1
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Chintala K, Yandrapally S, Faiz W, Kispotta CR, Sarkar S, Mishra K, Banerjee S. The nuclear pore protein NUP98 impedes LTR-driven basal gene expression of HIV-1, viral propagation, and infectivity. Front Immunol 2024; 15:1330738. [PMID: 38449868 PMCID: PMC10914986 DOI: 10.3389/fimmu.2024.1330738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Nucleoporins (NUPs) are cellular effectors of human immunodeficiency virus-1 (HIV-1) replication that support nucleocytoplasmic trafficking of viral components. However, these also non-canonically function as positive effectors, promoting proviral DNA integration into the host genome and viral gene transcription, or as negative effectors by associating with HIV-1 restriction factors, such as MX2, inhibiting the replication of HIV-1. Here, we investigated the regulatory role of NUP98 on HIV-1 as we observed a lowering of its endogenous levels upon HIV-1 infection in CD4+ T cells. Using complementary experiments in NUP98 overexpression and knockdown backgrounds, we deciphered that NUP98 negatively affected HIV-1 long terminal repeat (LTR) promoter activity and lowered released virus levels. The negative effect on promoter activity was independent of HIV-1 Tat, suggesting that NUP98 prevents the basal viral gene expression. ChIP-qPCR showed NUP98 to be associated with HIV-1 LTR, with the negative regulatory element (NRE) of HIV-1 LTR playing a dominant role in NUP98-mediated lowering of viral gene transcription. Truncated mutants of NUP98 showed that the attenuation of HIV-1 LTR-driven transcription is primarily contributed by its N-terminal region. Interestingly, the virus generated from the producer cells transiently expressing NUP98 showed lower infectivity, while the virus generated from NUP98 knockdown CD4+ T cells showed higher infectivity as assayed in TZM-bl cells, corroborating the anti-HIV-1 properties of NUP98. Collectively, we show a new non-canonical function of a nucleoporin adding to the list of moonlighting host factors regulating viral infections. Downregulation of NUP98 in a host cell upon HIV-1 infection supports the concept of evolutionary conflicts between viruses and host antiviral factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Yandrapally S, Sarkar S, Banerjee S. HIV-1 Tat commandeers nuclear export of Rev-viral RNA complex by controlling hnRNPA2-mediated splicing. J Virol 2023; 97:e0104423. [PMID: 37905837 PMCID: PMC10688328 DOI: 10.1128/jvi.01044-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE HIV-infected host cells impose varied degrees of regulation on viral replication, from very high to abortive. Proliferation of HIV in astrocytes is limited when compared to immune cells, such as CD4+ T lymphocytes. Understanding such differential regulation is one of the key questions in the field as these cells permit HIV persistence and rebound viremia, challenging HIV treatment and clinical cure. This study focuses on understanding the molecular mechanism behind such cell-specific disparities. We show that one of the key mechanisms is the regulation of heterogenous nuclear ribonucleoprotein A2, a host factor involved in alternative splicing and RNA processing, by HIV-1 Tat in CD4+ T lymphocytes, not observed in astrocytes. This regulation causes an increase in the levels of unspliced/partially spliced viral RNA and nuclear export of Rev-RNA complexes which results in high viral propagation in CD4+ T lymphocytes. The study reveals a new mechanism imposed by HIV on host cells that determines the fate of infection.
Collapse
Affiliation(s)
- Sriram Yandrapally
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Satarupa Sarkar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Tough Way In, Tough Way Out: The Complex Interplay of Host and Viral Factors in Nucleocytoplasmic Trafficking during HIV-1 Infection. Viruses 2022; 14:v14112503. [PMID: 36423112 PMCID: PMC9696704 DOI: 10.3390/v14112503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is a retrovirus that integrates its reverse-transcribed genome as proviral DNA into the host genome to establish a successful infection. The viral genome integration requires safeguarding the subviral complexes, reverse transcription complex (RTC) and preintegration complex (PIC), in the cytosol from degradation, presumably effectively secured by the capsid surrounding these complexes. An intact capsid, however, is a large structure, which raises concerns about its translocation from cytoplasm to nucleus crossing the nuclear membrane, guarded by complex nuclear pore structures, which do not allow non-specific transport of large molecules. In addition, the generation of new virions requires the export of incompletely processed viral RNA from the nucleus to the cytoplasm, an event conventionally not permitted through mammalian nuclear membranes. HIV-1 has evolved multiple mechanisms involving redundant host pathways by liaison with the cell's nucleocytoplasmic trafficking system, failure of which would lead to the collapse of the infection cycle. This review aims to assemble the current developments in temporal and spatial events governing nucleocytoplasmic transport of HIV-1 factors. Discoveries are anticipated to serve as the foundation for devising host-directed therapies involving selective abolishment of the critical interactomes between viral proteins and their host equivalents.
Collapse
|
5
|
Balakrishnan K, Munusami P, Mohareer K, Priyakumar UD, Banerjee A, Luedde T, Mande SC, Münk C, Banerjee S. Staufen‐2 functions as a cofactor for enhanced Rev‐mediated nucleocytoplasmic trafficking of
HIV
‐1 genomic
RNA
via the
CRM1
pathway. FEBS J 2022; 289:6731-6751. [DOI: 10.1111/febs.16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Punnagai Munusami
- Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology Hyderabad India
- Department of Chemistry Arignar Anna Government Arts & Science College Karaikal Puducherry India
| | - Krishnaveni Mohareer
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
| | - U. Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology Hyderabad India
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine University of Nevada Las Vegas NV USA
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Shekhar C. Mande
- National Centre for Cell Science Pune India
- Council of Scientific and Industrial Research New Delhi India
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
| |
Collapse
|
6
|
Linyu L, Ali Abuderman AW, Muzaheed, Acharya S, Divakar DD. Modulation of host immune status by cryptococcus co-infection during HIV-1 pathogenesis and its impact on CD+4 cell and cytokines environment. Microb Pathog 2019; 139:103864. [PMID: 31715319 DOI: 10.1016/j.micpath.2019.103864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cryptococcus infection is the second most common opportunistic infection in HIV patients with an increased rate of morbidity and mortality. Altered immune system during HIV- Cryptococcus co-infection is yet to be explored by laboratory. This study evaluates pro- and the anti-inflammatory cytokines in HIV patients with Cryptococcus co-infection and correlate them with CD4+T cell counts as well as viral loads before the initiation of drug therapy. This information would enable to understand host immune modulation and cellular environment during co-infection and understand its impact on HIV pathogenesis. METHODOLOGY The study comprised four categories of patients with cryptococcosis, HIV, HIV-cryptococcosis co-infected and asymptomatic Healthy volunteers. All the patients and healthy individuals were subjected to CD4+T cells count by FACS using monoclonal antibody cocktail CD4+T cell count (counts per mm3) which was counted using multiSET software on FACS caliber. The viral loads were counted in terms of viral RNA copy numbers which was estimated by real-time PCR using by Artus HIV-1 RG. The sensitivity of kit was >70 IU/ml. ELISA was performed for IL-12 p70, IL-12, IL-4, IL-10, IL-6, TNF-α and IFN-Y using commercially kits (BD Biosciences, USA). Significant variations were assayed by Student's t-test and P values ≤ 0.05 were considered statistically significant. RESULTS Reduction in CD+4 cell counts was highly significant in HIV patients with or without cryptococcosis. CD4+T cell counts were inversely proportional to viral load. TNF-α levels were raised in cryptococcosis patients significantly higher than healthy individuals. TNF-α was more or less not dependent on viral load but it was more related to the cryptococcosis IL-12 levels were increased in patients with infection and was highest in the HIV infected group. Level of IL-4 was similar in healthy and patients with cryptococcosis but it was elevated in HIV-Crypto co-infected patients. HIV infected patients showed a significant increase in IL-4 level and it was elevated higher in co-infected patients. IL-10 and IL-6 were significantly higher in HIV patients. The fungal infection did not influence the levels of IL-10 in HIV group but IL-6 was low in fungal infected patients. CONCLUSION There are very limited studies related to the immune modulation status of HIV co-infected with Cryptococcus before the initiation of any drug therapy. Such information might through in-depth light to understand the initial state of the immune environment which certainly would play a pivotal role in the outcome of the immune modulation.
Collapse
Affiliation(s)
- Li Linyu
- Zunyi Medical and Pharmaceutical College, Zunyi City, Guizhou Province, China
| | - Abdul Wahab Ali Abuderman
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Muzaheed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sadananda Acharya
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
7
|
Benjamin R, Banerjee A, Balakrishnan K, Sivangala R, Gaddam S, Banerjee S. Mycobacterial and HIV infections up-regulated human zinc finger protein 134, a novel positive regulator of HIV-1 LTR activity and viral propagation. PLoS One 2014; 9:e104908. [PMID: 25144775 PMCID: PMC4140746 DOI: 10.1371/journal.pone.0104908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Concurrent occurrence of HIV and Tuberculosis (TB) infections influence the cellular environment of the host for synergistic existence. An elementary approach to understand such coalition at the molecular level is to understand the interactions of the host and the viral factors that subsequently effect viral replication. Long terminal repeats (LTR) of HIV genome serve as a template for binding trans-acting viral and cellular factors that regulate its transcriptional activity, thereby, deciding the fate of HIV pathogenesis, making it an ideal system to explore the interplay between HIV and the host. METHODOLOGY/PRINCIPAL FINDINGS In this study, using biotinylated full length HIV-1 LTR sequence as bait followed by MALDI analyses, we identified and further characterized human-Zinc-finger-protein-134 (hZNF-134) as a novel positive regulator of HIV-1 that promoted LTR-driven transcription and viral production. Over-expression of hZNF-134 promoted LTR driven luciferase activity and viral transcripts, resulting in increased virus production while siRNA mediated knockdown reduced both the viral transcripts and the viral titers, establishing hZNF-134 as a positive effector of HIV-1. HIV, Mycobacteria and HIV-TB co-infections increased hZNF-134 expressions in PBMCs, the impact being highest by mycobacteria. Corroborating these observations, primary TB patients (n = 22) recorded extraordinarily high transcript levels of hZNF-134 as compared to healthy controls (n = 16). CONCLUSIONS/SIGNIFICANCE With these observations, it was concluded that hZNF-134, which promoted HIV-1 LTR activity acted as a positive regulator of HIV propagation in human host. High titers of hZNF-134 transcripts in TB patients suggest that up-regulation of such positive effectors of HIV-1 upon mycobacterial infection can be yet another mechanism by which mycobacteria assists HIV-1 propagation during HIV-TB co-infections. hZNF-134, an uncharacterized host protein, thus assumes a novel regulatory role during HIV-host interactions. Our study provides new insights into the emerging role of zinc finger proteins in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Ronald Benjamin
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Atoshi Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ramya Sivangala
- Immunology Department, Bhagwan Mahavir Medical Research Centre, A.C. Guards, Hyderabad, Telangana, India
| | - Sumanlatha Gaddam
- Immunology Department, Bhagwan Mahavir Medical Research Centre, A.C. Guards, Hyderabad, Telangana, India; Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Banerjee A, Benjamin R, Balakrishnan K, Ghosh P, Banerjee S. Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev. Retrovirology 2014; 11:18. [PMID: 24520823 PMCID: PMC4016256 DOI: 10.1186/1742-4690-11-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/05/2014] [Indexed: 11/24/2022] Open
Abstract
Background The export of intron containing viral RNAs from the nucleus to the cytoplasm is an essential step in the life cycle of Human Immunodeficiency Virus-1 (HIV-1). As the eukaryotic system does not permit the transport of intron containing RNA out of the nucleus, HIV-1 makes a regulatory protein, Rev, that mediates the transportation of unspliced and partially spliced viral mRNA from the nucleus to the cytoplasm, thereby playing a decisive role in the generation of new infectious virus particles. Therefore, the host factors modulating the RNA export activity of Rev can be major determinants of virus production in an infected cell. Results In this study, human Staufen-2 (hStau-2) was identified as a host factor interacting with HIV-1 Rev through affinity chromatography followed by MALDI analyses. Our experiments involving transient expressions, siRNA mediated knockdowns and infection assays conclusively established that hStau-2 is a positive regulator of HIV-1 pathogenesis. We demonstrated that Rev-hStau-2 interactions positively regulated the RNA export activity of Rev and promoted progeny virus synthesis. The Rev-hStau-2 interaction was independent of RNA despite both being RNA binding proteins. hStau-2 mutant, with mutations at Q314R-A318F-K319E, deficient of binding Rev, failed to promote hStau-2 dependent Rev activity and viral production, validating the essentiality of this protein-protein interaction. The expression of this positive regulator was elevated upon HIV-1 infection in both human T-lymphocyte and astrocyte cell lines. Conclusions With this study, we establish that human Staufen-2, a host factor which is up-regulated upon HIV-1 infection, interacts with HIV-1 Rev, thereby promoting its RNA export activity and progeny virus formation. Altogether, our study provides new insights into the emerging role of the Staufen family of mRNA transporters in host-pathogen interaction and supports the notion that obliterating interactions between viral and host proteins that positively regulate HIV-1 proliferation can significantly contribute to anti-retroviral treatments.
Collapse
Affiliation(s)
| | | | | | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Andhra Pradesh 500046, India.
| |
Collapse
|