1
|
Kura B, Kindernay L, Singla D, Dulova U, Bartekova M. Mechanistic insight into the role of cardiac-enriched microRNAs in diabetic heart injury. Am J Physiol Heart Circ Physiol 2025; 328:H865-H884. [PMID: 40033927 DOI: 10.1152/ajpheart.00736.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cardiovascular complications, particularly diabetic cardiomyopathy (DCM), are the primary causes of morbidity and mortality among individuals with diabetes. Hyperglycemia associated with diabetes leads to cardiomyocyte hypertrophy, apoptosis, and myocardial fibrosis, culminating in heart failure (HF). Patients with diabetes face a 2-4 times greater risk of developing HF compared with those without diabetes. Consequently, there is a growing interest in exploring the molecular mechanisms that contribute to the development of DCM. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNA molecules that participate in the maintenance of physiological homeostasis through the regulation of essential processes such as metabolism, cell proliferation, and apoptosis. At the posttranscriptional level, miRNAs modulate gene expression by binding directly to genes' mRNAs. Multiple cardiac-enriched miRNAs were reported to be dysregulated under diabetic conditions. Different studies revealed the role of specific miRNAs in the pathogenesis of diabetes and related cardiovascular complications, including cardiomyocyte hypertrophy and fibrosis, mitochondrial dysfunction, metabolic impairment, inflammatory response, or cardiomyocyte death. Circulating miRNAs have been shown to represent the potential biomarkers for early detection of diabetic heart injury. A deeper understanding of miRNAs and their role in diabetes-related pathophysiological processes could lead to new therapeutic strategies for addressing cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dinender Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Ulrika Dulova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Boengler K, Mantuano B, Toledano S, Binah O, Schulz R. Overexpression of Cx43: Is It an Effective Approach for the Treatment of Cardiovascular Diseases? Biomolecules 2025; 15:370. [PMID: 40149906 PMCID: PMC11940156 DOI: 10.3390/biom15030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
In the heart, Connexin 43 (Cx43) is involved in intercellular communication through gap junctions and exosomes. In addition, Cx43-formed hemichannels at the plasma membrane are important for ion homeostasis and cellular volume regulation. Through its localization within nuclei and mitochondria, Cx43 influences the function of the respective organelles. Several cardiovascular diseases such as heart failure, ischemia/reperfusion injury, hypertrophic cardiomyopathy and arrhythmias are characterized by Cx43 downregulation and a dysregulated Cx43 function. Accordingly, a putative therapeutic approach of these diseases would include the induction of Cx43 expression in the damaged heart, albeit such induction may have both beneficial and detrimental effects. In this review we discuss the consequences of increasing cardiac Cx43 expression, and discuss this manipulation as a strategy for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Beatrice Mantuano
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Shira Toledano
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3190601, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3190601, Israel
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| |
Collapse
|
3
|
Piasecka A, Szcześniak M, Sekrecki M, Kajdasz A, Sznajder Ł, Baud A, Sobczak K. MBNL splicing factors regulate the microtranscriptome of skeletal muscles. Nucleic Acids Res 2024; 52:12055-12073. [PMID: 39258536 PMCID: PMC11514471 DOI: 10.1093/nar/gkae774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Muscleblind like splicing regulators (MBNLs) govern various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we show the significance of MBNLs in regulating microtranscriptome dynamics during the postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identify multiple miRNAs sensitive to MBNL proteins insufficiency and reveal that many of them were postnatally regulated, which correlates with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We hypothesize that Mbnl1 deficiency influences miRNA levels through a combination of mechanisms. First, the absence of Mbnl1 protein results in alterations to the levels of pri-miRNAs. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts. We propose that the expression of miR-23b, miR-27b and miR-24-1, produced from the same cluster, depends on the MBNL-sensitive inclusion of alternative exons containing miRNA sequences. Our findings suggest that MBNL sequestration in DM1 is partially responsible for altered miRNA activity. This study provides new insights into the biological roles and functions of MBNL proteins as regulators of miRNA expression in skeletal muscles.
Collapse
Affiliation(s)
- Agnieszka Piasecka
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał W Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał Sekrecki
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704Poznań, Poland
| | - Łukasz J Sznajder
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA
| | - Anna Baud
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Yasarbas SS, Inal E, Yildirim MA, Dubrac S, Lamartine J, Mese G. Connexins in epidermal health and diseases: insights into their mutations, implications, and therapeutic solutions. Front Physiol 2024; 15:1346971. [PMID: 38827992 PMCID: PMC11140265 DOI: 10.3389/fphys.2024.1346971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.
Collapse
Affiliation(s)
- S. Suheda Yasarbas
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Ece Inal
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - M. Azra Yildirim
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jérôme Lamartine
- Skin Functional Integrity Group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Gulistan Mese
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| |
Collapse
|
5
|
Passafaro F, Rapacciuolo A, Ruocco A, Ammirati G, Crispo S, Pasceri E, Santarpia G, Mauro C, Esposito G, Indolfi C, Curcio A. COMPArison of Multi-Point Pacing and ConvenTional Cardiac Resynchronization Therapy Through Noninvasive Hemodynamics Measurement: Short- and Long-Term Results of the COMPACT-MPP Study. Am J Cardiol 2024; 215:42-49. [PMID: 38237796 DOI: 10.1016/j.amjcard.2023.12.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
Invasive hemodynamic studies have shown improved left ventricular (LV) performances when cardiac resynchronization therapy/defibrillator is delivered through multipoint pacing (MPP). Nowadays, strategies have become available that allow studying the same hemodynamic parameters at a noninvasive level. The aim of the present study was to evaluate the clinical implication of using a patient-tailored approach for cardiac resynchronization therapy programming based on noninvasively assessed LV hemodynamics to identify the best biventricular pacing modality between standard single-site pacing (STD) and MPP for each patient. Therefore, 51 patients with heart failure (age 69 ± 9 years, 35 men, 27% ischemic etiology) implanted with cardiac resynchronization therapy/defibrillator underwent noninvasive LV function assessment through photoplethysmography before hospital discharge for addressing dP/dt and stroke volume in both pacing modalities (STD and MPP). The modality that performed better in terms of hemodynamic improvement was permanently programmed. Global longitudinal strain (GLS) was also assessed, and repeated at 3 months. Compared with intrinsic rhythm (928 ± 486 mm Hg/s), dP/dtmax showed a trend to increase in both biventricular pacing modes (1,000 ± 577 mm Hg/s in STD, 1,036 ± 530 mm Hg/s in MPP, p = NS). MPP was associated with a wider hemodynamic improvement than was STD and was the modality of choice in 34 of 51 patients (67%). GLS at predischarge did not differ between groups (-10.3 ± 3.8% vs -10.2 ± 3.5%), but significant improvement of ejection fraction at 1 month (34.4 ± 5.3%, p <0.001) and of GLS at 3 months (-12.9 ± 2.9%, p <0.005) was observed across the entire cohort. At 3 months, 77% of patients were classified as responders. Interestingly, long-term (3 years) follow-up unveiled a reduction in all-cause mortality in the MPP group compared with the STD group. In conclusion, cardiac resynchronization therapy programming guided by acute noninvasive hemodynamics favored MPP modality and caused short-term LV positive remodeling and improved long-term outcomes. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT04299360.
Collapse
Affiliation(s)
- Francesco Passafaro
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Antonio Rapacciuolo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Antonio Ruocco
- Division of Cardiology, Emergency Department, AORN Cardarelli, Naples, Italy
| | - Giuseppe Ammirati
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Salvatore Crispo
- Division of Cardiology, Emergency Department, AORN Cardarelli, Naples, Italy
| | - Eugenia Pasceri
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Santarpia
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ciro Mauro
- Division of Cardiology, Emergency Department, AORN Cardarelli, Naples, Italy
| | - Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Antonio Curcio
- Division of Cardiology, Department of Pharmacy, Health Sciences and Nutrition, University of Calabria, Cosenza, Italy.
| |
Collapse
|
6
|
Al-attar R, Jargstorf J, Romagnuolo R, Jouni M, Alibhai FJ, Lampe PD, Solan JL, Laflamme MA. Casein Kinase 1 Phosphomimetic Mutations Negatively Impact Connexin-43 Gap Junctions in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Biomolecules 2024; 14:61. [PMID: 38254663 PMCID: PMC10813327 DOI: 10.3390/biom14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.
Collapse
Affiliation(s)
- Rasha Al-attar
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Joseph Jargstorf
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Mariam Jouni
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Paul D. Lampe
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Joell L. Solan
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
7
|
Cosentino M, Nicoletti C, Valenti V, Schirone L, Di Nonno F, Apa L, Zouhair M, Genovese D, Madaro L, Dinarelli S, Rossi M, Del Prete Z, Sciarretta S, Frati G, Rizzuto E, Musarò A. Remodeled eX vivo muscle engineered tissue improves heart function after chronic myocardial ischemia. Sci Rep 2023; 13:10370. [PMID: 37365262 DOI: 10.1038/s41598-023-37553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The adult heart displays poor reparative capacities after injury. Cell transplantation and tissue engineering approaches have emerged as possible therapeutic options. Several stem cell populations have been largely used to treat the infarcted myocardium. Nevertheless, transplanted cells displayed limited ability to establish functional connections with the host cardiomyocytes. In this study, we provide a new experimental tool, named 3D eX vivo muscle engineered tissue (X-MET), to define the contribution of mechanical stimuli in triggering functional remodeling and to rescue cardiac ischemia. We revealed that mechanical stimuli trigger a functional remodeling of the 3D skeletal muscle system toward a cardiac muscle-like structure. This was supported by molecular and functional analyses, demonstrating that remodeled X-MET expresses relevant markers of functional cardiomyocytes, compared to unstimulated and to 2D- skeletal muscle culture system. Interestingly, transplanted remodeled X-MET preserved heart function in a murine model of chronic myocardial ischemia and increased survival of transplanted injured mice. X-MET implantation resulted in repression of pro-inflammatory cytokines, induction of anti-inflammatory cytokines, and reduction in collagen deposition. Altogether, our findings indicate that biomechanical stimulation induced a cardiac functional remodeling of X-MET, which showed promising seminal results as a therapeutic product for the development of novel strategies for regenerative medicine.
Collapse
Affiliation(s)
- Marianna Cosentino
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy
| | - Carmine Nicoletti
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy
| | - Valentina Valenti
- Department of Cardiology, Ospedale Santa Maria Goretti, 04100, Latina, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Ludovica Apa
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy
| | - Mariam Zouhair
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy
| | - Desiree Genovese
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy
| | - Luca Madaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Simone Dinarelli
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy
| | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy.
- Scuola Superiore di Studi Avanzati Sapienza (SSAS), Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
8
|
Sykora M, Andelova K, Szeiffova Bacova B, Egan Benova T, Martiskova A, Knezl V, Tribulova N. Hypertension Induces Pro-arrhythmic Cardiac Connexome Disorders: Protective Effects of Treatment. Biomolecules 2023; 13:biom13020330. [PMID: 36830700 PMCID: PMC9953310 DOI: 10.3390/biom13020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.
Collapse
|
9
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
10
|
miR-454-3p and miR-194-5p targeting cardiac sarcolemma ion exchange transcripts are potential noninvasive diagnostic biomarkers for childhood dilated cardiomyopathy in Egyptian patients. Egypt Heart J 2022; 74:65. [PMID: 36076093 PMCID: PMC9458794 DOI: 10.1186/s43044-022-00300-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Childhood dilated cardiomyopathy (CDCM) is the most common cardiomyopathy in children and it is risk factor to heart failure and sudden death. Most of the different etiologic factors which have been postulated to DCM are idiopathic, and its pathogenesis remains uncertain. So it was worth investigating the potential DCM pathogenicity models to establish early noninvasive diagnosis parameters especially in CDCM patients. Beside that miRNAs in the circulatory blood are genetically considered the best option for noninvasive diagnosis; also, implementation of miRNAs as early diagnostic markers for children with DCM is urgent because those children have high risk to sudden heart death. We aimed to identify discriminator diagnostic circulatory miRNA expression levels in CDCM patients.
Results The expression levels of miR-454-3p and miR-194-5p were found significant upregulated (p value = 0.001 and 0.018; CI 95%, respectively), while miR-875-3p was found significant downregulated (p value = 0.040; CI 95%). A receiver operating characteristic (ROC) curve analysis showed significant AUC = 1.000 and 0.798 for miR-454-3p and miR-194-5p, respectively, and the optimal discriminated diagnostic cut-points were computed by index of union (IU) method. Enrichment analysis for the potential targeted mature mRNAs by miR-454-3p and miR-194-5p pointed that Ca, Na and K ions homeostasis in cardiac sarcolemma consider potential CDCM pathogenicity model.
Conclusions miR-454-3p and miR-194-5p are highly influencing noninvasive biomarkers for CDCM, and further circulatory miRNAs-implicated studies are highly recommended.
Collapse
|
11
|
Jayawardena E, Medzikovic L, Ruffenach G, Eghbali M. Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy. Int J Mol Sci 2022; 23:ijms23031512. [PMID: 35163436 PMCID: PMC8836257 DOI: 10.3390/ijms23031512] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary artery disease remains the leading cause of death. Acute myocardial infarction (MI) is characterized by decreased blood flow to the coronary arteries, resulting in cardiomyocytes death. The most effective strategy for treating an MI is early and rapid myocardial reperfusion, but restoring blood flow to the ischemic myocardium can induce further damage, known as ischemia-reperfusion (IR) injury. Novel therapeutic strategies are critical to limit myocardial IR injury and improve patient outcomes following reperfusion intervention. miRNAs are small non-coding RNA molecules that have been implicated in attenuating IR injury pathology in pre-clinical rodent models. In this review, we discuss the role of miR-1 and miR-21 in regulating myocardial apoptosis in ischemia-reperfusion injury in the whole heart as well as in different cardiac cell types with special emphasis on cardiomyocytes, fibroblasts, and immune cells. We also examine therapeutic potential of miR-1 and miR-21 in preclinical studies. More research is necessary to understand the cell-specific molecular principles of miRNAs in cardioprotection and application to acute myocardial IR injury.
Collapse
|
12
|
Andelova K, Bacova BS, Sykora M, Hlivak P, Barancik M, Tribulova N. Mechanisms Underlying Antiarrhythmic Properties of Cardioprotective Agents Impacting Inflammation and Oxidative Stress. Int J Mol Sci 2022; 23:1416. [PMID: 35163340 PMCID: PMC8835881 DOI: 10.3390/ijms23031416] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
The prevention of cardiac life-threatening ventricular fibrillation and stroke-provoking atrial fibrillation remains a serious global clinical issue, with ongoing need for novel approaches. Numerous experimental and clinical studies suggest that oxidative stress and inflammation are deleterious to cardiovascular health, and can increase heart susceptibility to arrhythmias. It is quite interesting, however, that various cardio-protective compounds with antiarrhythmic properties are potent anti-oxidative and anti-inflammatory agents. These most likely target the pro-arrhythmia primary mechanisms. This review and literature-based analysis presents a realistic view of antiarrhythmic efficacy and the molecular mechanisms of current pharmaceuticals in clinical use. These include the sodium-glucose cotransporter-2 inhibitors used in diabetes treatment, statins in dyslipidemia and naturally protective omega-3 fatty acids. This approach supports the hypothesis that prevention or attenuation of oxidative and inflammatory stress can abolish pro-arrhythmic factors and the development of an arrhythmia substrate. This could prove a powerful tool of reducing cardiac arrhythmia burden.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| |
Collapse
|
13
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
14
|
Dual role of miR-1 in the development and function of sinoatrial cells. J Mol Cell Cardiol 2021; 157:104-112. [PMID: 33964276 DOI: 10.1016/j.yjmcc.2021.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022]
Abstract
miR-1, the most abundant miRNA in the heart, modulates expression of several transcription factors and ion channels. Conditions affecting the heart rate, such as endurance training and cardiac diseases, show a concomitant miR-1 up- or down-regulation. Here, we investigated the role of miR-1 overexpression in the development and function of sinoatrial (SAN) cells using murine embryonic stem cells (mESC). We generated mESCs either overexpressing miR-1 and EGFP (miR1OE) or EGFP only (EM). SAN-like cells were selected from differentiating mESC using the CD166 marker. Gene expression and electrophysiological analysis were carried out on both early mES-derived cardiac progenitors and SAN-like cells and on beating neonatal rat ventricular cardiomyocytes (NRVC) over-expressing miR-1. miR1OE cells increased significantly the proportion of CD166+ SAN precursors compared to EM cells (23% vs 12%) and the levels of the transcription factors TBX5 and TBX18, both involved in SAN development. miR1OE SAN-like cells were bradycardic (1,3 vs 2 Hz) compared to EM cells. In agreement with data on native SAN cells, EM SAN-like cardiomyocytes show two populations of cells expressing either slow- or fast-activating If currents; miR1OE SAN-like cells instead have only fast-activating If with a significantly reduced conductance. Western Blot and immunofluorescence analysis showed a reduced HCN4 signal in miR-1OE vs EM CD166+ precursors. Together these data point out to a specific down-regulation of the slow-activating HCN4 subunit by miR-1. Importantly, the rate and If alterations were independent of the developmental effects of miR-1, being similar in NRVC transiently overexpressing miR-1. In conclusion, we demonstrated a dual role of miR-1, during development it controls the proper development of sinoatrial-precursor, while in mature SAN-like cells it modulates the HCN4 pacemaker channel translation and thus the beating rate.
Collapse
|
15
|
Collins L, Binder P, Chen H, Wang X. Regulation of Long Non-coding RNAs and MicroRNAs in Heart Disease: Insight Into Mechanisms and Therapeutic Approaches. Front Physiol 2020; 11:798. [PMID: 32754048 PMCID: PMC7365882 DOI: 10.3389/fphys.2020.00798] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide and there is an increasing need to identify new therapeutic targets that could be used to prevent or treat these diseases. Due to recent scientific advances, non-coding RNAs are widely accepted as important regulators of cellular processes, and the identification of an axis of interaction between long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs) has provided another platform through which cardiovascular disease could be targeted therapeutically. Increasing evidence has detailed the importance of these non-coding RNAs, both individually and in an axis of regulation, in the processes and diseases involving the heart. However, further investigation into the consequences of targeting this mechanism, as well as refinement of how the system is targeted, are required before a treatment can be provided in clinic. This level of genomic regulation provides an exciting potential novel therapeutic strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Lucy Collins
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Pablo Binder
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Zhou E, Zhang T, Bi C, Wang C, Zhang Z. Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte. Heart Vessels 2020; 35:1025-1035. [PMID: 32270355 PMCID: PMC7256098 DOI: 10.1007/s00380-020-01602-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022]
Abstract
Atrial fibrillation (AF) is one of the most prevalent arrhythmias. Myocardial sleeves of the pulmonary vein are critical in the occurrence of AF. Our study aims to investigate the effect of synthetic vascular smooth muscle cells (SMCs) on gap junction proteins in cardiomyocytes. (1) Extraction of vascular SMCs from the pulmonary veins of Norway rats. TGF-β1 was used to induce the vascular SMCs switching to the synthetic phenotype and 18-α-GA was used to inhibit gap junctions of SMCs. The contractile and synthetic phenotype vascular SMCs were cocultured with HL-1 cells; (2) Western blotting was used to detect the expression of Cx43, Cx40 and Cx45 in HL-1 cells, and RT-PCR to test microRNA 27b in vascular SMCs or in HL-1 cells; (3) Lucifer yellow dye transfer experiment was used to detect the function of gap junctions. (1) TGF- β1 induced the vascular SMCs switching to synthetic phenotype; (2) Cx43 was significantly increased, and Cx40 and Cx45 were decreased in HL-1 cocultured with synthetic SMCs; (3) The fluorescence intensity of Lucifer yellow was higher in HL-1 cocultured with synthetic SMCs than that in the cells cocultured with contractile SMCs, which was inhibited by18-α-GA; (4) the expression of microRNA 27b was increased in HL-1 cocultured with synthetic SMCs, which was attenuated markedly by 18-α-GA. (5) the expression of ZFHX3 was decreased in HL-1 cocultured with synthetic SMCs, which was reversed by 18-α-GA. The gap junction proteins of HL-1 were regulated by pulmonary venous SMCs undergoing phenotypic transition in this study, accompanied with the up-regulation of microRNA 27b and the down-regulation of ZFHX3 in HL-1 cells, which was associated with heterocellular gap junctions between HL-1 and pulmonary venous SMCs.
Collapse
Affiliation(s)
- En Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Changlong Bi
- Department of Cardiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| | - Zongqi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
17
|
Lv L, Zheng N, Zhang L, Li R, Li Y, Yang R, Li C, Fang R, Shabanova A, Li X, Liu Y, Liang H, Zhou Y, Shan H. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice. Eur J Pharmacol 2020; 881:173131. [PMID: 32450177 DOI: 10.1016/j.ejphar.2020.173131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Cardiac conduction delay may occur as a common complication of several cardiac diseases. A few therapies and drugs have a good effect on cardiac conduction delay. Metformin (Met) has a protective effect on the heart. This study's aim was to investigate whether Met could ameliorate cardiac conduction delay and its potential mechanism. Cardiac-specific microRNA-1 (miR-1) transgenic (TG) and myocardial infarction (MI) mouse models were used. Mice were administered with Met in an intragastric manner. We found that the expression of miR-1 was significantly up-regulated in H2O2 treated cardiomyocytes as well as in TG and MI mice. The protein levels of inwardly rectifying potassium channel 2.1 (Kir2.1) and Connexin43 (CX43) were down-regulated both in cardiomyocytes treated with H2O2 as well as cardiac tissues of TG and MI mice, as compared to their controls. Furthermore, the PR and QT intervals were prolonged, action potential duration (APD) was delayed, and conduction velocity (CV) was reduced, with upregulation of miR-1 in the hearts. In the meanwhile, intercalated disc injuries were found in the hearts of MI mice. Interestingly, Met can noticeably inhibit miR-1 upregulation and attenuate the changes mentioned above. Taken together, this suggested that Met could play an important role in improving cardiac conduction delay through inhibition of miR-1 expression. Our study proposes that Met is a potential candidate for the treatment of cardiac conduction delay and provides a new idea of treating arrhythmia with a drug.
Collapse
Affiliation(s)
- Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; The Centre of Functional Experiment Teaching, Department of Basic Medicine, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Nan Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, The Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruotong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yingnan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Chao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruonan Fang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Azaliia Shabanova
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Outpatient and Emergency Pediatric, Bashkir State Medical University, Ground Floor, Teatralnaya Street, 2a, 450000, Ufa, Russia
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yingqi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
18
|
Kmecova Z, Veteskova J, Lelkova-Zirova K, Bies Pivackova L, Doka G, Malikova E, Paulis L, Krenek P, Klimas J. Disease severity-related alterations of cardiac microRNAs in experimental pulmonary hypertension. J Cell Mol Med 2020; 24:6943-6951. [PMID: 32395887 PMCID: PMC7299706 DOI: 10.1111/jcmm.15352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH). We hypothesized that heart‐relevant microRNAs, that is myomiRs (miR‐1, miR‐133a, miR‐208, miR‐499) and miR‐214, can have a role in the right ventricle in the development of PAH. To mimic PAH, male Wistar rats were injected with monocrotaline (MCT, 60 mg/kg, s.c.); control group received vehicle. MCT rats were divided into two groups, based on the clinical presentation: MCT group terminated 4 weeks after MCT administration and prematurely terminated group (ptMCT) displaying signs of terminal disease. Myocardial damage genes and candidate microRNAs expressions were determined by RT‐qPCR. Reduced blood oxygen saturation, breathing disturbances, RV enlargement as well as elevated levels of markers of myocardial damage confirmed PH in MCT animals and were more pronounced in ptMCT. MyomiRs (miR‐1/miR‐133a/miR‐208a/miR‐499) were decreased and the expression of miR‐214 was increased only in ptMCT group (P < 0.05). The myomiRs negatively correlated with Fulton index as a measure of RV hypertrophy in MCT group (P < 0.05), whereas miR‐214 showed a positive correlation (P < 0.05). We conclude that the expression of determined microRNAs mirrored the disease severity and targeting their pathways might represent potential future therapeutic approach in PAH.
Collapse
Affiliation(s)
- Zuzana Kmecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jana Veteskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Katarina Lelkova-Zirova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Eva Malikova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
19
|
Value of circulating miRNA-1 detected within 3 h after the onset of acute chest pain in the diagnosis and prognosis of acute myocardial infarction. Int J Cardiol 2020; 307:146-151. [DOI: 10.1016/j.ijcard.2019.09.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023]
|
20
|
The Role of Proteostasis in the Regulation of Cardiac Intercellular Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:279-302. [DOI: 10.1007/978-3-030-38266-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Zheng H, Liu Y, Xu D, Liu P, Yang X, Li B, Cao Z, Liu Y, Zheng X. Inhibition of Gap Junction-Mediated Intercellular Communication by Poly(I:C) in Cultured Human Corneal Fibroblasts. Curr Eye Res 2020; 45:1043-1050. [PMID: 32078434 DOI: 10.1080/02713683.2020.1716986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE/AIM Corneal stromal fibroblasts are connected to each other via gap junctions, which contribute to maintenance of corneal homeostasis. Viral infection of the corneal stroma can result in inflammation and scarring. The effects of polyinosinic-polycytidylic acid [poly(I:C)], an analog of viral double-stranded RNA, on gap junctional intercellular communication (GJIC) in cultured human corneal fibroblasts (HCFs) were examined. MATERIALS AND METHODS Cultured HCFs were exposed to poly(I:C) in the absence or presence of inhibitors of mitogen-activated protein kinase (MAPK) signaling or the antioxidant N-acetyl-L-cysteine (NAC). Expression of the gap junction protein connexin 43 (Cx43) was examined by immunoblot and immunofluorescence analyses. The level of Cx43 mRNA or microRNA-21 or -130a was determined by quantitative reverse transcription-polymerase chain reaction analysis. GJIC was measured with a dye coupling assay. The amount of malondialdehyde and the activity of superoxide dismutase (SOD) were measured with assay kits. RESULTS Exposure of HCFs to poly(I:C) resulted in down-regulation of Cx43 expression and GJIC activity as well as in up-regulation of microRNA-21 expression. Poly(I:C) increased the amount of malondialdehyde and reduced the activity of SOD in the cells, and these effects were prevented by NAC. The inhibitory effects of poly(I:C) on both Cx43 expression and GJIC activity were attenuated by NAC and by c-Jun NH2-terminal kinase (JNK) inhibitor II. CONCLUSIONS Poly(I:C) inhibited Cx43 expression and GJIC in cultured HCFs, possibly as a result of the associated up-regulation of microRNA-21. Poly(I:C) also increased oxidative stress in these cells, and such stress together with signaling by the MAPK JNK was implicated in the effects of poly(I:C) on Cx43 expression and GJIC activity. Down-regulation of GJIC activity among corneal fibroblasts by double-stranded RNA may thus contribute to the disruption of stromal homeostasis during viral infection of the cornea.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Ophthalmology, Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, PR China
| | - Ye Liu
- Department of Pathology, Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environmental Science and Engineering College, Dalian Maritime University , Dalian, PR China
| | - Pingping Liu
- Department of Ophthalmology, Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, PR China
| | - Xiuxia Yang
- Department of Ophthalmology, Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, PR China
| | - Bing Li
- Department of Ophthalmology, Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, PR China
| | - Zimu Cao
- Institute of Environmental Systems Biology, Environmental Science and Engineering College, Dalian Maritime University , Dalian, PR China
| | - Yang Liu
- Department of Ophthalmology, Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, PR China
| | - Xiaoshuo Zheng
- Department of Ophthalmology, Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, PR China
| |
Collapse
|
22
|
Šustr F, Stárek Z, Souček M, Novák J. Non-coding RNAs and Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:287-300. [PMID: 32285419 DOI: 10.1007/978-981-15-1671-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Cardiac arrhythmias represent wide and heterogenic group of disturbances in the cardiac rhythm. Pathophysiology of individual arrhythmias is highly complex and dysfunction in ion channels/currents involved in generation or spreading of action potential is usually documented. Non-coding RNAs (ncRNAs) represent highly variable group of molecules regulating the heart expression program, including regulation of the expression of individual ion channels and intercellular connection proteins, e.g. connexins.Within this chapter, we will describe basic electrophysiological properties of the myocardium. We will focus on action potential generation and spreading in pacemaker and non-pacemaker cells, including description of individual ion channels (natrium, potassium and calcium) and their ncRNA-mediated regulation. Most of the studies have so far focused on microRNAs, thus, their regulatory function will be described into greater detail. Clinical consequences of altered ncRNA regulatory function will also be described together with potential future directions of the research in the field.
Collapse
Affiliation(s)
- Filip Šustr
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdeněk Stárek
- First Department of Internal Medicine and Cardioangiology of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Souček
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Novák
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- CEITEC - Central European Institute for Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
23
|
Trotta MC, Ferraro B, Messina A, Panarese I, Gulotta E, Nicoletti GF, D'Amico M, Pieretti G. Telmisartan cardioprotects from the ischaemic/hypoxic damage through a miR-1-dependent pathway. J Cell Mol Med 2019; 23:6635-6645. [PMID: 31369209 PMCID: PMC6787508 DOI: 10.1111/jcmm.14534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate whether telmisartan protects the heart from the ischaemia/reperfusion damage through a local microRNA‐1 modulation. Studies on the myocardial ischaemia/reperfusion injury in vivo and on the cardiomyocyte hypoxia/reoxygenation damage in vitro were done. In vivo, male Sprague‐Dawley rats administered for 3 weeks with telmisartan 12 mg/kg/d by gastric gavage underwent ischaemia/reperfusion of the left descending coronary artery. In these rats, infarct size measurement, ELISA, immunohistochemistry (IHC) and reverse transcriptase real‐time polymerase chain reaction showed that expressions of connexin 43, potassium voltage‐gated channel subfamily Q member 1 and the protein Bcl‐2 were significantly increased by telmisartan in the reperfused myocardium, paralleled by microRNA‐1 down‐regulation. In vitro, the transfection of cardiomyocytes with microRNA‐1 reduced the expressions of connexin 43, potassium voltage‐gated channel subfamily Q member 1 and Bcl‐2 in the cells. Telmisartan (50 µmol/L) 60 minutes before hypoxia/reoxygenation, while not affecting the levels of miR‐1 in transfected cells in normoxic condition, almost abolished the increment of miR‐1 induced by the hypoxia/reoxygenation to transfected cells. All together, telmisartan cardioprotected against the myocardial damage through the microRNA‐1 modulation, and consequent modifications of its downstream target connexin 43, potassium voltage‐gated channel subfamily Q member 1 and Bcl‐2.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Bartolo Ferraro
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Iacopo Panarese
- Department of Mental and Physical Health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Eliana Gulotta
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Palermo, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Surgical and Dental Specialties, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialties, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
24
|
Altered biogenesis of microRNA-1 is associated with cardiac dysfunction in aging of spontaneously hypertensive rats. Mol Cell Biochem 2019; 459:73-82. [PMID: 31104265 DOI: 10.1007/s11010-019-03551-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022]
Abstract
Currently we face the issues of aging-associated pathologies, particularly those leading to heart failure. With that in mind, in current research we focus on aging and hypertension combination as a widely spread threating problem. In a row with functional and morphological characterization of these aging- and hypertension-associated cardiac changes, we evaluate biogenesis of microRNA-1 being one of major microRNAs in the heart. The aim of this study was to check the hypothesis if dysregulation of microRNA-1 biogenesis is associated with heart failure in aged and especially aged hypertensive rats. The experiments were carried out on male SHR and Wistar rats of age 6 months (young) and 18 months (old). The evaluation of hemodynamic parameters was performed in heart left ventricles of narcotized rats using the ultra-small 2F catheter. The development of fibrosis was determined using light and electron microscopy. Levels of mature and immature forms of microRNA-1 and mRNA encoding the proteins involved in its biogenesis were determined using reverse transcription and quantitative PCR. Aging of both Wistar and SHRs is accompanied with altered hemodynamic parameters compared with correspondent younger mates. SHRs, especially old ones, demonstrated significant heart fibrosis. In aged animals, the level of primary microRNA-1 in Wistar rats were 7 times higher (p < 0.05) and in SHR 17 times higher (p < 0.05) in comparison with young rats of the same strain. We also observed 22 times higher level of immature microRNA-1 in the heart of Wistar and 5.9 times higher level for aged hypertensive rats (p < 0.05) compared to young rats. At the same time, the level of mature microRNA-1 occurred 2.5 and 3.2 times lower in respective groups (p < 0.05). In the current study, we observe the significant dysregulation of microRNA-1 processing in the heart associated with aging and arterial hypertension.
Collapse
|
25
|
Torella D, Iaconetti C, Tarallo R, Marino F, Giurato G, Veneziano C, Aquila I, Scalise M, Mancuso T, Cianflone E, Valeriano C, Marotta P, Tammè L, Vicinanza C, Sasso FC, Cozzolino D, Torella M, Weisz A, Indolfi C. miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes. Diabetes 2018; 67:2554-2568. [PMID: 30257973 DOI: 10.2337/db17-1434] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/14/2018] [Indexed: 02/05/2023]
Abstract
Harnessing the mechanisms underlying the exacerbated vascular remodeling in diabetes mellitus (DM) is pivotal to prevent the high toll of vascular diseases in patients with DM. miRNA regulates vascular smooth muscle cell (VSMC) phenotypic switch. However, miRNA modulation of the detrimental diabetic VSMC phenotype is underexplored. Streptozotocin-induced type 1 DM (T1DM) Wistar rats and type 2 DM (T2DM) Zucker rats underwent right carotid artery experimental angioplasty, and global miRNA/mRNA expression profiling was obtained by RNA sequencing (RNA-Seq). Two days after injury, a set of six miRNAs were found to be uniquely downregulated or upregulated in VSMCs both in T1DM and T2DM. Among these miRNAs, miR-29c and miR-204 were the most significantly misregulated in atherosclerotic plaques from patients with DM. miR-29c overexpression and miR-204 inhibition per se attenuated VSMC phenotypic switch in DM. Concomitant miR-29c overexpression and miR-204 inhibition fostered an additive reduction in VSMC proliferation. Epithelial membrane protein 2 (Emp2) and Caveolin-1 (Cav1) mRNAs were identified as direct targets of miR-29c and miR-204, respectively. Importantly, contemporary miR-29c overexpression and miR-204 inhibition in the injured artery robustly reduced arterial stenosis in DM rats. Thus, contemporaneous miR-29c activation and miR-204 inhibition in DM arterial tissues is necessary and sufficient to prevent the exaggerated VSMC growth upon injury.
Collapse
MESH Headings
- Animals
- Cell Proliferation/physiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Male
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Daniele Torella
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Claudio Iaconetti
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Fabiola Marino
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Claudia Veneziano
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Chiara Valeriano
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Laura Tammè
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Carla Vicinanza
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ferdinando C Sasso
- Department of Internal and Experimental Medicine "Magrassi-Lanzara," University of Campania "L. Vanvitelli," Naples, Italy
| | - Domenico Cozzolino
- Department of Internal and Experimental Medicine "Magrassi-Lanzara," University of Campania "L. Vanvitelli," Naples, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania "L. Vanvitelli," Naples, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Ciro Indolfi
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
26
|
Indolfi C, Iaconetti C, Gareri C, Polimeni A, De Rosa S. Non-coding RNAs in vascular remodeling and restenosis. Vascul Pharmacol 2018; 114:49-63. [PMID: 30368024 DOI: 10.1016/j.vph.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are crucial in vascular remodeling. They exert pivotal roles in the development and progression of atherosclerosis, vascular response to injury, and restenosis after transcatheter angioplasty. As a witness of their importance in the cardiovascular system, a large body of evidence has accumulated about the role played by micro RNAs (miRNA) in modulating both VSMCs and ECs. More recently, a growing number of long noncoding RNA (lncRNAs) came beneath the spotlights in this research field. Several mechanisms have been revealed by which lncRNAs are able to exert a relevant biological impact on vascular remodeling. The aim of this review is to provide an integrated summary of ncRNAs that exert a relevant biological function in VSMCs and ECs of the vascular wall, with emphasis on the available clinical evidence of the potential usefulness of these molecules as circulating biomarkers of in-stent restenosis.
Collapse
Affiliation(s)
- Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy; URT CNR of IFC, University Magna Graecia, Italy.
| | - Claudio Iaconetti
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy
| | - Clarice Gareri
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy
| | - Alberto Polimeni
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy
| |
Collapse
|
27
|
The Clinical Significance of Changes in the Expression Levels of MicroRNA-1 and Inflammatory Factors in the Peripheral Blood of Children with Acute-Stage Asthma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7632487. [PMID: 30046607 PMCID: PMC6038680 DOI: 10.1155/2018/7632487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
This study assessed the changes and clinical significance of microRNA-1 (miR-1) and inflammatory factors in the peripheral blood of children with acute-stage asthma. 100 children with acute-stage asthma (study group) and 100 healthy children (control group) were enrolled. For all enrolled children, the peripheral blood levels of miR-1, interleukin-4 (IL-4), IL-5, IL-8, tumor necrosis factor-alpha (TNF-α), and interferon-γ (IFN-γ) were measured. The relative expression levels of miR-1 and IFN-γ in the peripheral blood of children in the study group were significantly lower than those in the control group, whereas expression levels of IL-4, IL-5, IL-8, and TNF-α were significantly higher. Moreover, these levels changed to a greater extent in patients with severe disease (P < 0.05). Further analyses showed that the miR-1 expression level positively correlated with IFN-γ and negatively correlated with IL-4, IL-5, IL-8, and TNF-α expression levels (P < 0.05). ROC curve analysis to identify diagnostic specificity and sensitivity showed that, for diagnosing exacerbation in asthma, the area under the curve (AUC) for miR-1 was the highest (AUC = 0.900, P < 0.05) of all tested markers; this held true for diagnosing severe asthma as well (AUC = 0.977, P < 0.05). Compared to healthy children, children with acute-stage asthma had a low miR-1 expression level and a Th1/Th2 imbalance in their peripheral blood. The changes were closely related, became more exaggerated with an increase in disease severity, and could be used as auxiliary variables for diagnosing asthma exacerbation and evaluating disease severity.
Collapse
|
28
|
Abstract
Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology.
Collapse
|
29
|
Dal Lin C, Gola E, Brocca A, Rubino G, Marinova M, Brugnolo L, Plebani M, Iliceto S, Tona F. miRNAs may change rapidly with thoughts: The Relaxation Response after myocardial infarction. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Down-regulation of miR-133a/b in patients with myocardial infarction correlates with the presence of ventricular fibrillation. Biomed Pharmacother 2018; 99:65-71. [PMID: 29324314 DOI: 10.1016/j.biopha.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of physiologic and pathologic conditions of the heart. Animal models of heart diseases have shown that miRNAs may contribute to the development of arrhythmias. However, little is known about the expression of muscle- and cardiac-specific miRNAs in patients with myocardial infarction (MI) who have developed ventricular fibrillation (VF). Our study included 47 patients who had died from myocardial infarction (MI), 23 with clinically proven VF and 24 without VF. Autopsy samples of infarcted tissue and remote myocardium were available (n = 94). Heart tissue from 8 healthy trauma victims was included as control. Expression of miR-1, miR-133a/b and miR-208 was analyzed using real-time PCR (qPCR). In patients with MI with VF, we observed down-regulation of miR-133a/b, and this down-regulation was even stronger 2-7 days after MI. miR-208 was up-regulated in remote myocardium irrespective of the presence of VF. Deregulation of miR-1 and miR-208 was not related to the presence of VF. Our results suggest that down-regulation of miR-133a/b might contribute to the development of VF in patients with MI. However, up-regulation of miR-1 and miR-208 in remote myocardium might play a role in cardiac remodeling after MI, at least to certain degree.
Collapse
|
31
|
Lai Z, Lin P, Weng X, Su J, Chen Y, He Y, Wu G, Wang J, Yu Y, Zhang L. MicroRNA-574-5p promotes cell growth of vascular smooth muscle cells in the progression of coronary artery disease. Biomed Pharmacother 2018; 97:162-167. [DOI: 10.1016/j.biopha.2017.10.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
32
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
33
|
Umrani MR, Joglekar MV, Somerville Glover E, Wong W, Hardikar AA. Connexins and microRNAs: Interlinked players in regulating islet function? Islets 2017; 9:99-108. [PMID: 28686518 PMCID: PMC5624287 DOI: 10.1080/19382014.2017.1331192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/09/2023] Open
Abstract
Pancreatic β-cells are connected to neighboring endocrine cells through the adherin proteins and gap junctions. Connexin 36 (Cx36) is one of the most well-studied and abundantly expressed gap-junction proteins within rodent islets, which is important in coordinated insulin secretion. The expression of connexins is regulated at various levels and by several mechanisms; one of which is via microRNAs. In past 2 decades, microRNAs (miRNAs) have emerged as key molecules in developmental, physiologic and pathological processes. However, very few studies have demonstrated miRNA-mediated regulation of connexins. Even though there are no reports yet on miRNAs and Cx36; we envisage that considering the important role of connexins and microRNAs in insulin secretion, there would be common pathways interlinking these biomolecules. Here, we discuss the current literature on connexins and miRNAs specifically with reference to islet function.
Collapse
Affiliation(s)
- Malati R. Umrani
- National centre for cell science, Ganeshkhind, Pune University Campus, Pune, India
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Mugdha V. Joglekar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Ella Somerville Glover
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Wilson Wong
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Anandwardhan A. Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Egan Benova T, Szeiffova Bacova B, Viczenczova C, Diez E, Barancik M, Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol Res 2017; 65 Suppl 1:S29-42. [PMID: 27643938 DOI: 10.33549/physiolres.933391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gap junction connexin channels are important determinants of myocardial conduction and synchronization that is crucial for coordinated heart function. One of the main risk factors for cardiovascular events that results in heart attack, congestive heart failure, stroke as well as sudden arrhythmic death is hypertension. Mislocalization and/or dysfunction of specific connexin-43 channels due to hypertension-induced myocardial remodeling have been implicated in the occurrence of life-threatening arrhythmias and heart failure in both, humans as well as experimental animals. Recent studies suggest that down-regulation of myocardial connexin-43, its abnormal distribution and/or phosphorylation might be implicated in this process. On the other hand, treatment of hypertensive animals with cardioprotective drugs (e.g. statins) or supplementation with non-pharmacological compounds, such as melatonin, omega-3 fatty acids and red palm oil protects from lethal arrhythmias. The antiarrhythmic effects are attributed to the attenuation of myocardial connexin-43 abnormalities associated with preservation of myocardial architecture and improvement of cardiac conduction. Findings uncover novel mechanisms of cardioprotective (antihypertensive and antiarrhythmic) effects of compounds that are used in clinical settings. Well-designed trials are needed to explore the antiarrhythmic potential of these compounds in patients suffering from hypertension.
Collapse
Affiliation(s)
- T Egan Benova
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
35
|
Diniz GP, Lino CA, Moreno CR, Senger N, Barreto-Chaves MLM. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone. J Cell Physiol 2017; 232:3360-3368. [DOI: 10.1002/jcp.25781] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Caroline Antunes Lino
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Camila Rodrigues Moreno
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Nathalia Senger
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy; Department of Anatomy; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
36
|
Iaconetti C, Sorrentino S, De Rosa S, Indolfi C. Exosomal miRNAs in Heart Disease. Physiology (Bethesda) 2017; 31:16-24. [PMID: 26661525 DOI: 10.1152/physiol.00029.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Micro-RNAs (miRNAs) are small noncoding RNAs involved in the posttranscriptional regulation of gene expression. Exosomes have recently emerged as novel elements of intercellular communication in the cardiovascular system. Exosomal miRNAs could be key players in intercellular cross-talk, particularly during different diseases such as myocardial infarction (MI) and heart failure (HF). This review addresses the functional role played by exosomal miRNAs in heart disease and their potential use as new biomarkers.
Collapse
Affiliation(s)
- Claudio Iaconetti
- Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute, Magna Graecia University, Catanzaro, Italy; and
| | - Sabato Sorrentino
- Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute, Magna Graecia University, Catanzaro, Italy; and
| | - Salvatore De Rosa
- Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute, Magna Graecia University, Catanzaro, Italy; and
| | - Ciro Indolfi
- Laboratory of Molecular and Cellular Cardiology, Cardiovascular Institute, Magna Graecia University, Catanzaro, Italy; and URT-CNR, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
37
|
Bian B, Yu XF, Wang GQ, Teng TM. Role of miRNA-1 in regulating connexin 43 in ischemia-reperfusion heart injury: a rat model. Cardiovasc Pathol 2017; 27:37-42. [PMID: 28081514 DOI: 10.1016/j.carpath.2016.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/30/2016] [Indexed: 11/25/2022] Open
Abstract
MiRNA-1 may participate in regulating ischemia-reperfusion injury (IRI) by affecting the expression and distribution of connexin 43 (Cx43). The aim of this study is to investigate miR-1 expression and its potential role in regulating Cx43 during ischemic postconditioning (IPOST) in a rat model. Fifty-five Wistar male rats were randomly divided into five groups: N, IR, IPOST, agomir-1, and antagomir-1 group. The hearts were perfused with the Langendorff system. The reperfusion arrhythmia (RA) and myocardial infarct size were observed and recorded. The miRNA-1 expression and the Cx43 expression and distribution were assessed by RT-PCR, immunoblotting, and immunohistochemistry. First, the RA score in the IR group was higher than that in the control group, whereas there was no difference between the IPOST and antagomir-1 groups. Second, the myocardial infarct size was larger in the agomir-1 than in the IPOST group; there was no difference between the antagomir-1 and the IPOST group. Third, the miRNA-1 expression increased by 78% in the agomir-1 group but decreased by 32% in the antagomir-1 group compared with the IPOST group. Fourth, compared with the Control group, the Cx43 expression in the IR group decreased, the Cx43 expression decreased in the agomir-1 group compared with the IPOST group. Fifth, the distribution of Cx43 was irregular and disorganized in the IR and agomir-1 groups. In the IPOST and antagomir-1 groups, Cx43 was neatly distributed in the intercalated disk area. Our findings suggest that IPOST can inhibit the up-regulation of miRNA-1 induced by ischemia-reperfusion and that the down-regulation of miRNA-1 can prevent the decrease and redistribution of Cx43, which will protect the heart from IRI.
Collapse
Affiliation(s)
- Bo Bian
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue-Fang Yu
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China.
| | - Guo-Qin Wang
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian-Ming Teng
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
38
|
Wang H, Cai J. The role of microRNAs in heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1863:2019-2030. [PMID: 27916680 DOI: 10.1016/j.bbadis.2016.11.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small non-coding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. In the past decade, many in vitro and in vivo studies have explored the involvement of microRNAs in various cardiovascular diseases. In this paper, studies focused upon the target genes and functionality of miRNAs in the pathophysiological processes of heart failure are reviewed. The selected miRNAs are categorized according to the biological relevance of their target genes in relation to four cardiovascular pathologies, namely angiogenesis, cardiac hypertrophy, fibrosis and apoptosis. This review illustrates the involvement of miRNAs in different biological signaling pathways and provides an overview of current understanding of the roles of miRNAs in cardiovascular health and diseases. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Hongjiang Wang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Hypertension Center, Fuwai Hospital, Xicheng District, North Lishi Road No. 167, Beijing 100037, China.
| |
Collapse
|
39
|
Calderón JF, Retamal MA. Regulation of Connexins Expression Levels by MicroRNAs, an Update. Front Physiol 2016; 7:558. [PMID: 27932990 PMCID: PMC5122916 DOI: 10.3389/fphys.2016.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
Control of cell-cell coordination and communication is regulated by several factors, including paracrine and autocrine release of biomolecules, and direct exchange of soluble factors between cells through gap junction channels. Additionally, hemichannels also participate in cell-cell coordination through the release of signaling molecules, such as ATP and glutamate. A family of transmembrane proteins named connexins forms both gap junction channels and hemichannels. Because of their importance in cell and tissue coordination, connexins are controlled both by post-translational and post-transcriptional modifications. In recent years, non-coding RNAs have garnered research interest due to their ability to exert post-transcriptional regulation of gene expression. One of the most recent, well-documented control mechanisms of protein synthesis is found through the action of small, single-stranded RNA, called micro RNAs (miRNAs or miRs). Put simply, miRNAs are negative regulators of the expression of a myriad proteins involved in many physiological and pathological processes. This mini review will briefly summarize what is currently known about the action of miRNAs over Cxs expression/function in different organs under some relevant physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan F Calderón
- Facultad de Medicina, Center for Genetics and Genomics, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio A Retamal
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
40
|
Liao C, Gui Y, Guo Y, Xu D. The regulatory function of microRNA-1 in arrhythmias. MOLECULAR BIOSYSTEMS 2016; 12:328-33. [PMID: 26671473 DOI: 10.1039/c5mb00806a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arrhythmia, the basis of which is cardiomyocyte ion channel abnormalities, poses a serious threat to human health. A large number of studies have demonstrated that miRNA-1(miR-1) is involved in the occurrence of arrhythmia in many myocardial pathological conditions by post-transcriptionally regulating a variety of ion channels and proteins related to cardiac electrical activity. We aim at emphasizing the relationship between miR-1 and ion channels and proteins involved in the process of arrhythmia. In addition, we will pay attention to its future therapeutic prospects.
Collapse
Affiliation(s)
- Caixiu Liao
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Yajun Gui
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Yuan Guo
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Danyan Xu
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
41
|
Lemcke H, Peukert J, Voronina N, Skorska A, Steinhoff G, David R. Applying 3D-FRAP microscopy to analyse gap junction-dependent shuttling of small antisense RNAs between cardiomyocytes. J Mol Cell Cardiol 2016; 98:117-27. [DOI: 10.1016/j.yjmcc.2016.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
|
42
|
Gareri C, De Rosa S, Indolfi C. MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circ Res 2016; 118:1170-84. [PMID: 27034278 DOI: 10.1161/circresaha.115.308237] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Percutaneous revascularization revolutionized the therapy of patients with coronary artery disease. Despite continuous technical advances that substantially improved patients' outcome after percutaneous revascularization, some issues are still open. In particular, restenosis still represents a challenge, even though it was dramatically reduced with the advent of drug-eluting stents. At the same time, drug-eluting stent thrombosis emerged as a major concern because of incomplete or delayed re-endothelialization after vascular injury. The discovery of microRNAs revealed a previously unknown layer of regulation for several biological processes, increasing our knowledge on the biological mechanisms underlying restenosis and stent thrombosis, revealing novel promising targets for more efficient and selective therapies. The present review summarizes recent experimental and clinical evidence on the role of microRNAs after arterial injury, focusing on practical aspects of their potential therapeutic application for selective inhibition of smooth muscle cell proliferation, enhancement of endothelial regeneration, and inhibition of platelet activation after coronary interventions. Application of circulating microRNAs as potential biomarkers is also discussed.
Collapse
Affiliation(s)
- Clarice Gareri
- From the Department of Medicine, Duke University, Durham, NC (C.G.); Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Catanzaro, Italy (S.D.R., C.I.); and URT-CNR, Department of Medicine, URT of Consiglio Nazionale delle Ricerche, Catanzaro, Italy (C.I.)
| | - Salvatore De Rosa
- From the Department of Medicine, Duke University, Durham, NC (C.G.); Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Catanzaro, Italy (S.D.R., C.I.); and URT-CNR, Department of Medicine, URT of Consiglio Nazionale delle Ricerche, Catanzaro, Italy (C.I.)
| | - Ciro Indolfi
- From the Department of Medicine, Duke University, Durham, NC (C.G.); Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Catanzaro, Italy (S.D.R., C.I.); and URT-CNR, Department of Medicine, URT of Consiglio Nazionale delle Ricerche, Catanzaro, Italy (C.I.).
| |
Collapse
|
43
|
Fang YC, Yeh CH. Role of microRNAs in Vascular Remodeling. Curr Mol Med 2016; 15:684-96. [PMID: 26391551 PMCID: PMC5384354 DOI: 10.2174/1566524015666150921105031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/06/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
Abstract
Besides being involved in the gradual formation of blood vessels during embryonic development, vascular remodeling also contributes to the progression of various cardiovascular diseases, such as; myocardial infarction, heart failure, atherosclerosis, pulmonary artery hypertension, restenosis, aneurysm, etc. The integrated mechanisms; proliferation of medial smooth muscle cell, dysregulation of intimal endothelial cell, activation of adventitial fibroblast, inflammation of macrophage, and the participation of extracellular matrix proteins are important factors in vascular remodeling. In the recent studies, microRNAs (miRs) have been shown to be expressed in all of these cell-types and play important roles in the mechanisms of vascular remodeling. Therefore, some miRs may be involved in prevention and others in the aggravation of the vascular lesions. miRs are small, endogenous, conserved, single-stranded, non-coding RNAs; which degrade target RNAs or inhibit translation post-transcriptionally. In this paper, we reviewed the function and mechanisms of miRs, which are highly expressed in various cells types, especially endothelial and smooth muscle cells, which are closely involved in the process of vascular remodeling. We also assess the functions of these miRs in the hope that they may provide new possibilities of diagnosis and treatment choices for the related diseases.
Collapse
Affiliation(s)
| | - C-H Yeh
- Department of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital at Keelung, 222 Mai-Chin Road, Keelung, 204, Taiwan.
| |
Collapse
|
44
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94:107-121. [PMID: 27056419 DOI: 10.1016/j.yjmcc.2016.03.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022]
Abstract
Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
45
|
Yuan W, Tang C, Zhu W, Zhu J, Lin Q, Fu Y, Deng C, Xue Y, Yang M, Wu S, Shan Z. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem 2015; 412:289-96. [PMID: 26699910 DOI: 10.1007/s11010-015-2635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/15/2015] [Indexed: 01/21/2023]
Abstract
MicroRNA-1 (miR-1) is approved involved in cardiac hypertrophy, but the underlying molecular mechanisms of miR-1 in cardiac hypertrophy are not well elucidated. The present study aimed to investigate the potential role of miR-1 in modulating CDKs-Rb pathway during cardiomyocyte hypertrophy. A rat model of hypertrophy was established with abdominal aortic constriction, and a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocytes (NRVCs). We demonstrated that miR-1 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes. Dual luciferase reporter assays revealed that miR-1 interacted with the 3'UTR of CDK6, and miR-1 was verified to inhibit CDK6 expression at the posttranscriptional level. CDK6 protein expression was observed increased in hypertrophic myocardium and hypertrophic cardiomyocytes. Morover, miR-1 mimic, in parallel to CDK6 siRNA, could inhibit PE-induced hypertrophy of NRVCs, with decreases in cell size, newly transcribed RNA, expressions of ANF and β-MHC, and the phosphorylated pRb. Taken together, our results reveal that derepression of CDK6 and activation of Rb pathway contributes to the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Weiwei Yuan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunmei Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wensi Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiening Zhu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qiuxiong Lin
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yongheng Fu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunyu Deng
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yumei Xue
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Min Yang
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shulin Wu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhixin Shan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
46
|
Vinken M. Regulation of connexin signaling by the epigenetic machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:262-8. [PMID: 26566120 DOI: 10.1016/j.bbagrm.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression.
Collapse
Affiliation(s)
- Mathieu Vinken
- Vrije Universiteit Brussel, Department of In Vitro Toxicology and Dermato-Cosmetology, Building G, Room G226, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
47
|
Sygitowicz G, Tomaniak M, Błaszczyk O, Kołtowski Ł, Filipiak KJ, Sitkiewicz D. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results. Arch Cardiovasc Dis 2015; 108:634-42. [PMID: 26498537 DOI: 10.1016/j.acvd.2015.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cardiomyocytes produce a wide variety of bioactive molecules that regulate numerous physiological and pathophysiological processes. Recently, it has been recognized that changes in microribonucleic acid (miRNA) expression may lead to cardiac dysfunction. AIMS To assess the expression of circulating miRNAs (miR-1, miR-21 and miR-208a) in patients with symptomatic heart failure (HF), and to investigate the relationship between expression of these miRNAs and secretion of N-terminal pro-B-type natriuretic peptide (NT-proBNP) and galectin-3. METHODS Thirty-five patients in New York Heart Association (NYHA) class II/III (age: 68.8 ± 13.0 years) and 26 patients in NYHA class IV (age: 72.0 ± 10.4 years) hospitalized in the intensive coronary care unit participated in the study. Serum concentrations of miRNAs were measured by quantitative real-time polymerase chain reaction. Basic biochemical assays were carried out, and NT-proBNP and galectin-3 concentrations were measured in all serum samples. RESULTS miR-1 was downregulated in patients with symptomatic HF and its expression decreased with severity of NYHA class (P=0.007). In contrast, overexpression of miR-21 was seen in all patients, independent of HF severity. Results suggest no miR-208a leakage into the circulation in patients with symptomatic HF. There was an inverse relationship between miR-1 expression and NT-proBNP concentration (Spearman's rank correlation coefficient [r]=-0.389; P=0.023) in patients in NYHA class II/III. Overexpression of miR-21 correlated significantly with galectin-3 concentration (r=0.422; P=0.032). CONCLUSION Dysregulation of miR-1 and miR-21 expression may be essential for the development of HF; miR-1 might become a biomarker for predicting HF exacerbation.
Collapse
Affiliation(s)
- Grażyna Sygitowicz
- Department of Laboratory Medical Diagnostics, Medical University of Warsaw, Warsaw, Poland.
| | - Mariusz Tomaniak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Olga Błaszczyk
- Department of Pharmacogenomics, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Kołtowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof J Filipiak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Sitkiewicz
- Department of Laboratory Medical Diagnostics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 2015; 768:71-6. [PMID: 26499977 DOI: 10.1016/j.ejphar.2015.10.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022]
Abstract
Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized.
Collapse
Affiliation(s)
| | | | - Pinto Aldo
- Department of Pharmacy, University of Salerno, Italy
| | - Popolo Ada
- Department of Pharmacy, University of Salerno, Italy.
| |
Collapse
|
49
|
Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients. Biochem J 2015; 472:55-69. [PMID: 26349540 DOI: 10.1042/bj20150652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells.
Collapse
|
50
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|