiliation(s)
- Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University Beijing, China
| | - Chao Di
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University Beijing, China
| | - Shaoxia Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University Beijing, China
| | - Jia Liu
- Department of Applied Chemistry, College of Sciences, China Agricultural University Beijing, China
| | - Li Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University Beijing, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University Beijing, China
| | - Xinling Yang
- Department of Applied Chemistry, College of Sciences, China Agricultural University Beijing, China
| | - Yun Ling
- Department of Applied Chemistry, College of Sciences, China Agricultural University Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University Beijing, China
| |
Collapse
|
22
|
Gardin JAC, Gouzy J, Carrère S, Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics 2015; 16:590. [PMID: 26265378 PMCID: PMC4534104 DOI: 10.1186/s12864-015-1804-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022] Open
Abstract
Background Herbicide resistance in agrestal weeds is a global problem threatening food security. Non-target-site resistance (NTSR) endowed by mechanisms neutralising the herbicide or compensating for its action is considered the most agronomically noxious type of resistance. Contrary to target-site resistance, NTSR mechanisms are far from being fully elucidated. A part of weed response to herbicide stress, NTSR is considered to be largely driven by gene regulation. Our purpose was to establish a transcriptome resource allowing investigation of the transcriptomic bases of NTSR in the major grass weed Alopecurus myosuroides L. (Poaceae) for which almost no genomic or transcriptomic data was available. Results RNA-Seq was performed from plants in one F2 population that were sensitive or expressing NTSR to herbicides inhibiting acetolactate-synthase. Cloned plants were sampled over seven time-points ranging from before until 73 h after herbicide application. Assembly of over 159M high-quality Illumina reads generated a transcriptomic resource (ALOMYbase) containing 65,558 potentially active contigs (N50 = 1240 nucleotides) predicted to encode 32,138 peptides with 74 % GO annotation, of which 2017 were assigned to protein families presumably involved in NTSR. Comparison with the fully sequenced grass genomes indicated good coverage and correct representation of A. myosuroides transcriptome in ALOMYbase. The part of the herbicide transcriptomic response common to the resistant and the sensitive plants was consistent with the expected effects of acetolactate-synthase inhibition, with striking similarities observed with published Arabidopsis thaliana data. A. myosuroides plants with NTSR were first affected by herbicide action like sensitive plants, but ultimately overcame it. Analysis of differences in transcriptomic herbicide response between resistant and sensitive plants did not allow identification of processes directly explaining NTSR. Five contigs associated to NTSR in the F2 population studied were tentatively identified. They were predicted to encode three cytochromes P450 (CYP71A, CYP71B and CYP81D), one peroxidase and one disease resistance protein. Conclusions Our data confirmed that gene regulation is at the root of herbicide response and of NTSR. ALOMYbase proved to be a relevant resource to support NTSR transcriptomic studies, and constitutes a valuable tool for future research aiming at elucidating gene regulations involved in NTSR in A. myosuroides. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1804-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jérôme Gouzy
- INRA, UMR441 LIPM, F-31326, Castanet-Tolosan, France.
| | | | - Christophe Délye
- INRA, UMR1347 Agroécologie, 17 rue de Sully, F-21000, Dijon, France.
| |
Collapse
|
23
|
Uncovering the differential molecular basis of adaptive diversity in three Echinochloa leaf transcriptomes. PLoS One 2015; 10:e0134419. [PMID: 26266806 PMCID: PMC4534374 DOI: 10.1371/journal.pone.0134419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/08/2015] [Indexed: 12/04/2022] Open
Abstract
Echinochloa is a major weed that grows almost everywhere in farmed land. This high prevalence results from its high adaptability to various water conditions, including upland and paddy fields, and its ability to grow in a wide range of climates, ranging from tropical to temperate regions. Three Echinochloa crus-galli accessions (EC-SNU1, EC-SNU2, and EC-SNU3) collected in Korea have shown diversity in their responses to flooding, with EC-SNU1 exhibiting the greatest growth among three accessions. In the search for molecular components underlying adaptive diversity among the three Echinochloa crus-galli accessions, we performed de novo assembly of leaf transcriptomes and investigated the pattern of differentially expressed genes (DEGs). Although the overall composition of the three leaf transcriptomes was well-conserved, the gene expression patterns of particular gene ontology (GO) categories were notably different among the three accessions. Under non-submergence growing conditions, five protein categories (serine/threonine kinase, leucine-rich repeat kinase, signaling-related, glycoprotein, and glycosidase) were significantly (FDR, q < 0.05) enriched in up-regulated DEGs from EC-SNU1. These up-regulated DEGs include major components of signal transduction pathways, such as receptor-like kinase (RLK) and calcium-dependent protein kinase (CDPK) genes, as well as previously known abiotic stress-responsive genes. Our results therefore suggest that diversified gene expression regulation of upstream signaling components conferred the molecular basis of adaptive diversity in Echinochloa crus-galli.
Collapse
|
24
|
Chen S, McElroy JS, Flessner ML, Dane F. Utilizing next-generation sequencing to study homeologous polymorphisms and herbicide-resistance-endowing mutations in Poa annua acetolactate synthase genes. PEST MANAGEMENT SCIENCE 2015; 71:1141-8. [PMID: 25180862 DOI: 10.1002/ps.3897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Detection of single nucleotide polymorphisms (SNPs) related to herbicide resistance in non-model polyploid weed species is fraught with difficulty owing to the gene duplication and lack of reference sequences. Our research seeks to overcome these obstacles by Illumina HiSeq read mapping, SNP calling and allele frequency determinations. Our focus is on the acetolactate synthase (ALS) gene, the target site of ALS-inhibiting herbicides, in Poa annua, an allotetraploid weed species originating from two diploid parents, P. supina and P. infirma. RESULTS ALS contigs with complete coding regions of P. supina, P. infirma and P. annua were assembled and compared with ALS genes from other plant species. The ALS infirma-homeolog of P. annua showed higher levels of nucleotide sequence variability than the supina-homeolog. Comparisons of read mappings of P. annua and a simulated P. supina × P. infirma hybrid showed high resemblance. Two homeolog-specific primer pairs were designed and used to amplify a 1860 bp region covering all resistance-conferring codons in the ALS gene. Four P. annua populations, GN, RB, GW and LG, showed high resistance to two ALS inhibitors, bispyribac-sodium and foramsulfuron, and two populations, HD and RS, showed lower resistance in the rate-response trial. Mutations conferring Trp-574-Leu substitution were observed in the infirma-homeolog of GN and RB and in the supina-homeolog of GW and LG, but no resistance-conferring mutation was observed in the two populations of lower resistance, HD and RS. CONCLUSION In this study we have demonstrated the use of NGS data to study homeologous polymorphisms, parentage and herbicide resistance in an allotetraploid weed species, P. annua. Complete coding sequences of the ALS gene were assembled for P. infirma, P. supina, infirma-homeolog and supina-homeolog in P. annua. A pipeline consisting of read mapping, SNP calling and allele frequency calculation was developed to study the parentage of P. annua, which provided a new perspective on this topic besides the views of morphology, karyotype and phylogeny. Our two homeolog-specific primer pairs can be utilized in future research to separate the homeologs of the ALS gene in P. annua and cover all the codons that have been reported to confer herbicide resistance.
Collapse
Affiliation(s)
- Shu Chen
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA
| | - Michael L Flessner
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA
| | - Fenny Dane
- Department of Horticulture, Auburn University, Auburn, AL, USA
| |
Collapse
|
25
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015; 6:157. [PMID: 25852710 PMCID: PMC4371761 DOI: 10.3389/fpls.2015.00157] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/27/2015] [Indexed: 05/20/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
26
|
RNA-Seq transcriptome analysis of maize inbred carrying nicosulfuron-tolerant and nicosulfuron-susceptible alleles. Int J Mol Sci 2015; 16:5975-89. [PMID: 25782159 PMCID: PMC4394515 DOI: 10.3390/ijms16035975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/28/2023] Open
Abstract
Postemergence applications of nicosulfuron can cause great damage to certain maize inbred lines and hybrids. Variation among different responses to nicosulfuron may be attributed to differential rates of herbicide metabolism. We employed RNA-Seq analysis to compare transcriptome responses between nicosulfuron-treated and untreated in both tolerant and susceptible maize plants. A total of 71.8 million paired end Illumina RNA-Seq reads were generated, representing the transcription of around 40,441 unique reads. About 345,171 gene ontology (GO) term assignments were conducted for the annotation in terms of biological process, cellular component and molecular function categories, and 6413 sequences with 108 enzyme commission numbers were assigned to 134 predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed within the susceptible and tolerant maize between the nicosulfuron-treated and untreated conditions, 13 genes were selected as the candidates most likely involved in herbicide metabolism, and quantitative RT-PCR validated the RNA-Seq results for eight genes. This transcriptome data may provide opportunities for the study of sulfonylurea herbicides susceptibility emergence of Zea mays.
Collapse
|
27
|
Duhoux A, Carrère S, Gouzy J, Bonin L, Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. PLANT MOLECULAR BIOLOGY 2015; 87:473-87. [PMID: 25636204 DOI: 10.1007/s11103-015-0292-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/26/2015] [Indexed: 05/03/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.
Collapse
Affiliation(s)
- Arnaud Duhoux
- UMR1347 Agroécologie, INRA, 17 rue Sully, 21000, Dijon, France
| | | | | | | | | |
Collapse
|
28
|
Chen S, McElroy JS, Dane F, Peatman E. Optimizing Transcriptome Assemblies for Eleusine indica Leaf and Seedling by Combining Multiple Assemblies from Three De Novo Assemblers. THE PLANT GENOME 2015; 8:eplantgenome2014.10.0064. [PMID: 33228277 DOI: 10.3835/plantgenome2014.10.0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 06/11/2023]
Abstract
Due to rapid advances in sequencing technology, increasing amounts of genomic and transcriptomic data are available for plant species, presenting enormous challenges for biocomputing analysis. A crucial first step for a successful transcriptomics-based study is the building of a high-quality assembly. Here, we utilized three different de novo assemblers (Trinity, Velvet, and CLC) and the EvidentialGene pipeline tr2aacds to assemble two optimized transcript sets for the notorious weed species, Eleusine indica. Two RNA sequencing (RNA-seq) datasets from leaf and aboveground seedlings were processed using three assemblers, which resulted in 20 assemblies for each dataset. The contig numbers and N50 values of each assembly were compared to study the effect of read number, k-mer size, and in silico normalization on assembly output. The 20 assemblies were then processed through the tr2aacds pipeline to remove redundant transcripts and to select the transcript set with the best coding potential. Each assembly contributed a considerable proportion to the final transcript combination with the exception of the CLC-k14. Thus each assembler and parameter set did assemble better contigs for certain transcripts. The redundancy, total contig number, N50, fully assembled contig number, and transcripts related to target-site herbicide resistance were evaluated for the EvidentialGene and Trinity assemblies. Comparing the EvidentialGene set with the Trinity assembly revealed improved quality and reduced redundancy in both leaf and seedling EvidentialGene sets. The optimized transcriptome references will be useful for studying herbicide resistance in E. indica and the evolutionary process in the three allotetraploid E. indica offspring.
Collapse
Affiliation(s)
- Shu Chen
- Dep. of Crop, Soil and Environmental Science, Auburn Univ., Auburn, AL, 36849
| | - J Scott McElroy
- Dep. of Crop, Soil and Environmental Science, Auburn Univ., Auburn, AL, 36849
| | - Fenny Dane
- Dep. of Horticulture, Auburn Univ., Auburn, AL, 36849
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn Univ., Auburn, AL, 36849
| |
Collapse
|
29
|
Duhoux A, Carrère S, Gouzy J, Bonin L, Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. PLANT MOLECULAR BIOLOGY 2015; 87:473-487. [PMID: 25636204 DOI: 10.1007/s11103-015-0292-293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/26/2015] [Indexed: 05/20/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.
Collapse
Affiliation(s)
- Arnaud Duhoux
- UMR1347 Agroécologie, INRA, 17 rue Sully, 21000, Dijon, France
| | | | | | | | | |
Collapse
|
30
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 25852710 DOI: 10.3389/fpl.2015.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
- Travis L Goron
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| |
Collapse
|
31
|
Exploring the genes of yerba mate (Ilex paraguariensis A. St.-Hil.) by NGS and de novo transcriptome assembly. PLoS One 2014; 9:e109835. [PMID: 25330175 PMCID: PMC4199719 DOI: 10.1371/journal.pone.0109835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/31/2014] [Indexed: 12/28/2022] Open
Abstract
Yerba mate (Ilex paraguariensis A. St.-Hil.) is an important subtropical tree crop cultivated on 326,000 ha in Argentina, Brazil and Paraguay, with a total yield production of more than 1,000,000 t. Yerba mate presents a strong limitation regarding sequence information. The NCBI GenBank lacks an EST database of yerba mate and depicts only 80 DNA sequences, mostly uncharacterized. In this scenario, in order to elucidate the yerba mate gene landscape by means of NGS, we explored and discovered a vast collection of I. paraguariensis transcripts. Total RNA from I. paraguariensis was sequenced by Illumina HiSeq-2000 obtaining 72,031,388 pair-end 100 bp sequences. High quality reads were de novo assembled into 44,907 transcripts encompassing 40 million bases with an estimated coverage of 180X. Multiple sequence analysis allowed us to predict that yerba mate contains ∼ 32,355 genes and 12,551 gene variants or isoforms. We identified and categorized members of more than 100 metabolic pathways. Overall, we have identified ∼ 1,000 putative transcription factors, genes involved in heat and oxidative stress, pathogen response, as well as disease resistance and hormone response. We have also identified, based in sequence homology searches, novel transcripts related to osmotic, drought, salinity and cold stress, senescence and early flowering. We have also pinpointed several members of the gene silencing pathway, and characterized the silencing effector Argonaute1. We predicted a diverse supply of putative microRNA precursors involved in developmental processes. We present here the first draft of the transcribed genomes of the yerba mate chloroplast and mitochondrion. The putative sequence and predicted structure of the caffeine synthase of yerba mate is presented. Moreover, we provide a collection of over 10,800 SSR accessible to the scientific community interested in yerba mate genetic improvement. This contribution broadly expands the limited knowledge of yerba mate genes, and is presented as the first genomic resource of this important crop.
Collapse
|
32
|
Qualitative de novo analysis of full length cDNA and quantitative analysis of gene expression for common marmoset (Callithrix jacchus) transcriptomes using parallel long-read technology and short-read sequencing. PLoS One 2014; 9:e100936. [PMID: 24977701 PMCID: PMC4076266 DOI: 10.1371/journal.pone.0100936] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a non-human primate that could prove useful as human pharmacokinetic and biomedical research models. The cytochromes P450 (P450s) are a superfamily of enzymes that have critical roles in drug metabolism and disposition via monooxygenation of a broad range of xenobiotics; however, information on some marmoset P450s is currently limited. Therefore, identification and quantitative analysis of tissue-specific mRNA transcripts, including those of P450s and flavin-containing monooxygenases (FMO, another monooxygenase family), need to be carried out in detail before the marmoset can be used as an animal model in drug development. De novo assembly and expression analysis of marmoset transcripts were conducted with pooled liver, intestine, kidney, and brain samples from three male and three female marmosets. After unique sequences were automatically aligned by assembling software, the mean contig length was 718 bp (with a standard deviation of 457 bp) among a total of 47,883 transcripts. Approximately 30% of the total transcripts were matched to known marmoset sequences. Gene expression in 18 marmoset P450- and 4 FMO-like genes displayed some tissue-specific patterns. Of these, the three most highly expressed in marmoset liver were P450 2D-, 2E-, and 3A-like genes. In extrahepatic tissues, including brain, gene expressions of these monooxygenases were lower than those in liver, although P450 3A4 (previously P450 3A21) in intestine and P450 4A11- and FMO1-like genes in kidney were relatively highly expressed. By means of massive parallel long-read sequencing and short-read technology applied to marmoset liver, intestine, kidney, and brain, the combined next-generation sequencing analyses reported here were able to identify novel marmoset drug-metabolizing P450 transcripts that have until now been little reported. These results provide a foundation for mechanistic studies and pave the way for the use of marmosets as model animals for drug development in the future.
Collapse
|
33
|
An J, Shen X, Ma Q, Yang C, Liu S, Chen Y. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.). PLoS One 2014; 9:e99940. [PMID: 24927422 PMCID: PMC4057336 DOI: 10.1371/journal.pone.0099940] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/20/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Goosegrass (Eleusine indica L.), a serious annual weed in the world, has evolved resistance to several herbicides including paraquat, a non-selective herbicide. The mechanism of paraquat resistance in weeds is only partially understood. To further study the molecular mechanism underlying paraquat resistance in goosegrass, we performed transcriptome analysis of susceptible and resistant biotypes of goosegrass with or without paraquat treatment. RESULTS The RNA-seq libraries generated 194,716,560 valid reads with an average length of 91.29 bp. De novo assembly analysis produced 158,461 transcripts with an average length of 1153.74 bp and 100,742 unigenes with an average length of 712.79 bp. Among these, 25,926 unigenes were assigned to 65 GO terms that contained three main categories. A total of 13,809 unigenes with 1,208 enzyme commission numbers were assigned to 314 predicted KEGG metabolic pathways, and 12,719 unigenes were categorized into 25 KOG classifications. Furthermore, our results revealed that 53 genes related to reactive oxygen species scavenging, 10 genes related to polyamines and 18 genes related to transport were differentially expressed in paraquat treatment experiments. The genes related to polyamines and transport are likely potential candidate genes that could be further investigated to confirm their roles in paraquat resistance of goosegrass. CONCLUSION This is the first large-scale transcriptome sequencing of E. indica using the Illumina platform. Potential genes involved in paraquat resistance were identified from the assembled sequences. The transcriptome data may serve as a reference for further analysis of gene expression and functional genomics studies, and will facilitate the study of paraquat resistance at the molecular level in goosegrass.
Collapse
Affiliation(s)
- Jing An
- Weed Research Laboratory, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Xuefeng Shen
- Weed Research Laboratory, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Qibin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Cunyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Simin Liu
- Weed Research Laboratory, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Yong Chen
- Weed Research Laboratory, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
34
|
Kawakami T, Darby BJ, Ungerer MC. Transcriptome resources for the perennial sunflowerHelianthus maximilianiobtained from ecologically divergent populations. Mol Ecol Resour 2014; 14:812-9. [DOI: 10.1111/1755-0998.12227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Takeshi Kawakami
- Division of Biology; Kansas State University; Manhattan KS 66506 USA
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Brian J. Darby
- Department of Biology; University of North Dakota; Grand Forks ND 58202 USA
| | - Mark C. Ungerer
- Division of Biology; Kansas State University; Manhattan KS 66506 USA
| |
Collapse
|