1
|
Heo L, Han Y, Cho Y, Choi J, Lee J, Han SW. A putative glucose 6-phosphate isomerase has pleiotropic functions on virulence and other mechanisms in Acidovorax citrulli. FRONTIERS IN PLANT SCIENCE 2023; 14:1275438. [PMID: 38023913 PMCID: PMC10664246 DOI: 10.3389/fpls.2023.1275438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Acidovorax citrulli (Ac) is a causal agent of watermelon bacterial fruit blotch (BFB) disease. Because resistance cultivars/lines have not yet been developed, it is imperative to elucidate Ac's virulence factors and their mechanisms to develop resistant cultivars/lines in different crops, including watermelon. The glucose-6-phosphate isomerase (GPI) is a reversible enzyme in both glycolysis and gluconeogenesis pathways in living organisms. However, the functions of GPI are not characterized in Ac. In this study, we determined the roles of GpiAc (GPI in Ac) by proteomic and phenotypic analyses of the mutant lacking GPI. The mutant displayed significantly reduced virulence to watermelon in two different virulence assays. The mutant's growth patterns were comparable to the wild-type strain in rich medium and M9 with glucose but not with fructose. The comparative proteome analysis markedly identified proteins related to virulence, motility, and cell wall/membrane/envelope. In the mutant, biofilm formation and twitching halo production were reduced. We further demonstrated that the mutant was less tolerant to osmotic stress and lysozyme treatment than the wild-type strain. Interestingly, the tolerance to alkali conditions was remarkably enhanced in the mutant. These results reveal that GpiAc is involved not only in virulence and glycolysis/gluconeogenesis but also in biofilm formation, twitching motility, and tolerance to diverse external stresses suggesting the pleiotropic roles of GpiAc in Ac. Our study provides fundamental and valuable information on the functions of previously uncharacterized glucose 6-phosphate isomerase and its virulence mechanism in Ac.
Collapse
Affiliation(s)
| | | | | | | | | | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
2
|
Lee J, Lee J, Cho Y, Choi J, Han SW. A putative 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase is involved in the virulence, carbohydrate metabolism, biofilm formation, twitching halo, and osmotic tolerance in Acidovorax citrulli. FRONTIERS IN PLANT SCIENCE 2022; 13:1039420. [PMID: 36438092 PMCID: PMC9681784 DOI: 10.3389/fpls.2022.1039420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Acidovorax citrulli (Ac) is a gram-negative bacterium that causes bacterial fruit blotch (BFB) disease in cucurbit crops including watermelon. However, despite the great economic losses caused by this disease worldwide, Ac-resistant watermelon cultivars have not been developed. Therefore, characterizing the virulence factors/mechanisms of Ac would enable the development of effective control strategies against BFB disease. The 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (BdpM) is known to participate in the glycolysis and gluconeogenesis pathways. However, the roles of the protein have not been characterized in Ac. To elucidate the functions of BdpmAc (Bdpm in Ac), comparative proteomic analysis and diverse phenotypic assays were conducted using a bdpmAc knockout mutant (bdpmAc:Tn) and a wild-type strain. The virulence of the mutant to watermelon was remarkably reduced in both germinated seed inoculation and leaf infiltration assays. Moreover, the mutant could not grow with fructose or pyruvate as a sole carbon source. However, the growth of the mutant was restored to levels similar to those of the wild-type strain in the presence of both fructose and pyruvate. Comparative proteomic analyses revealed that diverse proteins involved in motility and wall/membrane/envelop biogenesis were differentially abundant. Furthermore, the mutant exhibited decreased biofilm formation and twitching halo size. Interestingly, the mutant exhibited a higher tolerance against osmotic stress. Overall, our findings suggest that BdpmAc affects the virulence, glycolysis/gluconeogenesis, biofilm formation, twitching halo size, and osmotic tolerance of Ac, suggesting that this protein has pleiotropic properties. Collectively, our findings provide fundamental insights into the functions of a previously uncharacterized phosphoglycerate mutase in Ac.
Collapse
|
3
|
Lee Y, Balaraju K, Kim SY, Jeon Y. Occurrence of phenotypic variation in Paenibacillus polymyxa E681 associated with sporulation and carbohydrate metabolism. BIOTECHNOLOGY REPORTS 2022; 34:e00719. [PMID: 35686012 PMCID: PMC9171445 DOI: 10.1016/j.btre.2022.e00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/12/2022] [Indexed: 12/02/2022]
Abstract
We report phenotypic variation in P. polymyxa E681 occurred when grown on media. F-type exhibited faster cell growth than B-type after utilization of carbon sources. 2-DE identified proteins involved in various metabolic activities. The motility is mediated via the downregulation of sporulation and flagella production.
We report the phenotypic variation in Paenibacillus polymyxa E681 (E681), a plant growth-promoting rhizobacterium (PGPR) isolated from a winter barley root in Korea. Phenotypic variation (F-type) occurred when E681 (B-type) was grown in the media, and F-type was generated from B-type. B- and F-types were characterized by their morphological, Biolog, and GC-MIDI analyses. F-type cells altered the original biological capacity of B-type cells on endospore and flagella formation, changes in pH in culture, and carbon utilization. In growth curve analysis, B-type variants recovered bacterial growth as the variation occurred after the decline phase, but F-type variants did not. To determine this cause, we conducted comparative proteome analysis between B- and F-types using two-dimensional gel electrophoresis (2-DE). Of the identified proteins, 47% were involved in glycolysis and other metabolic pathways associated with carbohydrate metabolism. Therefore, our findings provide new knowledge on the mechanism of phenotypic variation and insights into agricultural biotechnology.
Collapse
|
4
|
Rosenberg T, Jiménez-Guerrero I, Tamir-Ariel D, Yarnitzky T, Burdman S. The GDSL-Lipolytic Enzyme Lip1 Is Required for Full Virulence of the Cucurbit Pathogenic Bacterium Acidovorax citrulli. Microorganisms 2022; 10:microorganisms10051016. [PMID: 35630458 PMCID: PMC9147443 DOI: 10.3390/microorganisms10051016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial fruit blotch caused by Acidovoraxcitrulli is a serious disease of cucurbit crops. Here we report characterization of a mutant strain of A. citrulli M6 defective in lip1, a gene encoding a lipolytic enzyme. The M6-lip1- mutant was detected in a mutant library screen aimed at identifying M6 mutants with altered levels of twitching motility. In this screen M6-lip1- was the only mutant that showed significantly larger twitching motility haloes around colonies than wild-type M6. Sequence analyses indicated that lip1 encodes a member of the GDSL family of secreted lipolytic enzymes. In line with this finding, lipolytic assays showed that the supernatants of M6-lip1- had lower lipolytic activity as compared with those of wild-type M6 and a lip1-complemented strain. The mutant was also affected in swimming motility and had compromised virulence on melon seedlings and on Nicotiana benthamiana leaves relative to wild-type and complemented strains. Lip1 contains a predicted N-terminal signal sequence for type II secretion. Evidence from our study confirms Lip1 is indeed secreted in a type II secretion-dependent manner, and this is required for full virulence of A. citrulli. To the best of our knowledge this is the first study reporting contribution of lipolytic activity to virulence of a plant-pathogenic Acidovorax species.
Collapse
Affiliation(s)
- Tally Rosenberg
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Irene Jiménez-Guerrero
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Tali Yarnitzky
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
- Correspondence: ; Tel.: +972-8-9489369
| |
Collapse
|
5
|
Raio A, Brilli F, Baraldi R, Neri L, Puopolo G. Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Microbiol Res 2020; 239:126517. [PMID: 32535393 DOI: 10.1016/j.micres.2020.126517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Three morphological mutants (M71a, M71b, M71c) of the antagonist Pseudomonas chlororaphis M71, naturally arose during a biocontrol trial against the phytopathogenic fungus Fusarium oxysporum f.sp. radicis-lycopersisci. In this study, the three mutants were investigated to elucidate their role in the biocontrol of plant pathogens. M71a and M71b phenotypes were generated by a mutation in the two-component system GacS/GacA. The mutation determined an increase in siderophore production and an impaired ability to release proteases, to swarm, to produce phenazine and AHLs and to colonize tomato roots. In vitro antagonistic activity against different plant pathogens was partially reduced in M71a, while M71b resulted effective only against Pythium ultimum. Biocontrol efficacy against Fusarium oxysporum f.sp. radicis-lycopersisci, was partially reduced in M71a and completely lost in M71b. M71c phenotype was impaired in swarming motility, did not produce biofilms and its antagonistic activity was similar to the parental M71 strain. M71c showed an enhanced ability to colonize tomato roots, on which its progeny in part reverted to the M71 parental phenotype. Volatile organic compounds (VOCs) emitted by all four strains, inhibited the growth of Clavibacter michiganensis subsp. michiganensis and Seiridium cardinale in vitro. Real-time screening of VOCs by PTR-MS combined with GC-MS analysis, showed that methanethiol was the main component of the blend produced by all four M71 strains. However, the emissions of hydrogen cyanide, dimethyl disulfide, 1,3-butadiene and acetone were significantly affected by the three different mutations. These findings highlight that the simultaneous presence of different M71 phenotypes may improve, through the integration of different mechanisms, the ecological fitness and biocontrol efficacy of P. chlororaphis M71.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Rita Baraldi
- Institute of BioEconomy, National Research Council, Bologna, Italy
| | - Luisa Neri
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, San Michele all'Adige, 38010, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige, 38010, Italy
| |
Collapse
|
6
|
Barzilai-Tutsch H, Genin O, Pines M, Halevy O. Early pathological signs in young dysf -/- mice are improved by halofuginone. Neuromuscul Disord 2020; 30:472-482. [PMID: 32451154 DOI: 10.1016/j.nmd.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf-/- mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf-/- mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf-/- mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Olga Genin
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Mark Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Rosenberg T, Salam BB, Burdman S. Association Between Loss of Type IV Pilus Synthesis Ability and Phenotypic Variation in the Cucurbit Pathogenic Bacterium Acidovorax citrulli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:548-559. [PMID: 29298127 DOI: 10.1094/mpmi-12-17-0324-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch of cucurbits. We have shown that functional type IV pili (T4P) are required for full virulence of this bacterium. To identify A. citrulli genes required for T4P activity, we screened a library of about 10,000 transposon mutants of A. citrulli M6 for altered T4P-mediated twitching motility. This screen led to the identification of 50 mutants impaired in twitching ability due to transposon insertions into 20 different genes. Representative mutants with disruptions in these genes were further characterized. All mutants were compromised in their virulence in seed transmission and stem inoculation assays and had reduced biofilm formation ability relative to wild-type M6. When grown on nutrient agar, most mutants produced colonies with a translucent and fuzzy appearance, in contrast to the opaque and smooth appearance of wild-type colonies. The colony morphology of these mutants was identical to that of previously reported phenotypic variants of strain M6. The exceptions were M6 mutants disrupted in genes tonB, pilT, pilW, and pilX that exhibited typical wild-type colony morphology, although lacking twitching haloes surrounding the colony. Transmission electron microscopy revealed that most mutants lacked the ability to produce T4P. The exceptions were mutants with disruptions in tonB, pilT, pilW, and pilX genes that were shown to produce these appendages. These findings support the idea that colony phenotypic variation in A. citrulli is determined by the lack of ability to synthesize T4P but not by lack of T4P functionality.
Collapse
Affiliation(s)
- Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Bolaji Babajide Salam
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
8
|
Eckshtain-Levi N, Shkedy D, Gershovits M, Da Silva GM, Tamir-Ariel D, Walcott R, Pupko T, Burdman S. Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits. Front Microbiol 2016; 7:430. [PMID: 27092114 PMCID: PMC4821854 DOI: 10.3389/fmicb.2016.00430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/17/2016] [Indexed: 11/13/2022] Open
Abstract
Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35-120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs' analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the two major groups of strains of this pathogen.
Collapse
Affiliation(s)
- Noam Eckshtain-Levi
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Dafna Shkedy
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Michael Gershovits
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | | | - Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Ron Walcott
- Department of Plant Pathology, The University of Georgia, AthensGA, USA
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
9
|
Luo J, Qiu W, Chen L, Anjum SI, Yu M, Shan C, Ilyas M, Li B, Wang Y, Sun G. Identification of Pathogenicity-Related Genes in Biofilm-Defective Acidovorax citrulli by Transposon Tn5 Mutagenesis. Int J Mol Sci 2015; 16:28050-62. [PMID: 26602922 PMCID: PMC4691024 DOI: 10.3390/ijms161226076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
Biofilm formation is important for virulence of a large number of plant pathogenic bacteria. Indeed, some virulence genes have been found to be involved in the formation of biofilm in bacterial fruit blotch pathogen Acidovorax citrulli. However, some virulent strains of A. citrulli were unable to format biofilm, indicating the complexity between biofilm formation and virulence. In this study, virulence-related genes were identified in the biofilm-defective strain A1 of A. citrulli by using Tn5 insertion, pathogenicity test, and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). Results from this study indicated that 22 out of the obtained 301 mutants significantly decreased the virulence of strain A1 compared to the wild-type. Furthermore, sequence analysis indicated that the obtained 22 mutants were due to the insertion of Tn5 into eight genes, including Aave 4244 (cation diffusion facilitator family transporter), Aave 4286 (hypothetical protein), Aave 4189 (alpha/beta hydrolase fold), Aave 1911 (IMP dehydrogenase/GMP reductase domain), Aave 4383 (bacterial export proteins, family 1), Aave 4256 (Hsp70 protein), Aave 0003 (histidine kinase, DNA gyrase B, and HSP90-like ATPase), and Aave 2428 (pyridoxal-phosphate dependent enzyme). Furthermore, the growth of mutant Aave 2428 was unaffected and even increased by the change in incubation temperature, NaCl concentration and the pH of the LB broth, indicating that this gene may be directly involved in the bacterial virulence. Overall, the determination of the eight pathogenicity-related genes in strain A1 will be helpful to elucidate the pathogenesis of biofilm-defective A. citrulli.
Collapse
Affiliation(s)
- Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China.
| | - Wen Qiu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lei Chen
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China.
| | - Syed Ishtiaq Anjum
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Menghao Yu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Changlin Shan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Department of Plant Quarantine, Zhoushan Entry-Exit Inspections and Quarantine Bureau, Hangzhou 310012, China.
| | - Mehmoona Ilyas
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan.
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Key Laboratory of Detection for Pesticide Residues, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Key Laboratory of Detection for Pesticide Residues, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Bartoli C, Lamichhane JR, Berge O, Varvaro L, Morris CE. Mutability in Pseudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity. MOLECULAR PLANT PATHOLOGY 2015; 16:860-9. [PMID: 25649542 PMCID: PMC6638476 DOI: 10.1111/mpp.12243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mutable bacterial cells are defective in their DNA repair system and often have a phenotype different from that of their wild-type counterparts. In human bacterial pathogens, the mutable and hypermutable phenotypes are often associated with general antibiotic resistance. Here, we quantified the occurrence of mutable cells in Pseudomonas viridiflava, a phytopathogenic bacterium in the P. syringae complex with a broad host range and capacity to live as a saprophyte. Two phenotypic variants (transparent and mucoid) were produced by this bacterium. The transparent variant had a mutator phenotype, showed general antibiotic resistance and could not induce disease on the plant species tested (bean). In contrast, the mucoid variant did not display mutability or resistance to antibiotics and was capable of inducing disease on bean. Both the transparent and mucoid variants were less fit when grown in vitro, whereas, in planta, both of the variants and wild-types attained similar population densities. Given the importance of the methyl-directed mismatch repair system (MMR) in the occurrence of mutable and hypermutable cells in human bacterial pathogens, we investigated whether mutations in mut genes were associated with mutator transparent cells in P. viridiflava. Our results showed no mutations in MMR genes in any of the P. viridiflava cells tested. Here, we report that a high mutation rate and antibiotic resistance are inversely correlated with pathogenicity in P. viridiflava, but are not associated with mutations in MMR. In addition, P. viridiflava variants differ from variants produced by other phytopathogenic bacteria in the absence of reversion to the wild-type phenotype.
Collapse
Affiliation(s)
- Claudia Bartoli
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Jay Ram Lamichhane
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Odile Berge
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Leonardo Varvaro
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
| | - Cindy E Morris
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| |
Collapse
|