1
|
Joy MSH, Nall DL, Emon B, Lee KY, Barishman A, Ahmed M, Rahman S, Selvin PR, Saif MTA. Synapses without tension fail to fire in an in vitro network of hippocampal neurons. Proc Natl Acad Sci U S A 2023; 120:e2311995120. [PMID: 38113266 PMCID: PMC10756289 DOI: 10.1073/pnas.2311995120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
Neurons in the brain communicate with each other at their synapses. It has long been understood that this communication occurs through biochemical processes. Here, we reveal that mechanical tension in neurons is essential for communication. Using in vitro rat hippocampal neurons, we find that 1) neurons become tout/tensed after forming synapses resulting in a contractile neural network, and 2) without this contractility, neurons fail to fire. To measure time evolution of network contractility in 3D (not 2D) extracellular matrix, we developed an ultrasensitive force sensor with 1 nN resolution. We employed Multi-Electrode Array and iGluSnFR, a glutamate sensor, to quantify neuronal firing at the network and at the single synapse scale, respectively. When neuron contractility is relaxed, both techniques show significantly reduced firing. Firing resumes when contractility is restored. This finding highlights the essential contribution of neural contractility in fundamental brain functions and has implications for our understanding of neural physiology.
Collapse
Affiliation(s)
- Md Saddam Hossain Joy
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Duncan L. Nall
- Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Ki Yun Lee
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Alexandra Barishman
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Movviz Ahmed
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Saeedur Rahman
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Paul R. Selvin
- Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
2
|
Raffa V. Force: A messenger of axon outgrowth. Semin Cell Dev Biol 2023; 140:3-12. [PMID: 35817654 DOI: 10.1016/j.semcdb.2022.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
The axon is a sophisticated macromolecular machine composed of interrelated parts that transmit signals like spur gears transfer motion between parallel shafts. The growth cone is a fine sensor that integrates mechanical and chemical cues and transduces these signals through the generation of a traction force that pushes the tip and pulls the axon shaft forward. The axon shaft, in turn, senses this pulling force and transduces this signal in an orchestrated response, coordinating cytoskeleton remodeling and intercalated mass addition to sustain and support the advancing of the tip. Extensive research suggests that the direct application of active force is per se a powerful inducer of axon growth, potentially bypassing the contribution of the growth cone. This review provides a critical perspective on current knowledge of how the force is a messenger of axon growth and its mode of action for controlling navigation, including aspects that remain unclear. It also focuses on novel approaches and tools designed to mechanically manipulate axons, and discusses their implications in terms of potential novel therapies for re-wiring the nervous system.
Collapse
Affiliation(s)
- Vittoria Raffa
- Department of Biology, University of Pisa, SS12 Abetone e Brennero, 4, 56127 Pisa, Italy.
| |
Collapse
|
3
|
Falleroni F, Bocchero U, Mortal S, Li Y, Ye Z, Cojoc D, Torre V. Mechanotransduction in hippocampal neurons operates under localized low picoNewton forces. iScience 2022; 25:103807. [PMID: 35198872 PMCID: PMC8851107 DOI: 10.1016/j.isci.2022.103807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
There is growing evidence suggesting that mechanical properties of CNS neurons may play an important regulatory role in cellular processes. Here, we employ an oscillatory optical tweezers (OOT) to exert a local indentation with forces in the range of 5–50 pN. We found that single local indentation above a threshold of 13 ± 1 pN evokes a transient intracellular calcium change, whereas repeated mechanical stimulations induce a more sustained and variable calcium response. Importantly, neurons were able to differentiate the magnitude of mechanical stimuli. Chemical perturbation and whole-cell patch clamp recordings suggest that mechanically evoked response requires the influx of extracellular calcium through transmembrane ion channels. Moreover, we observed a mechanically evoked activation of the CAMKII and small G protein RhoA. These results all together suggest that mechanical signaling among developed neurons fully operates in neuronal networks under physiological conditions. Hippocampal neurons are mechanically adapted to forces in the picoNewton range Localized compressive mechanical stimuli in the range of 13–50 pN lead to Ca2+ influx The evoked Ca2+ neuronal response is differentiated by the magnitude of the force The subsequent mechanotransduction pathway involves the activation of CAMKII and RhoA
Collapse
Affiliation(s)
- Fabio Falleroni
- Technische Universitat Munchen Fakultat fur Physik (TUM), 85748 Garching, Germany.,Neuroscience Area, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Ulisse Bocchero
- National Eye Institute (NEI), Bethesda, MD 20892, USA.,Neuroscience Area, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Simone Mortal
- Neuroscience Area, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Yunzhen Li
- Neuroscience Area, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Zhongjie Ye
- Neuroscience Area, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Dan Cojoc
- Institute of Materials (IOM-CNR), Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Vincent Torre
- Neuroscience Area, International School for Advanced Studies (SISSA), 34136 Trieste, Italy.,Institute of Materials (IOM-CNR), Area Science Park, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
4
|
Abstract
The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
5
|
Dos-Santos Carvalho S, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, Studer V, Sans N, Thoumine O, Montcouquiol M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. eLife 2020; 9:51822. [PMID: 31909712 PMCID: PMC6946565 DOI: 10.7554/elife.51822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dynamic mechanical interactions between adhesion complexes and the cytoskeleton are essential for axon outgrowth and guidance. Whether planar cell polarity (PCP) proteins, which regulate cytoskeleton dynamics and appear necessary for some axon guidance, also mediate interactions with membrane adhesion is still unclear. Here we show that Vangl2 controls growth cone velocity by regulating the internal retrograde actin flow in an N-cadherin-dependent fashion. Single molecule tracking experiments show that the loss of Vangl2 decreased fast-diffusing N-cadherin membrane molecules and increased confined N-cadherin trajectories. Using optically manipulated N-cadherin-coated microspheres, we correlated this behavior to a stronger mechanical coupling of N-cadherin with the actin cytoskeleton. Lastly, we show that the spatial distribution of Vangl2 within the growth cone is selectively affected by an N-cadherin-coated substrate. Altogether, our data show that Vangl2 acts as a negative regulator of axonal outgrowth by regulating the strength of the molecular clutch between N-cadherin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Steve Dos-Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maite M Moreau
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Yeri Esther Hien
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Mikael Garcia
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Aubailly
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
6
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
7
|
IGARASHI M. Molecular basis of the functions of the mammalian neuronal growth cone revealed using new methods. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:358-377. [PMID: 31406059 PMCID: PMC6766448 DOI: 10.2183/pjab.95.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 05/25/2023]
Abstract
The neuronal growth cone is a highly motile, specialized structure for extending neuronal processes. This structure is essential for nerve growth, axon pathfinding, and accurate synaptogenesis. Growth cones are important not only during development but also for plasticity-dependent synaptogenesis and neuronal circuit rearrangement following neural injury in the mature brain. However, the molecular details of mammalian growth cone function are poorly understood. This review examines molecular findings on the function of the growth cone as a result of the introduction of novel methods such superresolution microscopy and (phospho)proteomics. These results increase the scope of our understating of the molecular mechanisms of growth cone behavior in the mammalian brain.
Collapse
Affiliation(s)
- Michihiro IGARASHI
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Miller KE, Suter DM. An Integrated Cytoskeletal Model of Neurite Outgrowth. Front Cell Neurosci 2018; 12:447. [PMID: 30534055 PMCID: PMC6275320 DOI: 10.3389/fncel.2018.00447] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Neurite outgrowth underlies the wiring of the nervous system during development and regeneration. Despite a significant body of research, the underlying cytoskeletal mechanics of growth and guidance are not fully understood, and the relative contributions of individual cytoskeletal processes to neurite growth are controversial. Here, we review the structural organization and biophysical properties of neurons to make a semi-quantitative comparison of the relative contributions of different processes to neurite growth. From this, we develop the idea that neurons are active fluids, which generate strong contractile forces in the growth cone and weaker contractile forces along the axon. As a result of subcellular gradients in forces and material properties, actin flows rapidly rearward in the growth cone periphery, and microtubules flow forward in bulk along the axon. With this framework, an integrated model of neurite outgrowth is proposed that hopefully will guide new approaches to stimulate neuronal growth.
Collapse
Affiliation(s)
- Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Amin L, Nguyen XTA, Rolle IG, D'Este E, Giachin G, Tran TH, Šerbec VČ, Cojoc D, Legname G. Characterization of prion protein function by focal neurite stimulation. J Cell Sci 2016; 129:3878-3891. [PMID: 27591261 DOI: 10.1242/jcs.183137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 08/16/2016] [Indexed: 12/22/2022] Open
Abstract
The cellular prion protein (PrPC), encoded by the PRNP gene, is a ubiquitous glycoprotein, which is highly expressed in the brain. This protein, mainly known for its role in neurodegenerative diseases, is involved in several physiological processes including neurite outgrowth. By using a novel focal stimulation technique, we explored the potential function of PrPC, in its soluble form, as a signaling molecule. Thus, soluble recombinant prion proteins (recPrP) encapsulated in micro-vesicles were released by photolysis near the hippocampal growth cones. Local stimulation of wild-type growth cones with full-length recPrP induced neurite outgrowth and rapid growth cone turning towards the source. This effect was shown to be concentration dependent. Notably, PrPC-knockout growth cones were insensitive to recPrP stimulation, but this property was rescued in PrP-knockout growth cones expressing GFP-PrP. Taken together, our findings indicate that recPrP functions as a signaling molecule, and that its homophilic interaction with membrane-anchored PrPC might promote neurite outgrowth and facilitate growth cone guidance.
Collapse
Affiliation(s)
- Ladan Amin
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Xuan T A Nguyen
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Irene Giulia Rolle
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Elisa D'Este
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Gabriele Giachin
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Thanh Hoa Tran
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Vladka Čurin Šerbec
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
| | - Dan Cojoc
- Optical Manipulation (OM)-Lab, Institute of Materials (IOM), National Research Council (CNR), I-34149 Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| |
Collapse
|
10
|
Substrate Deformation Predicts Neuronal Growth Cone Advance. Biophys J 2016; 109:1358-71. [PMID: 26445437 DOI: 10.1016/j.bpj.2015.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022] Open
Abstract
Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 10(0)-10(2) nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant.
Collapse
|
11
|
Sayyad WA, Fabris P, Torre V. The Role of Rac1 in the Growth Cone Dynamics and Force Generation of DRG Neurons. PLoS One 2016; 11:e0146842. [PMID: 26766136 PMCID: PMC4713067 DOI: 10.1371/journal.pone.0146842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
We used optical tweezers, video imaging, immunocytochemistry and a variety of inhibitors to analyze the role of Rac1 in the motility and force generation of lamellipodia and filopodia from developing growth cones of isolated Dorsal Root Ganglia neurons. When the activity of Rac1 was inhibited by the drug EHop-016, the period of lamellipodia protrusion/retraction cycles increased and the lamellipodia retrograde flow rate decreased; moreover, the axial force exerted by lamellipodia was reduced dramatically. Inhibition of Arp2/3 by a moderate amount of the drug CK-548 caused a transient retraction of lamellipodia followed by a complete recovery of their usual motility. This recovery was abolished by the concomitant inhibition of Rac1. The filopodia length increased upon inhibition of both Rac1 and Arp2/3, but the speed of filopodia protrusion increased when Rac1 was inhibited and decreased instead when Arp2/3 was inhibited. These results suggest that Rac1 acts as a switch that activates upon inhibition of Arp2/3. Rac1 also controls the filopodia dynamics necessary to explore the environment.
Collapse
Affiliation(s)
- Wasim A. Sayyad
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Paolo Fabris
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Vincent Torre
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
12
|
Wang F, Cui N, Yang L, Shi L, Li Q, Zhang G, Wu J, Zheng J, Jiao B. Resveratrol Rescues the Impairments of Hippocampal Neurons Stimulated by Microglial Over-Activation In Vitro. Cell Mol Neurobiol 2015; 35:1003-15. [PMID: 25898934 PMCID: PMC11486292 DOI: 10.1007/s10571-015-0195-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/12/2015] [Indexed: 01/04/2023]
Abstract
Resveratrol is a naturally occurring phytoalexin found in red grapes, and believed to have neuroprotective, anti-oxidant, and anti-inflammatory effects. But little is known about its effect on the neural impairments induced by microglial over-activation, which leads to neuroinflammation and multiple pathophysiological damages. In this study, we aimed to investigate the protective effects of resveratrol on the impairments of neural development by microglial over-activation insult. The results indicated that resveratrol inhibited the lipopolysaccharide (LPS)-dependent release of cytokines from activated microglia and LPS-dependent changes in NF-κB signaling pathway. Conditioned medium (CM) from activated microglia treated by resveratrol directly protected primary cultured hippocampal neurons against LPS-CM-induced neuronal death, and restored the inhibitory effects of LPS-CM on dendrite sprouting and outgrowth. Finally, neurons cultured in CM from LPS-stimulated microglia treated by resveratrol exhibited increased spine density compared to those without resveratrol treatment. Our findings support that resveratrol inhibits microglial over-activation and alleviates neuronal injuries induced by microglial activation. Our study suggests the use of resveratrol as an alternative intervention approach that could prevent further neuronal insults.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China.
| | - Na Cui
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lijun Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Lin Shi
- Department of Neurosurgery, The Second Hospital of Baoding City, Baoding, 071051, China
| | - Qian Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050000, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jun Zheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Baohua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
13
|
Athamneh AIM, Suter DM. Quantifying mechanical force in axonal growth and guidance. Front Cell Neurosci 2015; 9:359. [PMID: 26441530 PMCID: PMC4584967 DOI: 10.3389/fncel.2015.00359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022] Open
Abstract
Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight: (1) standing questions concerning the role of mechanical force in axonal growth and guidance; and (2) different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.
Collapse
Affiliation(s)
- Ahmad I M Athamneh
- Bindley Bioscience Center, Birck Nanotechnology Center, Department of Biological Sciences, Purdue University West Lafayette, IN, USA
| | - Daniel M Suter
- Bindley Bioscience Center, Birck Nanotechnology Center, Department of Biological Sciences, Purdue University West Lafayette, IN, USA
| |
Collapse
|
14
|
Abstract
To elucidate the nature of load sharing in the growth of multiple biopolymers, we perform stochastic simulations of the growth of biopolymer bundles against obstacles under a broad range of conditions and varying assumptions. The obstacle motion due to thermal fluctuations is treated explicitly. We assume the "Perfect Brownian Ratchet" (PBR) model, in which the polymerization rate equals the free-filament rate as soon as the filament-obstacle distance exceeds the monomer size. Accurate closed-form formulas are obtained for the case of a rapidly moving obstacle. We find the following: (1) load sharing is usually sub-perfect in the sense that polymerization is slower than for a single filament carrying the same average force; (2) the sub-perfect behavior becomes significant at a total force proportional to the logarithm or the square root of the number of filaments, depending on the alignment of the filaments; (3) for the special case of slow barrier diffusion and low opposing force, an enhanced obstacle velocity for an increasing number of filaments is possible; (4) the obstacle velocity is very sensitive to the alignment of the filaments in the bundle, with a staggered alignment being an order of magnitude faster than an unstaggered one at forces of only 0.5 pN per filament for 20 filaments; (5) for large numbers of filaments, the power is maximized at a force well below 1 pN per filament; (6) for intermediate values of the obstacle diffusion coefficient, the shape of the force velocity relation is very similar to that for rapid obstacle diffusion.
Collapse
Affiliation(s)
| | - A E Carlsson
- Washington University in St Louis, Department of Physics
| |
Collapse
|
15
|
Igarashi M. Proteomic identification of the molecular basis of mammalian CNS growth cones. Neurosci Res 2014; 88:1-15. [PMID: 25066522 DOI: 10.1016/j.neures.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
The growth cone, which is a unique structure with high motility that forms at the tips of extending axons and dendrites, is crucial to neuronal network formation. Axonal growth of the mammalian CNS is most likely achieved by the complicated coordination of cytoskeletal rearrangement and vesicular trafficking via many proteins. Before recent advances, no methods to identify numerous proteins existed; however, proteomics revolutionarily resolved such problems. In this review, I summarize the profiles of the mammalian growth cone proteins revealed by proteomics as the molecular basis of the growth cone functions, with molecular mapping. These results should be used as a basis for understanding the mechanisms of the complex mammalian CNS developmental process.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Trans-disciplinary Program, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|