1
|
Khan S, Siraj S, Shahid M, Haque MM, Islam A. Osmolytes: Wonder molecules to combat protein misfolding against stress conditions. Int J Biol Macromol 2023; 234:123662. [PMID: 36796566 DOI: 10.1016/j.ijbiomac.2023.123662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The proper functioning of any protein depends on its three dimensional conformation which is achieved by the accurate folding mechanism. Keeping away from the exposed stress conditions leads to cooperative unfolding and sometimes partial folding, forming the structures like protofibrils, fibrils, aggregates, oligomers, etc. leading to several neurodegenerative diseases like Parkinson's disease, Alzheimer's, Cystic fibrosis, Huntington, Marfan syndrome, and also cancers in some cases, too. Hydration of proteins is necessary, which may be achieved by the presence of organic solutes called osmolytes within the cell. Osmolytes belong to different classes in different organisms and play their role by preferential exclusion of osmolytes and preferential hydration of water molecules and achieves the osmotic balance in the cell otherwise it may cause problems like cellular infection, cell shrinkage leading to apoptosis and cell swelling which is also the major injury to the cell. Osmolyte interacts with protein, nucleic acids, intrinsically disordered proteins by non-covalent forces. Stabilizing osmolytes increases the Gibbs free energy of the unfolded protein and decreases that of folded protein and vice versa with denaturants (urea and guanidinium hydrochloride). The efficacy of each osmolyte with the protein is determined by the calculation of m value which reflects its efficiency with protein. Hence osmolytes can be therapeutically considered and used in drugs.
Collapse
Affiliation(s)
- Sobia Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Seerat Siraj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box: 173, Al Kharj, Saudi Arabia
| | | | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Basheeruddin M, Khan S, Ahmed N, Jamal S. Effect of pH on Diclofenac-Lysozyme Interaction: Structural and Functional Aspect. Front Mol Biosci 2022; 9:872905. [PMID: 35898307 PMCID: PMC9309515 DOI: 10.3389/fmolb.2022.872905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Abstract
As a nonsteroidal antiinflammatory drug, diclofenac (DCF) is used in the treatment of a variety of human ailments. It has already been reported that the use of this class of drugs for a longer duration is associated with numerous side effects such as cardiovascular implications, reno-medullary complications, etc. In the present study, the effect of DCF on the structure, stability, and function of lysozyme was studied. The study was designed to examine the effect of DCF only at various pH values. Heat-induced denaturation of lysozyme was analyzed in the presence and absence of various molar concentrations of DCF at different pH values. The values of thermodynamic parameters, the midpoint of denaturation (T m), enthalpy change at T m (ΔH m), constant pressure heat capacity change (ΔC p), and Gibbs energy change at 25°C (ΔG D o), thus obtained under a given set of conditions (pH and molar concentration of DCF), demonstrated the following 1) DCF destabilized lysozyme with respect of T m and ΔG D o at all the pH values, 2) the magnitude of protein destabilization is lesser at acidic pH than at physiological pH, 3) structural changes in lysozyme are less projecting at pH 2.0 than at pH 7.0, and 4) quenching is observed at both pH values. Furthermore, the process of protein destabilization in the presence of DCF is entropically driven.
Collapse
Affiliation(s)
| | | | | | - Shazia Jamal
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
3
|
Hydration and aggregation in aqueous xylitol solutions in the wide temperature range. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Bonifácio VDB, Pereira SA, Serpa J, Vicente JB. Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer 2021; 124:862-879. [PMID: 33223534 PMCID: PMC7921671 DOI: 10.1038/s41416-020-01156-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
To enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (H2S), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of H2S as an energetic substrate and signalling molecule. The different pools of cysteine in the cell and within the body, and their putative use as prognostic cancer markers will be also addressed. Finally, we will discuss the pharmacological means and potential of targeting cysteine metabolism for the treatment of cancer.
Collapse
Affiliation(s)
- Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157, Oeiras, Portugal
| |
Collapse
|
5
|
Sharma GS, Krishna S, Khan S, Dar TA, Khan KA, Singh LR. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int J Biol Macromol 2021; 177:229-240. [PMID: 33607142 DOI: 10.1016/j.ijbiomac.2021.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Organic osmolytes are known to play important role in stress protection by stabilizing macromolecules and suppressing harmful effects on functional activity. There is existence of several reports in the literature regarding their effects on structural, functional and thermodynamic aspects of many enzymes and the interaction parameters with proteins have been explored. Osmolytes are compatible with enzyme function and therefore, can be accumulated up to several millimolar concentrations. From the thermodynamic point of view, osmolyte raises mid-point of thermal denaturation (Tm) of proteins while having no significant effect on ΔGD° (free energy change at physiological condition). Unfavorable interaction with the peptide backbone due to preferential hydration is the major driving force for folding of unfolded polypeptide in presence of osmolyte. However, the thermodynamic basis of stress protection and origin of compatibility paradigm has been a debatable issue. In the present manuscript, we attempt to elaborate the origin of stress protection and compatibility paradigm of osmolytes based on the effect on thermodynamic stability of proteins. We also infer that protective effects of osmolytes on ΔGD° (of proteins) could also indicate its potential involvement in unfolded protein response and overall stress biology on macromolecular level.
Collapse
Affiliation(s)
- Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sheeza Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
6
|
Expedition into Taurine Biology: Structural Insights and Therapeutic Perspective of Taurine in Neurodegenerative Diseases. Biomolecules 2020; 10:biom10060863. [PMID: 32516961 PMCID: PMC7355587 DOI: 10.3390/biom10060863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by the accumulation of misfolded proteins. The hallmarks of protein aggregation in NDs proceed with impairment in the mitochondrial function, besides causing an enhancement in endoplasmic reticulum (ER) stress, neuroinflammation and synaptic loss. As accumulation of misfolded proteins hampers normal neuronal functions, it triggers ER stress, which leads to the activation of downstream effectors formulating events along the signaling cascade—referred to as unfolded protein response (UPRER) —thereby controlling cellular gene expression. The absence of disease-modifying therapeutic targets in different NDs, and the exponential increase in the number of cases, makes it critical to explore new approaches to treating these devastating diseases. In one such approach, osmolytes (low molecular weight substances), such as taurine have been found to promote protein folding under stress conditions, thereby averting aggregation of the misfolded proteins. Maintaining the structural integrity of the protein, taurine-mediated resumption of protein folding prompts a shift in folding homeostasis more towards functionality than towards aggregation and degradation. Together, taurine enacts protection in NDs by causing misfolded proteins to refold, so as to regain their stability and functionality. The present study provides recent and useful insights into understanding the progression of NDs, besides summarizing the genetics of NDs in correlation with mitochondrial dysfunction, ER stress, neuroinflammation and synaptic loss. It also highlights the structural and functional aspects of taurine in imparting protection against the aggregation/misfolding of proteins, thereby shifting the focus more towards the development of effective therapeutic modules that could avert the development of NDs.
Collapse
|
7
|
Wahiduzzaman, Hassan MI, Islam A, Ahmad F. Urea Stress: Myo-inositol's efficacy to counteract destabilization of TIM-β-globin complex by urea is as good as that of the methylamine. Int J Biol Macromol 2020; 151:1108-1115. [DOI: 10.1016/j.ijbiomac.2019.10.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
|
8
|
Anumalla B, Prabhu NP. Counteracting Effect of Charged Amino Acids Against the Destabilization of Proteins by Arginine. Appl Biochem Biotechnol 2019; 189:541-555. [PMID: 31056736 DOI: 10.1007/s12010-019-03026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Studies on osmolyte-induced effects on proteins help in enhancing protein stability under stressed conditions for various applications. Using mixtures of osmolytes could indeed widen their applications. The combinatorial effects of osmolytes with methylamines are majorly found in the literature; however, such studies are limited on the amino acid class of osmolytes. The present study examines the effect of charged amino acids Arg, Asp, and Lys on the stability of RNase A and α-LA. The thermal stabilities of the proteins in the presence of osmolytes are monitored by absorption changes, and the structural changes are analyzed using fluorescence quenching and near-UV circular dichroism (CD). These results are compared with our previous report on the effect of Glu. Arg destabilizes both the proteins whereas Asp, Lys, and Glu stabilize the proteins. The extent of stability provided by Asp and Glu is almost same and higher than Lys in RNase A. However, the stability acquired in the presence of Asp and Lys is comparable for α-LA and Glu provides higher stability. Further, the quenching and CD results suggest that the addition of amino acids do not alter the structure of the proteins significantly. The counteracting abilities of the stabilizing amino acids (stAAs) against Arg are then investigated. The results show that Glu could counteract Arg at the lowest fraction in the mixture. Lys requires nearly equimolar concentration whereas Asp needs almost double the concentration to counteract Arg induced destabilization of the proteins. At higher concentrations, the counteracting ability of Asp and Lys is similar for both the proteins. The counteracting ratio might slightly vary among the proteins, and it is not necessary that the amino acid providing higher stability to the protein could more effectively counteract Arg. This could be due to the change in the extent of preferential hydration of the proteins by stAAs in the presence of Arg. The results suggest that the addition of stAAs could be an effective strategy to increase the protein stability in biotechnology and biopharma applications.
Collapse
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
9
|
Unfoldness of the denatured state of proteins determines urea: Methylamine counteraction in terms of Gibbs free energy of stabilization. Int J Biol Macromol 2019; 132:666-676. [PMID: 30946906 DOI: 10.1016/j.ijbiomac.2019.03.236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 11/22/2022]
Abstract
In many tissues and organisms, large amount of urea gets accumulated to maintain osmotic balance. To evade the threatening impact of urea, living organisms accumulate methylamines, a class of osmolytes, in proportion of 2:1 (urea:methylamine). To understand underlying cause(s) for protein-specific counteraction behavior, thermodynamic stability (ΔGDo) of three disulfide free proteins (myoglobin, bovine cytochrome c and barstar) in the mixture of urea and methylamine has been estimated from guanidinium chloride-(GdmCl) driven denaturation curves. Using the experimentally measured values of ΔGDo obtained in the presence of individual methylamines and urea, we predicted the molar ratio of urea and a methylamine required for perfect compensation for each of the proteins. Interestingly, for all proteins studied, a similar ratio has been observed for perfect compensation. The predicted ratio for perfect compensation in terms of thermodynamic parameters was about 2:1 M ratio of urea to methylamine. Furthermore, a partial counteraction was observed in the myoglobin and barstar. However, for bovine cytochrome c, perfect compensation was observed in both GdmCl- and heat-driven denaturations. Our observations clearly suggest that the counteraction phenomenon depends on the extent of the unfolding of the denatured states of proteins.
Collapse
|
10
|
Mixture of Macromolecular Crowding Agents Has a Non-additive Effect on the Stability of Proteins. Appl Biochem Biotechnol 2019; 188:927-941. [PMID: 30737628 DOI: 10.1007/s12010-019-02972-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
The folding and unfolding of proteins inside a cell take place in the presence of macromolecules of various shapes and sizes. Such crowded conditions can significantly affect folding, stability, and biophysical properties of proteins. Thus, to logically mimic the intracellular environment, the thermodynamic stability of two different proteins (lysozyme and α-lactalbumin) was investigated in the presence of mixtures of three crowding agents (ficoll 70, dextran 70, and dextran 40) at different pH values. These crowders possess different shapes and sizes. It was observed that the stabilizing effect of mixtures of crowders is more than the sum effects of the individual crowder, i.e., the stabilizing effect is non-additive in nature. Moreover, dextran 40 (in the mixture) has been found to exhibit the greatest stabilization when compared with other crowders in the mixture. In other words, the small size of the crowder has been observed to be a dominant factor in stabilization of the proteins. Graphical Abstract.
Collapse
|
11
|
Wiesenthal AA, Müller C, Harder K, Hildebrandt JP. Alanine, proline and urea are major organic osmolytes in the snail Theodoxus fluviatilis under hyperosmotic stress. ACTA ACUST UNITED AC 2019; 222:jeb.193557. [PMID: 30606797 DOI: 10.1242/jeb.193557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
Hyperosmotic stress may result in osmotic volume loss from the body to the environment in animals that cannot control the water permeability of their integument. Euryhaline animals (which have a wide tolerance range of environmental salinities) have generally evolved the ability to counteract cell volume shrinkage by accumulating inorganic and organic osmolytes within their cells to balance internal and external osmolalities. Molluscs use very different combinations of amino acids and amino acid derivatives to achieve this goal. Theodoxus fluviatilis is a neritid gastropod that is distributed not only in limnic habitats in Europe but also in brackish waters (e.g. along the shoreline of the Baltic Sea). Animals from brackish sites survive better in high salinities than animals from freshwater locations. The results of the present study indicate that these differences in salinity tolerance cannot be explained by differences in the general ability to accumulate amino acids as organic osmolytes. Although there may be differences in the metabolic pathways involved in osmolyte accumulation in foot muscle tissue, the two groups of animals accumulate amino acid mixtures equally well when stepwise acclimated to their respective maximum tolerable salinity for extended periods. Among these amino acids, alanine and proline, as well as the osmolyte urea, hold a special importance for cell volume preservation in T. fluviatilis under hyperosmotic stress. It is possible that the accumulation of various amino acids during hyperosmotic stress occurs via hydrolysis of storage proteins, while alanine and proline are probably newly synthesised under conditions of hyperosmotic stress in the animals.
Collapse
Affiliation(s)
- Amanda A Wiesenthal
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Katrin Harder
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| |
Collapse
|
12
|
Dar MA, Wahiduzzaman, Islam A, Hassan MI, Ahmad F. Counteraction of the deleterious effects of urea on structure and stability of mammalian kidney proteins by osmolytes. Int J Biol Macromol 2018; 107:1659-1667. [DOI: 10.1016/j.ijbiomac.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022]
|
13
|
Anumalla B, Prabhu NP. Glutamate Induced Thermal Equilibrium Intermediate and Counteracting Effect on Chemical Denaturation of Proteins. J Phys Chem B 2018; 122:1132-1144. [PMID: 29272129 DOI: 10.1021/acs.jpcb.7b10561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
When organisms are subjected to stress conditions, one of their adaptive responses is accumulation of small organic molecules called osmolytes. These osmolytes affect the structure and stability of the biological macromolecules including proteins. The present study examines the effect of a negatively charged amino acid osmolyte, glutamate (Glu), on two model proteins, ribonuclease A (RNase A) and α-lactalbumin (α-LA), which have positive and negative surface charges at pH 7, respectively. These proteins follow two-state unfolding transitions during both heat and chemical induced denaturation processes. The addition of Glu stabilizes the proteins against temperature and induces an early equilibrium intermediate during unfolding. The stability is found to be enthalpy-driven, and the free energy of stabilization is more for α-LA compared to RNase A. The decrease in the partial molar volume and compressibility of both of the proteins in the presence of Glu suggests that the proteins attain a more compact state through surface hydration which could provide a more stable conformation. This is also supported by molecule dynamic simulation studies which demonstrate that the water density around the proteins is increased upon the addition of Glu. Further, the intermediates could be completely destabilized by lower concentrations (∼0.5 M) of guanidinium chloride and salt. However, urea subverts the Glu-induced intermediate formed by α-LA, whereas it only slightly destabilizes in the case of RNase A which has a positive surface charge and could possess charge-charge interactions with Glu. This suggests that, apart from hydration, columbic interactions might also contribute to the stability of the intermediate. Gdm-induced denaturation of RNase A and α-LA in the absence and the presence of Glu at different temperatures was carried out. These results also show the Glu-induced stabilization of both of the proteins; however, all of the unfolding transitions followed two-state transitions during chemical denaturation. The extent of stability exerted by Glu is higher for RNase A at higher temperature, whereas it provides more stability for α-LA at lower temperature. Thus, the experiments indicate that Glu induces a thermal equilibrium intermediate and increases the thermodynamic stability of proteins irrespective of their surface charges. The extent of stability varies between the proteins in a temperature-dependent manner.
Collapse
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad 500 046, India
| |
Collapse
|
14
|
Bruździak P, Panuszko A, Kaczkowska E, Piotrowski B, Daghir A, Demkowicz S, Stangret J. Taurine as a water structure breaker and protein stabilizer. Amino Acids 2018; 50:125-140. [PMID: 29043510 PMCID: PMC5762795 DOI: 10.1007/s00726-017-2499-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022]
Abstract
The enhancing effect on the water structure has been confirmed for most of the osmolytes exhibiting both stabilizing and destabilizing properties in regard to proteins. The presented work concerns osmolytes, which should be classified as "structure breaking" solutes: taurine and N,N,N-trimethyltaurine (TMT). Here, we combine FTIR spectroscopy, DSC calorimetry and DFT calculations to gain an insight into the interactions between osmolytes and two proteins: lysozyme and ubiquitin. Despite high structural similarity, both osmolytes exert different influence on protein stability: taurine is a stabilizer, TMT is a denaturant. We show also that taurine amino group interacts directly with the side chains of proteins, whereas TMT does not interact with proteins at all. Although two solutes weaken on average the structure of the surrounding water, their hydration spheres are different. Taurine is surrounded by two populations of water molecules: bonded with weak H-bonds around sulfonate group, and strongly bonded around amino group. The strong hydrogen-bonded network of water molecules around the amino group of taurine further improves properties of enhanced protein hydration sphere and stabilizes the native protein form. Direct interactions of this group with surface side chains provide a proper orientation of taurine and prevents the [Formula: see text] group from negative influence. The weakened [Formula: see text] hydration sphere of TMT breaks up the hydrogen-bonded network of water around the protein and destabilizes it. However, TMT at low concentration stabilize both proteins to a small extent. This effect can be attributed to an actual osmophobic effect which is overcome if the concentration increases.
Collapse
Affiliation(s)
- P Bruździak
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - A Panuszko
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - E Kaczkowska
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - B Piotrowski
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - A Daghir
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - S Demkowicz
- Department of Organic Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - J Stangret
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
15
|
Dixit M, Hajari T, Tembe B. The effect of urea and taurine osmolytes on hydrophobic association and solvation of methane and neopentane molecules. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Yancey PH, Siebenaller JF. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. ACTA ACUST UNITED AC 2016; 218:1880-96. [PMID: 26085665 DOI: 10.1242/jeb.114355] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation.
Collapse
Affiliation(s)
- Paul H Yancey
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Joseph F Siebenaller
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
17
|
Rahman S, Ali SA, Islam A, Hassan MI, Ahmad F. Testing the dependence of stabilizing effect of osmolytes on the fractional increase in the accessible surface area on thermal and chemical denaturations of proteins. Arch Biochem Biophys 2016; 591:7-17. [DOI: 10.1016/j.abb.2015.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/04/2015] [Accepted: 11/21/2015] [Indexed: 11/28/2022]
|
18
|
Rahman S, Warepam M, Singh LR, Dar TA. A current perspective on the compensatory effects of urea and methylamine on protein stability and function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:129-36. [PMID: 26095775 DOI: 10.1016/j.pbiomolbio.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
Urea is a strong denaturant and inhibits many enzymes but is accumulated intracellularly at very high concentrations (up to 3-4 M) in mammalian kidney and in many marine fishes. It is known that the harmful effects of urea on the macromolecular structure and function is offset by the accumulation of an osmolytic agent called methylamine. Intracellular concentration of urea to methylamines falls in the ratio of 2:1 to 3:2 (molar ratio). At this ratio, the thermodynamic effects of urea and methylamines on protein stability and function are believed to be algebraically additive. The mechanism of urea-methylamine counteraction has been widely investigated on various approaches including, thermodynamic, structural and functional aspects. Recent advances have also revealed atomic level insights of counteraction and various molecular dynamic simulation studies have yielded significant molecular level informations on the interaction between urea and methylamines with proteins. It is worthwhile that urea-methylamine system not only plays pivotal role for the survival and functioning of the renal medullary cells but also is a key osmoregulatory component of the marine elasmobranchs, holocephalans and coelacanths. Therefore, it is important to combine all discoveries and discuss the developments in context to physiology of the mammalian kidney and adaptation of the marine organisms. In this article we have for the first time reviewed all major developments on urea-counteraction systems to date. We have also discussed about other additional urea-counteraction systems discovered so far including urea-NaCl, urea-myoinsoitol and urea-molecular chaperone systems. Insights for the possible future research have also been highlighted.
Collapse
Affiliation(s)
- Safikur Rahman
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Marina Warepam
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Laishram R Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tanveer Ali Dar
- Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India.
| |
Collapse
|
19
|
Beg I, Minton AP, Hassan I, Islam A, Ahmad F. Thermal Stabilization of Proteins by Mono- and Oligosaccharides: Measurement and Analysis in the Context of an Excluded Volume Model. Biochemistry 2015; 54:3594-603. [PMID: 26000826 DOI: 10.1021/acs.biochem.5b00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible thermal denaturation of apo α-lactalbumin and lysozyme was monitored via measurement of changes in absorbance and ellipticity in the presence of varying concentrations of seven mono- and oligosaccharides: glucose, galactose, fructose, sucrose, trehalose, raffinose, and stachyose. The temperature dependence of the unfolding curves was quantitatively accounted for by a two-state model, according to which the free energy of unfolding is increased by an amount that is independent of temperature and depends linearly upon the concentration of added saccharide. The increment of added unfolding free energy per mole of added saccharide was found to depend approximately linearly upon the extent of oligomerization of the saccharide. The relative strength of stabilization of different saccharide oligomers could be accounted for by a simplified statistical-thermodynamic model attributing the stabilization effect to volume exclusion deriving from steric repulsion between protein and saccharide molecules.
Collapse
Affiliation(s)
- Ilyas Beg
- †Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Allen P Minton
- ‡National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Imtaiyaz Hassan
- †Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- †Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- †Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|