1
|
Niazi V, Parseh B. Organoid models of breast cancer in precision medicine and translational research. Mol Biol Rep 2024; 52:2. [PMID: 39570495 DOI: 10.1007/s11033-024-10101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
One of the most famous and heterogeneous cancers worldwide is breast cancer (BC). Owing to differences in the gene expression profiles and clinical features of distinct BC subtypes, different treatments are prescribed for patients. However, even with more thorough pathological evaluations of tumors than in the past, available treatments do not perform equally well for all individuals. Precision medicine is a new approach that considers the effects of patients' genes, lifestyle, and environment to choose the right treatment for an individual patient. As a powerful tool, the organoid culture system can maintain the morphological and genetic characteristics of patients' tumors. Evidence also shows that organoids have high predictive value for patient treatment. In this review, a variety of BC studies performed on organoid culture systems are evaluated. Additionally, the potential of using organoid models in BC translational research, especially in immunotherapy, drug screening, and precision medicine, has been reported.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran.
| |
Collapse
|
2
|
Salinas-Vera YM, Valdés J, Pérez-Navarro Y, Mandujano-Lazaro G, Marchat LA, Ramos-Payán R, Nuñez-Olvera SI, Pérez-Plascencia C, López-Camarillo C. Three-Dimensional 3D Culture Models in Gynecological and Breast Cancer Research. Front Oncol 2022; 12:826113. [PMID: 35692756 PMCID: PMC9177953 DOI: 10.3389/fonc.2022.826113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Traditional two-dimensional (2D) monolayer cell cultures have long been the gold standard for cancer biology research. However, their ability to accurately reflect the molecular mechanisms of tumors occurring in vivo is limited. Recent development of three-dimensional (3D) cell culture models facilitate the possibility to better recapitulate several of the biological and molecular characteristics of tumors in vivo, such as cancer cells heterogeneity, cell-extracellular matrix interactions, development of a hypoxic microenvironment, signaling pathway activities depending on contacts with extracellular matrix, differential growth kinetics, more accurate drugs response, and specific gene expression and epigenetic patterns. In this review, we discuss the utilization of different types of 3D culture models including spheroids, organotypic models and patient-derived organoids in gynecologic cancers research, as well as its potential applications in oncological research mainly for screening drugs with major physiological and clinical relevance. Moreover, microRNAs regulation of cancer hallmarks in 3D cell cultures from different types of cancers is discussed.
Collapse
Affiliation(s)
- Yarely M. Salinas-Vera
- Departamento de Bioquímica, Centro de Investigación de Estudios Avanzados (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación de Estudios Avanzados (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Ciudad de Mexico, Mexico
| | - Gilberto Mandujano-Lazaro
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, Mexico
| | - Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
3
|
Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 2021; 1875:188527. [PMID: 33640383 PMCID: PMC8068668 DOI: 10.1016/j.bbcan.2021.188527] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
An improved understanding of stem cell niches, organogenesis, and disease models has paved the way for developing a three-dimensional (3D) organoid culture system. Organoid cultures can be derived from primary tissues (single cells or tissue subunits), adult stem cells (ASCs), induced pluripotent stem cells (iPSCs), or embryonic stem cells (ESCs). As a significant technological breakthrough, 3D organoid models offer a promising approach for understanding the complexities of human diseases ranging from the mechanistic investigation of disease pathogenesis to therapy. Here, we discuss the recent applications, advantages, and limitations of organoids as in vitro models for studying metabolomics, drug development, infectious diseases, and the gut microbiome. We further discuss the use of organoids in cancer modeling using high throughput sequencing approaches.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Alvarado-Estrada K, Marenco-Hillembrand L, Maharjan S, Mainardi VL, Zhang YS, Zarco N, Schiapparelli P, Guerrero-Cazares H, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Sci Rep 2021; 11:2800. [PMID: 33531664 PMCID: PMC7854722 DOI: 10.1038/s41598-021-82634-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide. However, while the survival for patients with primary cancers is improving, the ability to prevent metastatic cancer has not. Once patients develop metastases, their prognosis is dismal. A critical step in metastasis is the transit of cancer cells in the circulatory system. In this hostile microenvironment, variations in pressure and flow can change cellular behavior. However, the effects that circulation has on cancer cells and the metastatic process remain unclear. To further understand this process, we engineered a closed-loop fluidic system to analyze molecular changes induced by variations in flow rate and pressure on primary tumor-derived lung adenocarcinoma cells. We found that cancer cells overexpress epithelial-to-mesenchymal transition markers TWIST1 and SNAI2, as well as stem-like marker CD44 (but not CD133, SOX2 and/or NANOG). Moreover, these cells display a fourfold increased percentage of side population cells and have an increased propensity for migration. In vivo, surviving circulatory cells lead to decreased survival in rodents. These results suggest that cancer cells that express a specific circulatory transition phenotype and are enriched in side population cells are able to survive prolonged circulatory stress and lead to increased metastatic disease and shorter survival.
Collapse
Affiliation(s)
- Keila Alvarado-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Valerio Luca Mainardi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milan, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cazares
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Yu J, Huang W. The Progress and Clinical Application of Breast Cancer Organoids. Int J Stem Cells 2020; 13:295-304. [PMID: 32840232 PMCID: PMC7691857 DOI: 10.15283/ijsc20082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the malignant tumor with the highest incidence in women. Nowadays, the objects in vitro of models of this disease are mainly from breast cancer cell lines and patient-derived patient-derived xenograft (PDX). However, there is a significant gap between traditional cell lines and breast cancer solid tumors, meanwhiles, PDX is not highly consistent with patients due to different species. As a techonlogy, obtaining patient-derived tumor cells, combined with three-dimensional culture technology, adding cytokines that promotes the proliferation of breast cancer stem cells and inhibit their apoptosis, breast cancer organoids form a structure in vitro which is similar to tumor in the body. This model can not only study the occurrence and envolution of breast cancer, but is more prominent in clinical application. screening drugs by high-throughput, personalized treatment, textingtoxicity and immunotherapy. This article will review the breast cancer organoids, in evolution, source, culture system and clinical applications.
Collapse
Affiliation(s)
- Jin Yu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wei Huang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
6
|
Haykal MM, Nahmias C, Varon C, Martin OCB. Organotypic Modeling of the Tumor Landscape. Front Cell Dev Biol 2020; 8:606039. [PMID: 33330508 PMCID: PMC7732527 DOI: 10.3389/fcell.2020.606039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is a complex disease and it is now clear that not only epithelial tumor cells play a role in carcinogenesis. The tumor microenvironment is composed of non-stromal cells, including endothelial cells, adipocytes, immune and nerve cells, and a stromal compartment composed of extracellular matrix, cancer-associated fibroblasts and mesenchymal cells. Tumorigenesis is a dynamic process with constant interactions occurring between the tumor cells and their surroundings. Even though all connections have not yet been discovered, it is now known that crosstalk between actors of the microenvironment drives cancer progression. Taking into account this complexity, it is important to develop relevant models to study carcinogenesis. Conventional 2D culture models fail to represent the entire tumor microenvironment properly and the use of animal models should be decreased with respect to the 3Rs rule. To this aim, in vitro organotypic models have been significantly developed these past few years. These models have different levels of complexity and allow the study of tumor cells alone or in interaction with the microenvironment actors during the multiple stages of carcinogenesis. This review depicts recent insights into organotypic modeling of the tumor and its microenvironment all throughout cancer progression. It offers an overview of the crosstalk between epithelial cancer cells and their microenvironment during the different phases of carcinogenesis, from the early cell autonomous events to the late metastatic stages. The advantages of 3D over classical 2D or in vivo models are presented as well as the most promising organotypic models. A particular focus is made on organotypic models used for studying cancer progression, from the less complex spheroids to the more sophisticated body-on-a-chip. Last but not least, we address the potential benefits of these models in personalized medicine which is undoubtedly a domain paving the path to new hopes in terms of cancer care and cure.
Collapse
Affiliation(s)
- Maria M. Haykal
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | - Clara Nahmias
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | | | | |
Collapse
|
7
|
Pelaez F, Shao Q, Ranjbartehrani P, Lam T, Lee HR, O'Flanagan S, Silbaugh A, Bischof JC, Azarin SM. Optimizing Integrated Electrode Design for Irreversible Electroporation of Implanted Polymer Scaffolds. Ann Biomed Eng 2020; 48:1230-1240. [PMID: 31916125 DOI: 10.1007/s10439-019-02445-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Irreversible electroporation (IRE) is an emerging technology for non-thermal ablation of solid tumors. This study sought to integrate electrodes into microporous poly(caprolactone) (PCL) scaffolds previously shown to recruit metastasizing cancer cells in vivo in order to facilitate application of IRE to disseminating cancer cells. As the ideal parallel plate geometry would render much of the porous scaffold surface inaccessible to infiltrating cells, numerical modeling was utilized to predict the spatial profile of electric field strength within the scaffold for alternative electrode designs. Metal mesh electrodes with 0.35 mm aperture and 0.16 mm wire diameter established electric fields with similar spatial uniformity as the parallel plate geometry. Composite PCL-IRE scaffolds were fabricated by placing cylindrical porous PCL scaffolds between two PCL dip-coated stainless steel wire meshes. PCL-IRE scaffolds exhibited no difference in cell infiltration in vivo compared to PCL scaffolds. In addition, upon application of IRE in vivo, cells infiltrating the PCL-IRE scaffolds were successfully ablated, as determined by histological analysis 3 days post-treatment. The ability to establish homogeneous electric fields within a biomaterial that can recruit metastatic cancer cells, especially when combined with immunotherapy, may further advance IRE technology beyond solid tumors to the treatment of systemic cancer.
Collapse
Affiliation(s)
- Francisco Pelaez
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pegah Ranjbartehrani
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tiffany Lam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hak Rae Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephen O'Flanagan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Abby Silbaugh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Baker K. Organoids Provide an Important Window on Inflammation in Cancer. Cancers (Basel) 2018; 10:E151. [PMID: 29883385 PMCID: PMC5977124 DOI: 10.3390/cancers10050151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023] Open
Abstract
Inflammation is a primary driver of cancer initiation and progression. However, the complex and dynamic nature of an inflammatory response make this a very difficult process to study. Organoids are a new model system where complex multicellular structures of primary cells can be grown in a 3D matrix to recapitulate the biology of the parent tissue. This experimental model offers several distinct advantages over alternatives including the ability to be genetically engineered, implanted in vivo and reliably derived from a wide variety of normal and cancerous tissue from patients. Furthermore, long-term organoid cultures reproduce many features of their source tissue, including genetic and epigenetic alterations and drug sensitivity. Perhaps most significantly, cancer organoids can be cocultured in a variety of different systems with a patients’ own immune cells, uniquely permitting the study of autologous cancer-immune cell interactions. Experiments with such systems promise to shed light on the mechanisms governing inflammation-associated cancer while also providing prognostic information on an individual patient’s responsiveness to immunotherapeutic anti-cancer drugs. Thanks to their ability to capture important features of the complex relationship between a cancer and its microenvironment, organoids are poised to become an essential tool for unraveling the mechanisms by which inflammation promotes cancer.
Collapse
Affiliation(s)
- Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
9
|
Narkhede AA, Shevde LA, Rao SS. Biomimetic strategies to recapitulate organ specific microenvironments for studying breast cancer metastasis. Int J Cancer 2017; 141:1091-1109. [PMID: 28439901 DOI: 10.1002/ijc.30748] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
Abstract
The progression of breast cancer from the primary tumor setting to the metastatic setting is the critical event defining Stage IV disease, no longer considered curable. The microenvironment at specific organ sites is known to play a key role in influencing the ultimate fate of metastatic cells; yet microenvironmental mediated-molecular mechanisms underlying organ specific metastasis in breast cancer are not well understood. This review discusses biomimetic strategies employed to recapitulate metastatic organ microenvironments, particularly, bone, liver, lung and brain to elucidate the mechanisms dictating metastatic breast cancer cell homing and colonization. These biomimetic strategies include in vitro techniques such as biomaterial-based co-culturing techniques, microfluidics, organ-mimetic chips, bioreactor technologies, and decellularized matrices as well as cutting edge in vivo techniques to better understand the interactions between metastatic breast cancer cells and the stroma at the metastatic site. The advantages and disadvantages of these systems are discussed. In addition, how creation of biomimetic models will impact breast cancer metastasis research and their broad utility is explored.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| |
Collapse
|
10
|
Rodríguez M, Silva J, Herrera A, Herrera M, Peña C, Martín P, Gil-Calderón B, Larriba MJ, Coronado MJ, Soldevilla B, Turrión VS, Provencio M, Sánchez A, Bonilla F, García-Barberán V. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer. Oncotarget 2016; 6:40575-87. [PMID: 26528758 PMCID: PMC4747353 DOI: 10.18632/oncotarget.5818] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a “stemness and metastatic” signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.
Collapse
Affiliation(s)
- Marta Rodríguez
- "Mecanismos Moleculares Tumorales" Research Group, Department of Medical Oncology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - Javier Silva
- "Mecanismos Moleculares Tumorales" Research Group, Department of Medical Oncology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - Alberto Herrera
- "Señalización Celular en Cáncer" Research Group, Department of Medical Oncology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - Mercedes Herrera
- "Señalización Celular en Cáncer" Research Group, Department of Medical Oncology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - Cristina Peña
- "Señalización Celular en Cáncer" Research Group, Department of Medical Oncology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - Paloma Martín
- Laboratory of Molecular Pathology, Department of Pathology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - Beatriz Gil-Calderón
- "Señalización Celular en Cáncer" Research Group, Department of Medical Oncology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas "Alberto Sols", Department of Cancer Biology, CSIC-UAM, Madrid, E-28029, Spain
| | - M Josés Coronado
- Confocal Microscopy Core Facility, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - Beatriz Soldevilla
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Madrid, E-28049, Spain.,"Diagnóstico y Pronóstico Molecular en Cáncer" Research Group, Department of Medical Oncology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain
| | - Víctor S Turrión
- Department of Digestive and General Surgery, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, E-28222, Spain
| | - Mariano Provencio
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, E-28222, Spain
| | - Antonio Sánchez
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, E-28222, Spain
| | - Félix Bonilla
- Centro de Estudios Biosanitarios, Madrid, E-28029, Spain
| | - Vanesa García-Barberán
- "Mecanismos Moleculares Tumorales" Research Group, Department of Medical Oncology, IDIPHIM, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, E-28222, Spain.,Molecular Oncology Laboratory, Department of Medical Oncology, IDISSC, Instituto de Investigación Sanitaria San Carlos, Madrid, E28040, Spain
| |
Collapse
|
11
|
van Marion DM, Domanska UM, Timmer-Bosscha H, Walenkamp AM. Studying cancer metastasis: Existing models, challenges and future perspectives. Crit Rev Oncol Hematol 2016; 97:107-17. [DOI: 10.1016/j.critrevonc.2015.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/05/2015] [Indexed: 02/03/2023] Open
|
12
|
Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014; 79-80:3-18. [PMID: 24997339 DOI: 10.1016/j.addr.2014.06.005] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
The basement membrane is an important extracellular matrix that is found in all epithelial and endothelial tissues. It maintains tissue integrity, serves as a barrier to cells and to molecules, separates different tissue types, transduces mechanical signals, and has many biological functions that help to maintain tissue specificity. A well-defined soluble basement membrane extract, termed BME/Matrigel, prepared from an epithelial tumor is similar in content to authentic basement membrane, and forms a hydrogel at 24-37°C. It is used in vitro as a substrate for 3D cell culture, in suspension for spheroid culture, and for various assays, such as angiogenesis, invasion, and dormancy. In vivo, BME/Matrigel is used for angiogenesis assays and to promote xenograft and patient-derived biopsy take and growth. Studies have shown that both the stiffness of the BME/Matrigel and its components (i.e. chemical signals) are responsible for its activity with so many different cell types. BME/Matrigel has widespread use in assays and in models that improve our understanding of tumor biology and help define therapeutic approaches.
Collapse
|