1
|
Sengupta A, Ghosh S, Sharma S, Sonawat HM. Early Perturbations in Red Blood Cells in Response to Murine Malarial Parasite Infection: Proof-of-Concept 1H NMR Metabolomic Study. Life (Basel) 2023; 13:1684. [PMID: 37629541 PMCID: PMC10455252 DOI: 10.3390/life13081684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The major focus of metabolomics research has been confined to the readily available biofluids-urine and blood serum. However, red blood cells (RBCs) are also readily available, and may be a source of a wealth of information on vertebrates. However, the comprehensive metabolomic characterization of RBCs is minimal although they exhibit perturbations in various physiological states. RBCs act as the host of malarial parasites during the symptomatic stage. Thus, understanding the changes in RBC metabolism during infection is crucial for a better understanding of disease progression. METHODS The metabolome of normal RBCs obtained from Swiss mice was investigated using 1H NMR spectroscopy. Several 1 and 2-dimensional 1H NMR experiments were employed for this purpose. The information from this study was used to investigate the changes in the RBC metabolome during the early stage of infection (~1% infected RBCs) by Plasmodium bergheii ANKA. RESULTS We identified over 40 metabolites in RBCs. Several of these metabolites were quantitated using 1H NMR spectroscopy. The results indicate changes in the choline/membrane components and other metabolites during the early stage of malaria. CONCLUSIONS The paper reports the comprehensive characterization of the metabolome of mouse RBCs. Changes during the early stage of malarial infection suggest significant metabolic alteration, even at low parasite content (~1%). GENERAL SIGNIFICANCE This study should be of use in maximizing the amount of information available from metabolomic experiments on the cellular components of blood. The technique can be directly applied to real-time investigation of infectious diseases that target RBCs.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; (S.G.); (H.M.S.)
| | - Soumita Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; (S.G.); (H.M.S.)
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India;
| | - Haripalsingh M. Sonawat
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; (S.G.); (H.M.S.)
| |
Collapse
|
2
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
3
|
Urinary Metabolic Profiling in Volunteers Undergoing Malaria Challenge in Gabon. Metabolites 2022; 12:metabo12121224. [PMID: 36557262 PMCID: PMC9783708 DOI: 10.3390/metabo12121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction of malaria parasites with their human host is extensively studied, yet only few studies reported how P. falciparum infection affects urinary metabolite profiles and how this is associated with immunity. We present a longitudinal study of the urinary metabolic profiles of twenty healthy Africans with lifelong exposure to malaria and five malaria-naïve Europeans, who were all challenged with direct venous inoculation of live P. falciparum sporozoïtes (PfSPZ) and followed up until they developed symptoms or became thick blood smear positive (TBS). Urine samples were collected before and at 2, 5, 9 and 11 days post challenge and were analysed. Upon infection, all Europeans became TBS positive, while Africans showed either a delay in time to parasitaemia or controlled infection. Our metabolic data showed that Europeans and Africans had distinct alterations in metabolite patterns, with changes mostly seen on days 5 and 9 post PfSPZ infection, and more prominently in Europeans. Within the African group, the levels of formate, urea, trimethylamine, threonine, choline, myo-inositol and acetate were significantly higher in TBS positive whereas the levels of pyruvate, 3-methylhistidine and dimethylglycine were significantly lower in individuals who remained TBS negative. Notably, before inoculation with PfSPZ, a group of metabolites including phenylacetylglutamine can potentially be used to predict parasitaemia control among Africans. Taken together, this study highlights the difference in urinary metabolic changes in response to malaria infection as a consequence of lifelong exposure to malaria and that change detectable before challenge might predict the control of parasitaemia in malaria-endemic areas.
Collapse
|
4
|
Metabolomic Studies for Metabolic Alterations Induced by Non-Steroidal Anti-Inflammatory Drugs: Mini Review. Biomolecules 2021; 11:biom11101456. [PMID: 34680089 PMCID: PMC8533408 DOI: 10.3390/biom11101456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are Food and Drug Administration (FDA) approved antipyretic, anti-inflammatory, and analgesic drugs to mitigate pain, however it is associated with gastrointestinal injury and cardiovascular disease in some individuals. Metabolomics has the potential to understand the interaction of host and the drugs, such as NSAIDs administration. This discipline has been used by many researchers to understand the serious side effects of NSAIDs. We highlighted (1) the potential of metabolomics in understanding the pathogenesis of adverse events due to NSAIDs administration; (2) choice of metabolomics techniques, bio sample handling; (3) review of metabolomics studies in the front of NSAIDs in different biofluids and tissues; (4) pathway analysis of the data presented in the published literature. In our analysis we find tricarboxylic acid cycle (TCA), "glycine serine and threonine metabolism," "alanine, aspartate, and glutamate metabolism," and fatty acid metabolism to be altered by the NSAIDs like ibuprofen, indomethacin, naproxen, aspirin, and celecoxib. In conclusion, metabolomics allows the use of biological samples to identify useful pathways involved in disease progression, and subsequently inform a greater understanding of the disease pathogenesis. A further in-depth investigation of the associated pathways mentioned above holds the potential for drug targets for side effects mitigation.
Collapse
|
5
|
Early Perturbations in Glucose Utilization in Malaria-Infected Murine Erythrocytes, Liver and Brain Observed by Metabolomics. Metabolites 2020; 10:metabo10070277. [PMID: 32645891 PMCID: PMC7407383 DOI: 10.3390/metabo10070277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
Investigation of glucose utilization during an infection is central to the study of energy metabolism. The heavy utilization of glucose by the malaria parasite, and the consequences of this process, have been investigated extensively. However, host glucose utilization during early infection has not been explored to date. In a first attempt, this article investigates the changes in the host glucose utilization in Balb/c mice infected with Plasmodium berghei ANKA using 13C-labeled glucose infusion followed by NMR spectroscopy. The results suggested significant alterations of liver, brain and red blood cell (RBC) glucose utilization during early infection when the parasitemia was <1%. At the pathway level, we observed a decrease in the shunt metabolite 2,3-bisphosphoglycerate in the RBCs. Glycolysis and pathways associated with it, along with fatty acid unsaturation, were altered in the liver. Significant changes were observed in the central carbon metabolic pathways in the brain. These results have implications in understanding the host physiology during early infection and pave the way for detailed flux analysis of the proposed perturbed pathways.
Collapse
|
6
|
Ghosh S, Pathak S, Sonawat HM, Sharma S, Sengupta A. Metabolomic changes in vertebrate host during malaria disease progression. Cytokine 2018; 112:32-43. [PMID: 30057363 DOI: 10.1016/j.cyto.2018.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Metabolomics refers to top-down systems biological analysis of metabolites in biological specimens. Phenotypic proximity of metabolites makes them interesting candidates for studying biomarkers of environmental stressors such as parasitic infections. Moreover, the host-parasite interaction directly impinges upon metabolic pathways since the parasite uses the host metabolite pool as a biosynthetic resource. Malarial infection, although not recognized as a classic metabolic disorder, often leads to severe metabolic changes such as hypoglycemia and lactic acidosis. Thus, metabolomic analysis of the infection has become an invaluable tool for promoting a better understanding of the host-parasite interaction and for the development of novel therapeutics. In this review, we summarize the current knowledge obtained from metabolomic studies of malarial infection in rodent models and human patients. Metabolomic analysis of experimental rodent malaria has provided significant insights into the mechanisms of disease progression including utilization of host resources by the parasite, sexual dimorphism in metabolic phenotypes, and cellular changes in host metabolism. Moreover, these studies also provide proof of concept for prediction of cerebral malaria. On the other hand, metabolite analysis of patient biofluids generates extensive data that could be of use in identifying biomarkers of infection severity and in monitoring disease progression. Through the use of metabolomic datasets one hopes to assess crucial infection-specific issues such as clinical severity, drug resistance, therapeutic targets, and biomarkers. Also discussed are nascent or newly emerging areas of metabolomics such as pre-erythrocytic stages of the infection and the host immune response. This review is organized in four broad sections-methodologies for metabolomic analysis, rodent infection models, studies of human clinical specimens, and potential of immunometabolomics. Data summarized in this review should serve as a springboard for novel hypothesis testing and lead to a better understanding of malarial infection and parasite biology.
Collapse
Affiliation(s)
- Soumita Ghosh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Haripalsingh M Sonawat
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Gardinassi LG, Cordy RJ, Lacerda MVG, Salinas JL, Monteiro WM, Melo GC, Siqueira AM, Val FF, Tran V, Jones DP, Galinski MR, Li S. Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria. Int J Med Microbiol 2017; 307:533-541. [PMID: 28927849 PMCID: PMC5698147 DOI: 10.1016/j.ijmm.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/26/2017] [Accepted: 09/03/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Plasmodium vivax is one of the leading causes of malaria worldwide. Infections with this parasite cause diverse clinical manifestations, and recent studies revealed that infections with P. vivax can result in severe and fatal disease. Despite these facts, biological traits of the host response and parasite metabolism during P. vivax malaria are still largely underexplored. Parasitemia is clearly related to progression and severity of malaria caused by P. falciparum, however the effects of parasitemia during infections with P. vivax are not well understood. RESULTS We conducted an exploratory study using a high-resolution metabolomics platform that uncovered significant associations between parasitemia levels and plasma metabolites from 150 patients with P. vivax malaria. Most plasma metabolites were inversely associated with higher levels of parasitemia. Top predicted metabolites are implicated into pathways of heme and lipid metabolism, which include biliverdin, bilirubin, palmitoylcarnitine, stearoylcarnitine, phosphocholine, glycerophosphocholine, oleic acid and omega-carboxy-trinor-leukotriene B4. CONCLUSIONS The abundance of several plasma metabolites varies according to the levels of parasitemia in patients with P. vivax malaria. Moreover, our data suggest that the host response and/or parasite survival might be affected by metabolites involved in the degradation of heme and metabolism of several lipids. Importantly, these data highlight metabolic pathways that may serve as targets for the development of new antimalarial compounds.
Collapse
Affiliation(s)
- Luiz Gustavo Gardinassi
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Regina Joice Cordy
- Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Marcus V G Lacerda
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil; Instituto Leônidas & Maria Deane (FIOCRUZ), Manaus, AM, Brazil
| | | | - Wuelton M Monteiro
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Gisely C Melo
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando F Val
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - ViLinh Tran
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Shuzhao Li
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Uppal K, Salinas JL, Monteiro WM, Val F, Cordy RJ, Liu K, Melo GC, Siqueira AM, Magalhaes B, Galinski MR, Lacerda MVG, Jones DP. Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria. PLoS One 2017; 12:e0182819. [PMID: 28813452 PMCID: PMC5559093 DOI: 10.1371/journal.pone.0182819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Background Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance. Methods An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog. Results Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of glycerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples. Conclusions The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics phenotyping of P. vivax samples from patients with well-defined clinical CQ-resistance is promising for the development of new tools to understand the biological process and to identify potential biomarkers of PvCR.
Collapse
Affiliation(s)
- Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- * E-mail: ;
| | - Jorge L. Salinas
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Wuelton M. Monteiro
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Fernando Val
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Regina J. Cordy
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
| | - Ken Liu
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Gisely C. Melo
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Andre M. Siqueira
- Instituto Nacional de Infectologia Evandro Chagas (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mary R. Galinski
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Marcus V. G. Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto Leônidas & Maria Deane (FIOCRUZ), Manaus, Amazonas, Brazil
- * E-mail: ;
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Li Z, Li A, Gao J, Li H, Qin X. Kidney Tissue Targeted Metabolic Profiling of Unilateral Ureteral Obstruction Rats by NMR. Front Pharmacol 2016; 7:307. [PMID: 27695416 PMCID: PMC5023943 DOI: 10.3389/fphar.2016.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
Renal interstitial fibrosis is a common pathological process in the progression of kidney disease. A nuclear magnetic resonance (NMR) based metabolomic approach was used to analyze the kidney tissues of rats with renal interstitial fibrosis (RIF), induced by unilateral ureteral obstruction (UUO). The combination of a variety of statistical methods were used to screen out 14 significantly changed potential metabolites, which are related with multiple biochemical processes including amino acid metabolism, adenine metabolism, energy metabolism, osmolyte change and induced oxidative stress. The exploration of the contralateral kidneys enhanced the understanding of the disease, which was also supported by serum biochemistry and kidney histopathology results. In addition, the pathological parameters (clinical chemistry, histological and immunohistochemistry results) were correlated with the significantly changed differential metabolites related with RIF. This study showed that targeted tissue metabolomic analysis can be used as a useful tool to understand the mechanism of the disease and provide a novel insight in the pathogenesis of RIF.
Collapse
Affiliation(s)
- Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| | - Jining Gao
- Shanxi Hospital of Integrated Traditional and Western Medicine Taiyuan, China
| | - Hong Li
- Shanxi Hospital of Integrated Traditional and Western Medicine Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| |
Collapse
|
10
|
Investigation on Endogenous Metabolites in Pancreas of Diabetic Rats after Treatment by Genipin through 1H-NMR-based Metabolomic Profiles. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- David Antcliffe
- Department of Surgery & Cancer, Charing Cross Hospital / Imperial College London, Section of Anaesthetics, Pain Medicine & Intensive Care, London, UK
| | - Anthony C Gordon
- Department of Surgery & Cancer, Charing Cross Hospital / Imperial College London, Section of Anaesthetics, Pain Medicine & Intensive Care, London, UK.
| |
Collapse
|
12
|
Lamour SD, Gomez-Romero M, Vorkas PA, Alibu VP, Saric J, Holmes E, Sternberg JM. Discovery of Infection Associated Metabolic Markers in Human African Trypanosomiasis. PLoS Negl Trop Dis 2015; 9:e0004200. [PMID: 26505639 PMCID: PMC4624234 DOI: 10.1371/journal.pntd.0004200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023] Open
Abstract
Human African trypanosomiasis (HAT) remains a major neglected tropical disease in Sub-Saharan Africa. As clinical symptoms are usually non-specific, new diagnostic and prognostic markers are urgently needed to enhance the number of identified cases and optimise treatment. This is particularly important for disease caused by Trypanosoma brucei rhodesiense, where indirect immunodiagnostic approaches have to date been unsuccessful. We have conducted global metabolic profiling of plasma from T.b.rhodesiense HAT patients and endemic controls, using 1H nuclear magnetic resonance (NMR) spectroscopy and ultra-performance liquid chromatography, coupled with mass spectrometry (UPLC-MS) and identified differences in the lipid, amino acid and metabolite profiles. Altogether 16 significantly disease discriminatory metabolite markers were found using NMR, and a further 37 lipid markers via UPLC-MS. These included significantly higher levels of phenylalanine, formate, creatinine, N-acetylated glycoprotein and triglycerides in patients relative to controls. HAT patients also displayed lower concentrations of histidine, sphingomyelins, lysophosphatidylcholines, and several polyunsaturated phosphatidylcholines. While the disease metabolite profile was partially consistent with previous data published in experimental rodent infection, we also found unique lipid and amino acid profile markers highlighting subtle but important differences between the host response to trypanosome infections between animal models and natural human infections. Our results demonstrate the potential of metabolic profiling in the identification of novel diagnostic biomarkers and the elucidation of pathogenetic mechanisms in this disease.
Collapse
Affiliation(s)
- Sabrina D. Lamour
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Maria Gomez-Romero
- Section of Hepatology and Gastroenterology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Panagiotis A. Vorkas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Vincent P. Alibu
- Section of Hepatology and Gastroenterology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jasmina Saric
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jeremy M. Sternberg
- Institute of Biological and Environmental Sciences, University Of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
13
|
Salinas JL, Kissinger JC, Jones DP, Galinski MR. Metabolomics in the fight against malaria. Mem Inst Oswaldo Cruz 2015; 109:589-97. [PMID: 25185001 PMCID: PMC4156452 DOI: 10.1590/0074-0276140043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host's metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.
Collapse
Affiliation(s)
- Jorge L Salinas
- Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Jessica C Kissinger
- Department of Genetics, Institute of Bioinformatics, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Canuto GAB, da Cruz PLR, Faccio AT, Klassen A, Tavares MFM. Neglected diseases prioritized in Brazil under the perspective of metabolomics: A review. Electrophoresis 2015; 36:2336-2347. [PMID: 26095472 DOI: 10.1002/elps.201500102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
This review article compiles in a critical manner literature publications regarding seven neglected diseases (ND) prioritized in Brazil (Chagas disease, dengue, leishmaniasis, leprosy, malaria, schistosomiasis, and tuberculosis) under the perspective of metabolomics. Both strategies, targeted and untargeted metabolomics, were considered in the compilation. The majority of studies focused on biomarker discovery for diagnostic purposes, and on the search of novel or alternative therapies against the ND under consideration, although temporal progression of the infection at metabolic level was also addressed. Tuberculosis, followed by schistosomiasis, malaria and leishmaniasis are the diseases that received larger attention in terms of number of publications. Dengue and leprosy were the least studied and Chagas disease received intermediate attention. NMR and HPLC-MS technologies continue to predominate among the analytical platforms of choice in the metabolomic studies of ND. A plethora of metabolites were identified in the compiled studies, with expressive predominancy of amino acids, organic acids, carbohydrates, nucleosides, lipids, fatty acids, and derivatives.
Collapse
Affiliation(s)
- Gisele A B Canuto
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Pedro L R da Cruz
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea T Faccio
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Klassen
- Federal University of Sao Paulo, Diadema, SP, Brazil
| | | |
Collapse
|
15
|
Surowiec I, Orikiiriza J, Karlsson E, Nelson M, Bonde M, Kyamanwa P, Karenzi B, Bergström S, Trygg J, Normark J. Metabolic Signature Profiling as a Diagnostic and Prognostic Tool in Pediatric Plasmodium falciparum Malaria. Open Forum Infect Dis 2015; 2:ofv062. [PMID: 26110164 PMCID: PMC4473097 DOI: 10.1093/ofid/ofv062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/28/2015] [Indexed: 11/14/2022] Open
Abstract
Background. Accuracy in malaria diagnosis and staging is vital to reduce mortality and post infectious sequelae. In this study, we present a metabolomics approach to diagnostic staging of malaria infection, specifically Plasmodium falciparum infection in children. Methods. A group of 421 patients between 6 months and 6 years of age with mild and severe states of malaria with age-matched controls were included in the study, 107, 192, and 122, individuals, respectively. A multivariate design was used as basis for representative selection of 20 patients in each category. Patient plasma was subjected to gas chromatography-mass spectrometry analysis, and a full metabolite profile was produced from each patient. In addition, a proof-of-concept model was tested in a Plasmodium berghei in vivo model where metabolic profiles were discernible over time of infection. Results. A 2-component principal component analysis revealed that the patients could be separated into disease categories according to metabolite profiles, independently of any clinical information. Furthermore, 2 subgroups could be identified in the mild malaria cohort who we believe represent patients with divergent prognoses. Conclusions. Metabolite signature profiling could be used both for decision support in disease staging and prognostication.
Collapse
Affiliation(s)
| | - Judy Orikiiriza
- Infectious Diseases Institute, School of Medicine and Health Sciences, Makerere University, Uganda
- Department of Immunology, Trinity College, Dublin, Ireland
| | | | | | | | - Patrick Kyamanwa
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare
| | | | - Sven Bergström
- Department of Molecular Biology
- Laboratory forMolecular Infection Medicine Sweden, Umeå University
- Umeå Center for Microbial Research, Sweden
| | - Johan Trygg
- Computational Life Science Cluster, Department of Chemistry
| | - Johan Normark
- Division of Infectious Diseases, Department Clinical Microbiology, Umeå University, Sweden
- Infectious Diseases Institute, School of Medicine and Health Sciences, Makerere University, Uganda
- Laboratory forMolecular Infection Medicine Sweden, Umeå University
- Umeå Center for Microbial Research, Sweden
| |
Collapse
|