1
|
Chang JC, Thompson BP, Doherty CJ, Mann LM, Berdeklis AN, Foster GE, Tupling AR, Swenson ER, Dominelli PB. Effects of two carbonic anhydrase inhibitors on exercise performance in acute hypoxia. J Appl Physiol (1985) 2024; 137:1566-1579. [PMID: 39480272 DOI: 10.1152/japplphysiol.00589.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
Acute mountain sickness (AMS) occurs due to rapid altitude ascents and/or insufficient acclimatization. Acetazolamide (AZ) is commonly prescribed for AMS prophylaxis but inhibits exercise performance. Methazolamide (MZ), an analogous drug, has similar prophylactic benefits but does not impair isolated muscle mass exercise performance in normoxia. We sought to compare whole body exercise performance in acute hypoxia (fraction of inspired oxygen, [Formula: see text] = 0.15) between AZ, MZ, and placebo (PLA). Fifteen healthy participants completed five testing visits: day 1 for maximal exercise test, day 2 for familiarization, and days 3-5 were the experimental visits. Each experimental visit involved a 5-km hypoxic cycling time trial (TT) performed after a 2-day dosing protocol of either AZ (250 mg three times a day), MZ (100 mg twice a day), or PLA (three times a day); the order was randomized and double-blinded. Before exercise, capillary blood samples were taken, and maximal voluntary contractions of quadriceps were performed. AZ and MZ resulted in a partially compensated metabolic acidosis at rest compared with PLA [capillary hydrogen ions (H+) 47 ± 3, 43 ± 2, and 39 ± 2 nmol for AZ, MZ, and PLA respectively, P < 0.01]. Time to complete 5 km with PLA (562 ± 32 s, P < 0.01) was significantly faster than AZ and MZ (577 ± 38 vs. 581 ± 37 s, respectively), with no differences between AZ and MZ (P = 0.96). There were no differences in average ventilation (124 ± 27, 127 ± 24, 127 ± 19 L/min) and oxyhemoglobin saturation (87 ± 2, 88 ± 2, 88 ± 3%) between AZ, MZ, and PLA, respectively (P > 0.05). Overall, both AZ and MZ impair whole body exercise performance in acute normobaric hypoxia.NEW & NOTEWORTHY Administration of acetazolamide (AZ) and methazolamide (MZ) both resulted in a significantly slower 5-km time trial in acute normobaric hypoxia compared with a placebo. Both drugs lead to a partially compensated metabolic acidosis, but ventilation and oxyhemoglobin saturation were not different across the conditions. Overall, acetazolamide and methazolamide both impaired whole body exercise performance in acute normobaric hypoxia but potentially have different mechanisms of action.
Collapse
Affiliation(s)
- Jou-Chung Chang
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin P Thompson
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Connor J Doherty
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Leah M Mann
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Antonia N Berdeklis
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Glen E Foster
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - A Russell Tupling
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Erik R Swenson
- Department of Medicine, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Paolo B Dominelli
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Maqoud F, Tricarico D, Mallamaci R, Orlando A, Russo F. The Role of Ion Channels in Functional Gastrointestinal Disorders (FGID): Evidence of Channelopathies and Potential Avenues for Future Research and Therapeutic Targets. Int J Mol Sci 2023; 24:11074. [PMID: 37446251 DOI: 10.3390/ijms241311074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Several gastrointestinal (GI) tract abnormalities, including visceral hypersensitivity, motility, and intestinal permeability alterations, have been implicated in functional GI disorders (FGIDs). Ion channels play a crucial role in all the functions mentioned above. Hormones and natural molecules modulate these channels and represent targets of drugs and bacterial toxins. Mutations and abnormal functional expression of ion channel subunits can lead to diseases called channelopathies. These channelopathies in gastroenterology are gaining a strong interest, and the evidence of co-relationships is increasing. In this review, we describe the correlation status between channelopathies and FGIDs. Different findings are available. Among others, mutations in the ABCC7/CFTR gene have been described as a cause of constipation and diarrhea. Mutations of the SCN5A gene are instead associated with irritable bowel syndrome. In contrast, mutations of the TRPV1 and TRPA genes of the transient receptor potential (TRP) superfamily manifest hypersensitivity and visceral pain in sensory nerves. Recently, mice and humans affected by Cantu syndrome (CS), which is associated with the mutations of the KCNJ8 and ABCC9 genes encoding for the Kir6.1 and SUR2 subunits, showed dysfunction of contractility throughout the intestine and death in the mice after the weaning on solid food. The discovery of a correlation between channelopathies and FIGD opens new avenues for discovering new direct drug targets for specific channelopathies, leading to significant implications for diagnosing and treating functional GI diseases.
Collapse
Affiliation(s)
- Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
3
|
Beltran-Huarac J, Yamaleyeva DN, Dotti G, Hingtgen S, Sokolsky-Papkov M, Kabanov AV. Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19877-19891. [PMID: 37040569 PMCID: PMC10143622 DOI: 10.1021/acsami.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Engineered cells used as smart vehicles for delivery of secreted therapeutic proteins enable effective treatment of cancer and certain degenerative, autoimmune, and genetic disorders. However, current cell-based therapies use mostly invasive tools for tracking proteins and do not allow for controlled secretion of therapeutic proteins, which could result in unconstrained killing of surrounding healthy tissues or ineffective killing of host cancer cells. Regulating the expression of therapeutic proteins after success of therapy remains elusive. In this study, a noninvasive therapeutic approach mediated by magneto-mechanical actuation (MMA) was developed to remotely regulate the expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein, which is secreted by transduced cells. Stem cells, macrophages, and breast cancer cells were transduced with a lentiviral vector encoding the SGpL2TR protein. SGpL2TR comprises TRAIL and GpLuc domains optimized for cell-based applications. Our approach relies on the remote actuation of cubic-shape highly magnetic field responsive superparamagnetic iron oxide nanoparticles (SPIONs) coated with nitrodopamine PEG (ND-PEG), which are internalized within the cells. Cubic ND-PEG-SPIONs actuated by superlow frequency alternating current magnetic fields can translate magnetic forces into mechanical motion and in turn spur mechanosensitive cellular responses. Cubic ND-PEG-SPIONs were artificially designed to effectively operate at low magnetic field strengths (<100 mT) retaining approximately 60% of their saturation magnetization. Compared to other cells, stems cells were more sensitive to the interaction with actuated cubic ND-PEG-SPIONs, which clustered near the endoplasmic reticulum (ER). Luciferase, ELISA, and RT-qPCR analyses revealed a marked TRAIL downregulation (secretion levels were depleted down to 30%) when intracellular particles at 0.100 mg/mL Fe were actuated by magnetic fields (65 mT and 50 Hz for 30 min). Western blot studies indicated actuated, intracellular cubic ND-PEG-SPIONs can cause mild ER stress at short periods (up to 3 h) of postmagnetic field treatment thus leading to the unfolded protein response. We observed that the interaction of TRAIL polypeptides with ND-PEG can also contribute to this response. To prove the applicability of our approach, we used glioblastoma cells, which were exposed to TRAIL secreted from stem cells. We demonstrated that in the absence of MMA treatment, TRAIL essentially killed glioblastoma cells indiscriminately, but when treated with MMA, we were able to control the cell killing rate by adjusting the magnetic doses. This approach can expand the capabilities of stem cells to serve as smart vehicles for delivery of therapeutic proteins in a controlled manner without using interfering and expensive drugs, while retaining their potential to regenerate damaged tissue after treatment. This approach brings forth new alternatives to regulate protein expression noninvasively for cell therapy and other cancer therapies.
Collapse
Affiliation(s)
- Juan Beltran-Huarac
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| | - Dina N. Yamaleyeva
- Joint
UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gianpietro Dotti
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Shawn Hingtgen
- Division
of Pharmacoengineering and Molecular Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Marina Sokolsky-Papkov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexander V. Kabanov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Maqoud F, Zizzo N, Attimonelli M, Tinelli A, Passantino G, Antonacci M, Ranieri G, Tricarico D. Immunohistochemical, pharmacovigilance, and omics analyses reveal the involvement of ATP-sensitive K + channel subunits in cancers: role in drug-disease interactions. Front Pharmacol 2023; 14:1115543. [PMID: 37180726 PMCID: PMC10167295 DOI: 10.3389/fphar.2023.1115543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background: ATP-sensitive-K+ channels (KATP) are involved in diseases, but their role in cancer is poorly described. Pituitary macroadenoma has been observed in Cantu' syndrome (C.S.), which is associated with the gain-of-function mutations of the ABCC9 and KCNJ8 genes. We tested the role of the ABCC8/Sur1, ABCC9/Sur2A/B, KCNJ11/Kir6.2, and KCNJ8/Kir6.1 genes experimentally in a minoxidil-induced renal tumor in male rats and in the female canine breast cancer, a spontaneous animal model of disease, and in the pharmacovigilance and omics databases. Methods: We performed biopsies from renal tissues of male rats (N = 5) following a sub-chronic high dosing topical administration of minoxidil (0.777-77.7 mg/kg/day) and from breast tissues of female dogs for diagnosis (N = 23) that were analyzed by immunohistochemistry. Pharmacovigilance and omics data were extracted from EudraVigilance and omics databases, respectively. Results: An elevated immunohistochemical reactivity to Sur2A-mAb was detected in the cytosol of the Ki67+/G3 cells other than in the surface membrane in the minoxidil-induced renal tumor and the breast tumor samples. KCNJ11, KCNJ8, and ABCC9 genes are upregulated in cancers but ABCC8 is downregulated. The Kir6.2-Sur2A/B-channel opener minoxidil showed 23 case reports of breast cancer and one case of ovarian cancer in line with omics data reporting, respectively, and the negative and positive prognostic roles of the ABCC9 gene in these cancers. Sulfonylureas and glinides blocking the pancreatic Kir6.2-Sur1 subunits showed a higher risk for pancreatic cancer in line with the positive prognostic role of the ABCC8 gene but low risks for common cancers. Glibenclamide, repaglinide, and glimepiride show a lower cancer risk within the KATP channel blockers. The Kir6.2-Sur1 opener diazoxide shows no cancer reactions. Conclusion: An elevated expression of the Sur2A subunit was found in proliferating cells in two animal models of cancer. Immunohistochemistry/omics/pharmacovigilance data reveal the role of the Kir6.1/2-Sur2A/B subunits as a drug target in breast/renal cancers and in C.S.
Collapse
Affiliation(s)
- Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology Saverio de Bellis, I.R.C.C.S. Research Hospital, Milan, Italy
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University "Aldo Moro" Bari, Bari, Italy
| | - Antonella Tinelli
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Marina Antonacci
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Girolamo Ranieri
- Department of Interventional Radiology and Integrated Medical Oncology, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
5
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Doherty CJ, Chang JC, Thompson BP, Swenson ER, Foster GE, Dominelli PB. The Impact of Acetazolamide and Methazolamide on Exercise Performance in Normoxia and Hypoxia. High Alt Med Biol 2023; 24:7-18. [PMID: 36802203 DOI: 10.1089/ham.2022.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Doherty, Connor J., Jou-Chung Chang, Benjamin P. Thompson, Erik R. Swenson, Glen E. Foster, and Paolo B. Dominelli. The impact of acetazolamide and methazolamide on exercise performance in normoxia and hypoxia. High Alt Med Biol. 24:7-18, 2023.-Carbonic anhydrase (CA) inhibitors are commonly prescribed for acute mountain sickness (AMS). In this review, we sought to examine how two CA inhibitors, acetazolamide (AZ) and methazolamide (MZ), affect exercise performance in normoxia and hypoxia. First, we briefly describe the role of CA inhibition in facilitating the increase in ventilation and arterial oxygenation in preventing and treating AMS. Next, we detail how AZ affects exercise performance in normoxia and hypoxia and this is followed by a discussion on MZ. We emphasize that the overarching focus of the review is how the two drugs potentially affect exercise performance, rather than their ability to prevent/treat AMS per se, their interrelationship will be discussed. Overall, we suggest that AZ hinders exercise performance in normoxia, but may be beneficial in hypoxia. Based upon head-to-head studies of AZ and MZ in humans on diaphragmatic and locomotor strength in normoxia, MZ may be a better CA inhibitor when exercise performance is crucial at high altitude.
Collapse
Affiliation(s)
- Connor J Doherty
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Jou-Chung Chang
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin P Thompson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Washington, USA
- Medical Service, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Glen E Foster
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paolo B Dominelli
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Di Turi A, Antonacci M, Dibenedetto JR, Maqoud F, Leonetti F, Centoducati G, Colonna N, Tricarico D. Molecular Composition and Biological Activity of a Novel Acetonitrile-Water Extract of Lens Culinaris Medik in Murine Native Cells and Cell Lines Exposed to Different Chemotherapeutics Using Mass Spectrometry. Cells 2023; 12:cells12040575. [PMID: 36831242 PMCID: PMC9953783 DOI: 10.3390/cells12040575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
We evaluated the effects of a new extract (70% acetonitrile, 2E0217022196DIPFARMTDA) of Lens culinaris Medik (Terre di Altamura SRL, Altamura BA) to prevent cytotoxic damage from cisplatin, staurosporine, irinotecan, doxorubicin, and the glucocorticoid dexamethasone. The acetonitrile-water extract (range 0.1-5 mg/mL) was obtained by extracting 10 g of lentil flour with 50 milliliters of the acetonitrile-water extraction mixture in a 70:30 ratio, first for 3 h and then overnight in a shaker at room temperature. The next day, the extract was filtered and passed through a Rotavapor to obtain only the aqueous component and eliminate that with acetonitrile, and then freeze-dried to finally have the powdered extract. In vitro experiments showed that the extract prevented the cytotoxic damage induced by cisplatin, irinotecan, and doxorubicin on HEK293 and SHSY5Y cell lines after 24-96 h. In murine osteoblasts after 24-72 h of incubation time, the extract was cytoprotective against all chemicals. The extract was effective against dexamethasone, leading to synergic cell proliferation in all cell types. In bone marrow cells, the extract is cytoprotective after 72 h against doxorubicin, staurosporine, and dexamethasone. Instead, on muscle fibers, the extract has a synergic effect with chemotherapeutics, increasing cytotoxicity induced by doxorubicin and staurosporine. LC-MS attested to the existence of several phenolic structures in the extract. The most abundant families of compounds were flavonoids (25.7%) and mellitic acid (18%). Thus, the development of this extract could be implemented in the area of research related to the chemoprevention of damage to renal, neuronal, bone marrow cells, and osteoblasts by chemotherapeutics; moreover, it could be used as a reinforcer of cytotoxic action of chemotherapeutics on muscle fibers.
Collapse
Affiliation(s)
- Annamaria Di Turi
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Marina Antonacci
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Jacopo Raffaele Dibenedetto
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Gerardo Centoducati
- Department of Medicine Veterinary, University of Bari “Aldo Moro”, Str 62 to Casamassima, Valenzano, 70121 Bari, Italy
| | | | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
8
|
Counteractions of a Novel Hydroalcoholic Extract from Lens Culinaria against the Dexamethasone-Induced Osteoblast Loss of Native Murine Cells. Cells 2022; 11:cells11192936. [PMID: 36230898 PMCID: PMC9563349 DOI: 10.3390/cells11192936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
The cytoprotective effects of a novel hydroalcoholic extract (0.01–5 mg/mL) from Lens culinaria (Terre di Altamura Srl) were investigated within murine native skeletal muscle fibers, bone marrow cells, and osteoblasts, and in cell lines treated with the apoptotic agent staurosporine (2.14 × 10−6 M), the alkylating drug cisplatin (10−4 M), the topoisomerase I inhibitor irinotecan (10−4 M), the antimitotic pro-oxidant doxorubicin (10−6 M), and the immunosuppressant dexamethasone (2 × 10−6 M). An amount of 10g of plant material was used to obtain a 70% ethanol/water product, following two-step extraction, evaporation, lyophilization, and storage at −20 °C. For the murine osteoblasts, doxorubicin reduced survival by −65%, dexamethasone by −32% and −60% after 24 and 48 h of incubation time, respectively. The extract was effective in preventing the osteoblast count-reduction induced by dexamethasone; it was also effective at preventing the inhibition of mineralization induced by dexamethasone. Doxorubicin and cisplatin caused a significant reduction in cell growth by −77% for bone marrow cells, −43% for irinotecan, and −60% for dexamethasone, but there was no evidence for the cytoprotective effects of the extract in these cells. Staurosporine and doxorubicin caused a fiber death rate of >−40% after 18 and 24 h of incubation, yet the extract was not effective at preventing these effects. The extract was effective in preventing the staurosporine-induced reduction of HEK293 proliferation and colony formation in the crystal violet DNA staining and the clonogenic assays. It was also effective for the cisplatin-induced reduction in HEK293 cell proliferation. The extract, however, failed to protect the SHSY5Y neurons against cisplatin and irinotecan-induced cytotoxicity. A UV/VIS spectroscopy analysis showed three peaks at the wavelengths of 350, 260, and 190 nm, which correspond to flavonoids, proanthocyanins, salicylates, and AA, constituting the extract. These data suggest the possible development of this extract for use against dexamethasone-induced bone loss and renal chemotherapy-induced damage.
Collapse
|
9
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
10
|
Tan X, Hu S, Xie Z, Mei H, Liu Y, Yin L, Shi P, Chen Q, Sang D. Identification of a SCN4A mutation in a large Chinese family with atypical normokalemic periodic paralysis using whole-exome sequencing. J Int Med Res 2020; 48:300060520953643. [PMID: 32962503 PMCID: PMC7517994 DOI: 10.1177/0300060520953643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Normokalemic periodic paralysis (NormoKPP) of skeletal muscle is an autosomal dominant disorder caused by mutations in the gene encoding voltage-gated sodium channel protein type 4 subunit alpha (SCN4A), which leads to ion channel dysfunction. Little is known about the relationship between genotype and the clinical symptoms of NormoKPP. The present study aimed to evaluate the genetic variation in a large Chinese family with NormoKPP. The patients in this pedigree did not respond to saline treatment, but calcium gluconate treatment was effective. METHODS We performed a series of clinical examinations and genetic analyses, using whole-exome and Sanger sequencing, to examine the mutation status of SCN4A in a Chinese family segregating for NormoKPP. RESULTS Whole-exome sequencing revealed a c.2111C>T substitution in SCN4A in most of the affected family members. This mutation results in the amino acid substitution p.T704M. CONCLUSIONS These results support a causative role of this mutation in SCN4A in NormoKPP, and provide information about the relationship between genotype and atypical clinical symptoms.
Collapse
Affiliation(s)
- XinYu Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - SongNian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zongyu Xie
- Department of Image Center, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hailiang Mei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Department of Neurology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Liang Yin
- Department of Neurology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Peng Shi
- Department of Neurology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiming Chen
- Department of Neurology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Daoqian Sang
- Department of Neurology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Maqoud F, Zizzo N, Mele A, Denora N, Passantino G, Scala R, Cutrignelli A, Tinelli A, Laquintana V, la Forgia F, Fontana S, Franco M, Lopedota AA, Tricarico D. The hydroxypropyl-β-cyclodextrin-minoxidil inclusion complex improves the cardiovascular and proliferative adverse effects of minoxidil in male rats: Implications in the treatment of alopecia. Pharmacol Res Perspect 2020; 8:e00585. [PMID: 32378360 PMCID: PMC7203570 DOI: 10.1002/prp2.585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022] Open
Abstract
The efficacy of minoxidil (MXD) ethanolic solutions (1%-5% w/v) in the treatment of androgenetic alopecia is limited by adverse reactions. The toxicological effects of repeated topical applications of escalating dose (0.035%-3.5% w/v) and of single and twice daily doses (3.5% w/v) of a novel hydroxypropyl-β-cyclodextrin MXD GEL formulation (MXD/HP-β-CD) and a MXD solution were investigated in male rats. The cardiovascular effects were evaluated by telemetric monitoring of ECG and arterial pressure in free-moving rats. Ultrasonographic evaluation of cardiac morphology and function, and histopathological and biochemical analysis of the tissues, were performed. A pharmacovigilance investigation was undertaken using the EudraVigilance database for the evaluation of the potential cancer-related effects of topical MXD. Following the application of repeated escalating doses of MXD solution, cardiac hypertrophy, hypotension, enhanced serum natriuretic peptides and K+ -ion levels, serum liver biomarkers, and histological lesions including renal cancer were observed. In addition, the administration of a twice daily dose of MXD solution, at SF rat vs human = 311, caused reductions in the systolic, diastolic, and mean blood pressure of the rats (-30.76 ± 3%, -28.84 ± 4%, and -30.66 ± 5%, respectively, vs the baseline; t test P < .05). These effects were not reversible following washout of the MXD solution. Retrospective investigation showed 32 cases of cancer associated with the use of topical MXD in humans. The rats treated with MXD HP-β-CD were less severely affected. MXD causes proliferative adverse effects. The MXD HP-β-CD inclusion complex reduces these adverse effects.
Collapse
Affiliation(s)
- Fatima Maqoud
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Nicola Zizzo
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Antonietta Mele
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Nunzio Denora
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Giuseppe Passantino
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Rosa Scala
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Annalisa Cutrignelli
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Antonella Tinelli
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Valentino Laquintana
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Flavia la Forgia
- Farmalabor s.r.I.Centro di Ricerca “Dr. Sergio Fontana 1900‐1982”Canosa di PugliaItaly
| | - Sergio Fontana
- Farmalabor s.r.I.Centro di Ricerca “Dr. Sergio Fontana 1900‐1982”Canosa di PugliaItaly
| | - Massimo Franco
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Angela Assunta Lopedota
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Domenico Tricarico
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| |
Collapse
|
12
|
Scala R, Maqoud F, Angelelli M, Latorre R, Perrone MG, Scilimati A, Tricarico D. Zoledronic Acid Modulation of TRPV1 Channel Currents in Osteoblast Cell Line and Native Rat and Mouse Bone Marrow-Derived Osteoblasts: Cell Proliferation and Mineralization Effect. Cancers (Basel) 2019; 11:cancers11020206. [PMID: 30754651 PMCID: PMC6406412 DOI: 10.3390/cancers11020206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Bisphosphonates (BPs) reduce bone pain and fractures by balancing the osteoblast/osteoclast ratio. The behavior of ion channels in the presence of BPs is not known. To investigate this, the effect of zoledronic acid BP (ZOL) (3 × 10−8 to 5 × 10−4 M) treatment, on ion channels, cell proliferation, and mineralization, has been investigated on preosteoclast-like cells, RAW264.7, preosteoblast-like cells MC3T3-E1, and rat/mouse native bone marrow-derived osteoblasts. In whole-cell patch clamp on cell line- and bone marrow-derived osteoblasts, ZOL potentiated outward currents. On RAW264.7, ZOL (10−4 M)-evoked current was reduced by the Kv channel blocker tetraethylammonium hydrochloride (TEA), but not by the selective TRPV1-channel antagonist capsazepine. On MC3T3-E1 cells and bone marrow-derived osteoblasts, ZOL-evoked current (5 × 10−8 to 10−4 M) was reduced by capsazepine, whereas the selective TRPV1-channel agonist capsaicin potentiated the control current. In the cell proliferation assay, 72 h incubation of RAW264.7 and MC3T3-E1 cells with ZOL reduced proliferation, with IC50 values of 2.62 × 10−7 M and 2.02 × 10−5 M, respectively. Mineralization of MC3T3-E1 cells and bone marrow-derived osteoblasts was observed in the presence of capsaicin and ZOL (5 × 10−8–10−7 M); ZOL effects were antagonized by capsazepine. In summary, the ZOL-induced activation of TRPV1 channel mediates the mineralization of osteoblasts and counterbalances the antiproliferative effects, increasing the IC50. This mechanism is not operative in osteoclasts lacking the TRPV1 channel.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Mariacristina Angelelli
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Ramon Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2366103, Chile.
| | - Maria Grazia Perrone
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Antonio Scilimati
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
13
|
Cell Cycle Regulation by Ca 2+-Activated K⁺ (BK) Channels Modulators in SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2018; 19:ijms19082442. [PMID: 30126198 PMCID: PMC6121591 DOI: 10.3390/ijms19082442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
The effects of Ca2+-activated K+ (BK) channel modulation by Paxilline (PAX) (10−7–10−4 M), Iberiotoxin (IbTX) (0.1–1 × 10−6 M) and Resveratrol (RESV) (1–2 × 10−4 M) on cell cycle and proliferation, AKT1pSer473 phosphorylation, cell diameter, and BK currents were investigated in SH-SY5Y cells using Operetta-high-content-Imaging-System, ELISA-assay, impedentiometric counting method and patch-clamp technique, respectively. IbTX (4 × 10−7 M), PAX (5 × 10−5 M) and RESV (10−4 M) caused a maximal decrease of the outward K+ current at +30 mV (Vm) of −38.3 ± 10%, −31.9 ± 9% and −43 ± 8%, respectively, which was not reversible following washout and cell depolarization. After 6h of incubation, the drugs concentration dependently reduced proliferation. A maximal reduction of cell proliferation, respectively of −60 ± 8% for RESV (2 × 10−4 M) (IC50 = 1.50 × 10−4 M), −65 ± 6% for IbTX (10−6 M) (IC50 = 5 × 10−7 M), −97 ± 6% for PAX (1 × 10−4 M) (IC50 = 1.06 × 10−5 M) and AKT1pser473 dephosphorylation was observed. PAX induced a G1/G2 accumulation and contraction of the S-phase, reducing the nuclear area and cell diameter. IbTX induced G1 contraction and G2 accumulation reducing diameter. RESV induced G2 accumulation and S contraction reducing diameter. These drugs share common actions leading to a block of the surface membrane BK channels with cell depolarization and calcium influx, AKT1pser473 dephosphorylation by calcium-dependent phosphatase, accumulation in the G2 phase, and a reduction of diameter and proliferation. In addition, the PAX action against nuclear membrane BK channels potentiates its antiproliferative effects with early apoptosis.
Collapse
|
14
|
Altamura C, Lucchiari S, Sahbani D, Ulzi G, Comi GP, D'Ambrosio P, Petillo R, Politano L, Vercelli L, Mongini T, Dotti MT, Cardani R, Meola G, Lo Monaco M, Matthews E, Hanna MG, Carratù MR, Conte D, Imbrici P, Desaphy JF. The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel. Hum Mutat 2018; 39:1273-1283. [PMID: 29935101 DOI: 10.1002/humu.23581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/10/2022]
Abstract
Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Sabrina Lucchiari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gianna Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola D'Ambrosio
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Roberta Petillo
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Liliana Vercelli
- Neuromuscular Unit, Department of Neurosciences, Hospital Città della Salute e della Scienza of Torino, University of Torino, Turin, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences, Hospital Città della Salute e della Scienza of Torino, University of Torino, Turin, Italy
| | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Milan, Italy
| | - Mauro Lo Monaco
- Institute of Neurology, Catholic University of Sacred Heart, Polyclinic Gemelli, Rome, Italy.,MiA Onlus ("Miotonici in Associazione"), Portici, Italy
| | - Emma Matthews
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, Bari, Italy
| |
Collapse
|
15
|
Dominelli PB, McNeil CJ, Vermeulen TD, Stuckless TJR, Brown CV, Dominelli GS, Swenson ER, Teppema LJ, Foster GE. Effect of acetazolamide and methazolamide on diaphragm and dorsiflexor fatigue: a randomized controlled trial. J Appl Physiol (1985) 2018; 125:770-779. [PMID: 29792554 DOI: 10.1152/japplphysiol.00256.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acetazolamide, a carbonic anhydrase (CA) inhibitor used clinically and to prevent acute mountain sickness, worsens skeletal muscle fatigue in animals and humans. In animals, methazolamide, a methylated analog of acetazolamide and an equally potent CA inhibitor, reportedly exacerbates fatigue less than acetazolamide. Accordingly, we sought to determine, in humans, if methazolamide would attenuate diaphragm and dorsiflexor fatigue compared with acetazolamide. Healthy men (dorsiflexor: n = 12; diaphragm: n = 7) performed fatiguing exercise on three occasions, after ingesting acetazolamide (250 mg three times a day) and then in random order, methazolamide (100 mg twice a day) or placebo for 48 h. For both muscles, subjects exercised at a fixed intensity until exhaustion on acetazolamide, with subsequent iso-time and -workload trials. Diaphragm exercise was performed using a threshold-loading device, while dorsiflexor exercise was isometric. Neuromuscular function was determined pre- and postexercise by potentiated transdiaphragmatic twitch pressure and dorsiflexor torque in response to stimulation of the phrenic and fibular nerve, respectively. Diaphragm contractility 3-10 min postexercise was impaired more for acetazolamide than methazolamide or placebo (82 ± 10, 87 ± 9, and 91 ± 8% of pre-exercise value; P < 0.05). Similarly, dorsiflexor fatigue was greater for acetazolamide than methazolamide (mean twitch torque of 61 ± 11 vs. 57 ± 13% of baseline, P < 0.05). In normoxia, methazolamide leads to less neuromuscular fatigue than acetazolamide, indicating a possible benefit for clinical use or in the prophylaxis of acute mountain sickness. NEW & NOTEWORTHY Acetazolamide, a carbonic anhydrase inhibitor, may worsen diaphragm and locomotor muscle fatigue after exercise; whereas, in animals, methazolamide does not impair diaphragm function. Compared with both methazolamide and the placebo, acetazolamide significantly compromised dorsiflexor function at rest and after exhaustive exercise. Similarly, diaphragm function was most compromised on acetazolamide followed by methazolamide and placebo. Methazolamide may be preferable over acetazolamide for clinical use and altitude illness prophylaxis to avoid skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Paolo B Dominelli
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Chris J McNeil
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Troy J R Stuckless
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Giulio S Dominelli
- Southern Medical Program, University of British Columbia, Kelowna, Canada
| | - Erik R Swenson
- Division of Pulmonary & Critical Care Medicine, VA Puget Sound Health Care System, University of Washington , Seattle, Washington
| | - Lucas J Teppema
- Department of Anesthesiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| |
Collapse
|
16
|
Activation of human smooth muscle BK channels by hydrochlorothiazide requires cell integrity and the presence of BK β 1 subunit. Acta Pharmacol Sin 2018; 39:371-381. [PMID: 29188803 DOI: 10.1038/aps.2017.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Abstract
Thiazide-like diuretics are the most commonly used drugs to treat arterial hypertension, with their efficacy being linked to their chronic vasodilatory effect. Previous studies suggest that activation of the large conductance voltage- and Ca2+-dependent K+ (BK) channel (Slo 1, MaxiK channel) is responsible for the thiazide-induced vasodilatory effect. But the direct electrophysiological evidence supporting this claim is lacking. BK channels can be associated with one small accessory β-subunit (β1-β4) that confers specific biophysical and pharmacological characteristics to the current phenotype. The β1-subunit is primarily expressed in smooth muscle cells (SMCs). In this study we investigated the effect of hydrochlorothiazide (HCTZ) on BK channel activity in native SMCs from human umbilical artery (HUASMCs) and HEK293T cells expressing the BK channel (with and without the β1-subunit). Bath application of HCTZ (10 μmol/L) significantly augmented the BK current in HUASMCs when recorded using the whole-cell configurations, but it did not affect the unitary conductance and open probability of the BK channel in HUASMCs evaluated in the inside-out configuration, suggesting an indirect mechanism requiring cell integrity. In HEK293T cells expressing BK channels, HCTZ-augmented BK channel activity was only observed when the β1-subunit was co-expressed, being concentration-dependent with an EC50 of 28.4 μmol/L, whereas membrane potential did not influence the concentration relationship. Moreover, HCTZ did not affect the BK channel current in HEK293T cells evaluated in the inside-out configuration, but significantly increases the open probability in the cell-attached configuration. Our data demonstrate that a β1-subunit-dependent mechanism that requires SMC integrity leads to HCTZ-induced BK channel activation.
Collapse
|
17
|
De Bellis M, Sanarica F, Carocci A, Lentini G, Pierno S, Rolland JF, Conte Camerino D, De Luca A. Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential. Front Pharmacol 2018; 8:907. [PMID: 29379434 PMCID: PMC5770958 DOI: 10.3389/fphar.2017.00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.
Collapse
Affiliation(s)
- Michela De Bellis
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Sanarica
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Diana Conte Camerino
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
18
|
Camerino C, Conte E, Caloiero R, Fonzino A, Carratù M, Lograno MD, Tricarico D. Evaluation of Short and Long Term Cold Stress Challenge of Nerve Grow Factor, Brain-Derived Neurotrophic Factor, Osteocalcin and Oxytocin mRNA Expression in BAT, Brain, Bone and Reproductive Tissue of Male Mice Using Real-Time PCR and Linear Correlation Analysis. Front Physiol 2018; 8:1101. [PMID: 29375393 PMCID: PMC5768886 DOI: 10.3389/fphys.2017.01101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/13/2017] [Indexed: 11/13/2022] Open
Abstract
The correlation between the Ngf/p75ntr-Ntrk1 and Bdnf, Osteocalcin-Ost/Gprc6a and Oxytocin-Oxt/Oxtr genes, was challenged investigating their mRNA levels in 3 months-old mice after cold-stress (CS). Uncoupling protein-1 (Ucp-1) was used as positive control. Control mice were maintained at room temperature T = 25°C, CS mice were maintained at T = 4°C for 6 h and 5-days (N = 15 mice). RT-PCR experiments showed that Ucp-1 and Ngf genes were up-regulated after 6 h CS in brown adipose tissues (BAT), respectively, by 2 and 1.5-folds; Ucp-1 was upregulated also after 5-days, while Ngfr (p75ntr) and Ntrk1 genes were downregulated after 6 h and 5-days CS in BAT. NGF and P75NTR were upregulated in bone and testis following 5-days, and P75NTR in testis after 6 h CS. Bdnf was instead up-regulated in bone following 5-days CS and down-regulated in testis. OST was upregulated by 16 and 3-fold in bone and BAT, respectively, following 5-days CS. Gprc6a was upregulated after 6 h in brain, while Bglap (Ost) gene was downregulated. Oxt gene was upregulated by 5-fold following 5-days CS in bone. Oxtr was upregulated by 0.5 and 0.3-fold, respectively, following 6 h and 5-days CS in brain. Oxtr and Oxt were downregulated in testis and in BAT. The changes in the expression levels of control genes vs. genes following 6 h and 5-days CS were correlated in all tissues, but not in BAT. Correlation in BAT was improved eliminating Ngfr (p75ntr) data. The correlation in brain was lost eliminating Oxtr data. In sum, Ucp-1 potentiation in BAT after cold stress is associated with early Ngf-response in the same tissue and trophic action in bone and testis. In contrast, BDNF exerts bone and neuroprotective effects. Similarly to Ucp-1, Bglap (Ost) signaling is enhanced in bone and BAT while it may exert local neuroprotective effects thought its receptor. Ngfr (p75ntr) regulates the adaptation to CS through a feed-back loop in BAT. Oxtr regulates the gene-response to CS through a feed-forward loop in brain. Overall these results expand the understanding of the physiology of these molecules under metabolic thermogenesis.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Caloiero
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Adriano Fonzino
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mariarosaria Carratù
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Marcello D Lograno
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Imbrici P, Altamura C, Gualandi F, Mangiatordi GF, Neri M, De Maria G, Ferlini A, Padovani A, D'Adamo MC, Nicolotti O, Pessia M, Conte D, Filosto M, Desaphy JF. A novel KCNA1 mutation in a patient with paroxysmal ataxia, myokymia, painful contractures and metabolic dysfunctions. Mol Cell Neurosci 2017; 83:6-12. [PMID: 28666963 DOI: 10.1016/j.mcn.2017.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/05/2017] [Accepted: 06/25/2017] [Indexed: 11/26/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is a human dominant neurological syndrome characterized by continuous myokymia, episodic attacks of ataxic gait and spastic contractions of skeletal muscles that can be triggered by emotional stress and fatigue. This rare disease is caused by missense mutations in the KCNA1 gene coding for the neuronal voltage gated potassium channel Kv1.1, which contributes to nerve cell excitability in the cerebellum, hippocampus, cortex and peripheral nervous system. We identified a novel KCNA1 mutation, E283K, in an Italian proband presenting with paroxysmal ataxia and myokymia aggravated by painful contractures and metabolic dysfunctions. The E283K mutation is located in the S3-S4 extracellular linker belonging to the voltage sensor domain of Kv channels. In order to test whether the E283K mutation affects Kv1.1 biophysical properties we transfected HEK293 cells with WT or mutant cDNAs alone or in a 1:1 combination, and recorded relative potassium currents in the whole-cell configuration of patch-clamp. Mutant E283K channels display voltage-dependent activation shifted by 10mV toward positive potentials and kinetics of activation slowed by ~2 fold compared to WT channels. Potassium currents resulting from heteromeric WT/E283K channels show voltage-dependent gating and kinetics of activation intermediate between WT and mutant homomeric channels. Based on homology modeling studies of the mutant E283K, we propose a molecular explanation for the reduced voltage sensitivity and slow channel opening. Overall, our results suggest that the replacement of a negatively charged residue with a positively charged lysine at position 283 in Kv1.1 causes a drop of potassium current that likely accounts for EA-1 symptoms in the heterozygous carrier.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Concetta Altamura
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Gualandi
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | | | - Marcella Neri
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | | | - Alessandra Ferlini
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | - Alessandro Padovani
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST "Spedali Civili", and University of Brescia, Brescia, Italy
| | - Maria Cristina D'Adamo
- Faculty of Medicine, Department of Physiology and Biochemistry, University of Malta, MSD-2080 Msida, Malta
| | - Orazio Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mauro Pessia
- Faculty of Medicine, Department of Physiology and Biochemistry, University of Malta, MSD-2080 Msida, Malta; Department of Experimental Medicine, Section of Physiology & Biochemistry, University of Perugia School of Medicine, Perugia, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST "Spedali Civili", and University of Brescia, Brescia, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Maqoud F, Cetrone M, Mele A, Tricarico D. Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives. Physiol Genomics 2017; 49:306-317. [DOI: 10.1152/physiolgenomics.00121.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022] Open
Abstract
The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
- Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco
| | - Michela Cetrone
- Istituto Tumori Giovanni Paolo II, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Bari, Italy; and
| | - Antonietta Mele
- Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
| | | |
Collapse
|
21
|
Tricarico D, Mele A. Commentary: A BK (Slo1) channel journey from molecule to physiology. Front Pharmacol 2017; 8:188. [PMID: 28424624 PMCID: PMC5380717 DOI: 10.3389/fphar.2017.00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/23/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Antonietta Mele
- Department of Pharmacy-Drug Science, University of BariBari, Italy
| |
Collapse
|
22
|
Rivolta I, Binda A, Molteni L, Rizzi L, Bresciani E, Possenti R, Fehrentz JA, Verdié P, Martinez J, Omeljaniuk RJ, Locatelli V, Torsello A. JMV5656, A Novel Derivative of TLQP-21, Triggers the Activation of a Calcium-Dependent Potassium Outward Current in Microglial Cells. Front Cell Neurosci 2017; 11:41. [PMID: 28280458 PMCID: PMC5322282 DOI: 10.3389/fncel.2017.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/08/2017] [Indexed: 01/13/2023] Open
Abstract
TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca2+ that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca2+ in the N9 microglia cells, and whether this Ca2+ elevation is coupled with the activation Ca2+-sensitive K+ channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca2+-activated potassium (K+) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K+ channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca2+, and, following extracellular Ca2+ entry, the opening of KCa3.1 channels.
Collapse
Affiliation(s)
- Ilaria Rivolta
- Department of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Anna Binda
- Department of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Laura Molteni
- Department of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Laura Rizzi
- Department of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Elena Bresciani
- Department of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Roberta Possenti
- Department of Medicine of Systems, University of Rome "Tor Vergata" Rome, Italy
| | - Jean-Alain Fehrentz
- CNRS, Institut des Biomolécules Max Mousseron UMR5247, École Nationale Supérieure de Chimie de Montpellier - University of Montpellier Montpellier, France
| | - Pascal Verdié
- CNRS, Institut des Biomolécules Max Mousseron UMR5247, École Nationale Supérieure de Chimie de Montpellier - University of Montpellier Montpellier, France
| | - Jean Martinez
- CNRS, Institut des Biomolécules Max Mousseron UMR5247, École Nationale Supérieure de Chimie de Montpellier - University of Montpellier Montpellier, France
| | | | - Vittorio Locatelli
- Department of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Antonio Torsello
- Department of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| |
Collapse
|
23
|
Abstract
Oral dichlorphenamide (Keveyis™) is a carbonic anhydrase inhibitor that is approved in the USA for the treatment of primary hyperkalaemic and hypokalaemic periodic paralyses and related variants. The efficacy and safety of dichlorphenamide in patients with primary periodic paralyses have been evaluated in four 9-week, randomized, double-blind, placebo-controlled, phase III trials [two parallel-group trials (HOP and HYP) and two crossover trials]. In two trials in patients with hypokalaemic periodic paralysis, dichlorphenamide was associated with a significantly (eightfold) lower paralytic attack rate and fewer patients with acute intolerable worsening compared with placebo. In two trials in patients with hyperkalaemic periodic paralysis, the attack rate was lower with dichlorphenamide than placebo, with this comparison reaching statistical significance in one trial (crossover) but not the other (HYP), although the attack rate was approximately fivefold lower with dichlorphenamide than placebo in the HYP trial. In 52-week, open-label extensions of the HOP and HYP trials, dichlorphenamide provided sustained efficacy in patients with hypokalaemic or hyperkalaemic periodic paralysis. Dichlorphenamide was generally well tolerated in all four phase III trials and during the extension trials; the most common adverse events were paraesthesia, cognitive disorders and dysgeusia. As the first agent to be approved in the USA for this indication, dichlorphenamide is a valuable treatment option for patients with primary hyperkalaemic or hypokalaemic periodic paralysis.
Collapse
|
24
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
25
|
Kis A, Krick S, Baumlin N, Salathe M. Airway Hydration, Apical K(+) Secretion, and the Large-Conductance, Ca(2+)-activated and Voltage-dependent Potassium (BK) Channel. Ann Am Thorac Soc 2016; 13 Suppl 2:S163-8. [PMID: 27115952 PMCID: PMC5015721 DOI: 10.1513/annalsats.201507-405kv] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/08/2015] [Indexed: 01/20/2023] Open
Abstract
Large-conductance, calcium-activated, and voltage-gated K(+) (BK) channels are expressed in many tissues of the human body, where they play important roles in signaling not only in excitable but also in nonexcitable cells. Because BK channel properties are rendered in part by their association with four β and four γ subunits, their channel function can differ drastically, depending on in which cellular system they are expressed. Recent studies verify the importance of apically expressed BK channels for airway surface liquid homeostasis and therefore of their significant role in mucociliary clearance. Here, we review evidence that inflammatory cytokines, which contribute to airway diseases, can lead to reduced BK activity via a functional down-regulation of the γ regulatory subunit LRRC26. Therefore, manipulation of LRRC26 and pharmacological opening of BK channels represent two novel concepts of targeting epithelial dysfunction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Adrian Kis
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Stefanie Krick
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| |
Collapse
|
26
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
27
|
Teppema LJ, Swenson ER. The noncarbonic anhydrase inhibiting acetazolamide analog N-methylacetazolamide reduces the hypercapnic, but not hypoxic, ventilatory response. Physiol Rep 2015; 3:3/8/e12484. [PMID: 26290531 PMCID: PMC4562570 DOI: 10.14814/phy2.12484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that the carbonic anhydrase (CA) inhibitors acetazolamide (AZ) and methazolamide (MZ) have inhibiting actions on breathing. Classically these have been attributed to CA inhibition, but other effects unrelated to CA inhibition have been identified in other tissues. To explore this possibility in the control of ventilation by the central nervous system, we investigated whether an AZ-analog without CA inhibiting properties, by virtue of a single methylation on the sulfonamide moiety, N-methylacetazolamide (NMA), would still display similar actions to acetazolamide and methazolamide. NMA (20 mg kg−1) was given intravenously to anesthetized cats and we measured the responses to steady-state isocapnic hypoxia and stepwise changes in end-tidal pco2 before and after infusion of this AZ analog using the technique of end-tidal forcing. NMA caused a large decrease in the apneic threshold and CO2 sensitivity very similar to those previously observed with AZ and MZ, suggesting that these effects are mediated independently of CA inhibition. In contrast to acetazolamide, but similar to methazolamide, NMA did not affect the steady-state isocapnic hypoxic response. In conclusion, our data reveal complex effects of sulfonamides with very similar structure to AZ that reveal both CA-dependent and CA-independent effects, which need to be considered when using AZ as a probe for the role of CA in the control of ventilation.
Collapse
Affiliation(s)
- Luc J Teppema
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Erik R Swenson
- Pulmonary and Critical Care Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
D'Adamo MC, Hasan S, Guglielmi L, Servettini I, Cenciarini M, Catacuzzeno L, Franciolini F. New insights into the pathogenesis and therapeutics of episodic ataxia type 1. Front Cell Neurosci 2015; 9:317. [PMID: 26347608 PMCID: PMC4541215 DOI: 10.3389/fncel.2015.00317] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is a K+channelopathy characterized by a broad spectrum of symptoms. Generally, patients may experience constant myokymia and dramatic episodes of spastic contractions of the skeletal muscles of the head, arms, and legs with loss of both motor coordination and balance. During attacks additional symptoms may be reported such as vertigo, blurred vision, diplopia, nausea, headache, diaphoresis, clumsiness, stiffening of the body, dysarthric speech, and difficulty in breathing. These episodes may be precipitated by anxiety, emotional stress, fatigue, startle response or sudden postural changes. Epilepsy is overrepresented in EA1. The disease is inherited in an autosomal dominant manner, and genetic analysis of several families has led to the discovery of a number of point mutations in the voltage-dependent K+ channel gene KCNA1 (Kv1.1), on chromosome 12p13. To date KCNA1 is the only gene known to be associated with EA1. Functional studies have shown that these mutations impair Kv1.1 channel function with variable effects on channel assembly, trafficking and biophysics. Despite the solid evidence obtained on the molecular mechanisms underlying EA1, how these cause dysfunctions within the central and peripheral nervous systems circuitries remains elusive. This review summarizes the main breakthrough findings in EA1, discusses the neurophysiological mechanisms underlying the disease, current therapies, future challenges and opens a window onto the role of Kv1.1 channels in central nervous system (CNS) and peripheral nervous system (PNS) functions.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Sonia Hasan
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Luca Guglielmi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Ilenio Servettini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Marta Cenciarini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| |
Collapse
|
29
|
Briguglio I, Piras S, Corona P, Gavini E, Nieddu M, Boatto G, Carta A. Benzotriazole: An overview on its versatile biological behavior. Eur J Med Chem 2015; 97:612-48. [PMID: 25293580 PMCID: PMC7115563 DOI: 10.1016/j.ejmech.2014.09.089] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/13/2022]
Abstract
Discovered in late 1960, azoles are heterocyclic compounds class which constitute the largest group of available antifungal drugs. Particularly, the imidazole ring is the chemical component that confers activity to azoles. Triazoles are obtained by a slight modification of this ring and similar or improved activities as well as less adverse effects are reported for triazole derivatives. Consequently, it is not surprising that benzimidazole/benzotriazole derivatives have been found to be biologically active. Since benzimidazole has been widely investigated, this review is focused on defining the place of benzotriazole derivatives in biomedical research, highlighting their versatile biological properties, the mode of action and Structure Activity Relationship (SAR) studies for a variety of antimicrobial, antiparasitic, and even antitumor, choleretic, cholesterol-lowering agents.
Collapse
Affiliation(s)
- I Briguglio
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - S Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - P Corona
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - E Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - M Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - G Boatto
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - A Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy.
| |
Collapse
|
30
|
Curci A, Mele A, Camerino GM, Dinardo MM, Tricarico D. The large conductance Ca(2+) -activated K(+) (BKCa) channel regulates cell proliferation in SH-SY5Y neuroblastoma cells by activating the staurosporine-sensitive protein kinases. Front Physiol 2014; 5:476. [PMID: 25538629 PMCID: PMC4260485 DOI: 10.3389/fphys.2014.00476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
Here we investigated on the role of the calcium activated K(+)-channels(BKCa) on the regulation of the neuronal viability. Recordings of the K(+)-channel current were performed using patch-clamp technique in human neuroblastoma cells (SH-SY5Y) in parallel with measurements of the cell viability in the absence or presence of the BKCa channel blockers iberiotoxin(IbTX) and tetraethylammonium (TEA) and the BKCa channel opener NS1619. Protein kinase C/A (PKC, PKA) activities in the cell lysate were investigated in the presence/absence of drugs. The whole-cell K(+)-current showed a slope conductance calculated at negative membrane potentials of 126.3 pS and 1.717 nS(n = 46) following depolarization. The intercept of the I/V curve was -33 mV. IbTX(10(-8) - 4 × 10(-7) M) reduced the K(+)-current at +30 mV with an IC50 of 1.85 × 10(-7) M and an Imax of -46% (slope = 2.198) (n = 21). NS1619(10-100 × 10(-6) M) enhanced the K(+)-current of +141% (n = 6), at -10 mV(Vm). TEA(10(-5)-10(-3) M) reduced the K(+)-current with an IC50 of 3.54 × 10(-5) M and an Imax of -90% (slope = 0.95) (n = 5). A concentration-dependent increase of cell proliferation was observed with TEA showing a maximal proliferative effect(MPE) of +38% (10(-4) M). IbTX showed an MPE of +42% at 10(-8) M concentration, reducing it at higher concentrations. The MPE of the NS1619(100 × 10(-6) M) was +42%. The PKC inhibitor staurosporine (0.2-2 × 10(-6) M) antagonized the proliferative actions of IbTX and TEA. IbTX (10 × 10(-9) M), TEA (100 × 10(-6) M), and the NS1619 significantly enhanced the PKC and PKA activities in the cell lysate with respect to the controls. These results suggest that BKCa channel regulates proliferation of the SH-SY5Y cells through PKC and PKA protein kinases.
Collapse
Affiliation(s)
- Angela Curci
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro" Bari, Italy
| | | | | | - Domenico Tricarico
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|