1
|
Liu L, Cai B, Liu L, Zhuang X, Zhao Z, Huang X, Zhang J. Research on the morphological structure of partial fracture healing process in diabetic mice based on synchrotron radiation phase-contrast imaging computed tomography and deep learning. Bone Rep 2024; 20:101743. [PMID: 38390284 PMCID: PMC10882109 DOI: 10.1016/j.bonr.2024.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
The prevalence of diabetes mellitus has exhibited a notable surge in recent years, thereby augmenting the susceptibility to fractures and impeding the process of fracture healing. The primary objective of this investigation is to employ synchrotron radiation phase-contrast imaging computed tomography (SR-PCI-CT) to examine the morphological and structural attributes of different types of callus in a murine model of diabetic partial fractures. Additionally, a deep learning image segmentation model was utilized to facilitate both qualitative and quantitative analysis of callus during various time intervals. A total of forty male Kunming mice, aged five weeks, were randomly allocated into two groups, each consisting of twenty mice, namely, simple fracture group (SF) and diabetic fracture group (DF). Mice in DF group were intraperitoneally injected 60 mg/kg 1 % streptozotocin(STZ) solution for 5 consecutive days, and the standard for modeling was that the fasting blood glucose level was ≥11.1 mmol /l one week after the last injection of STZ. The right tibias of all mice were observed to have oblique fractures that did not traverse the entire bone. At three, seven, ten and fourteen days after the fracture occurred, the fractured tibias were extracted for SR-PCI-CT imaging and histological analysis. Furthermore, a deep learning image segmentation model was devised to automatically detect, categorize and quantitatively examine different types of callus. Image J software was utilized to measure the grayscale values of different types of callus and perform quantitative analysis. The findings demonstrated that:1)SR-PCI-CT imaging effectively depicted the morphological attributes of different types of callus of fracture healing. The grayscale values of different types of callus were significantly different(P < 0.01).2)In comparison to the SF group, the DF group exhibited a significant reduction in the total amount of callus during the same period (P < 0.01). Additionally, the peak of cartilage callus in the hypertrophic phase was delayed.3)Histology provides the basis for training algorithms for deep learning image segmentation models. The deep-learning image segmentation models achieved accuracies of 0.69, 0.81 and 0.733 for reserve/proliferative cartilage, hypertrophic cartilage and mineralized cartilage, respectively, in the test set. The corresponding Dice values were 0.72, 0.83 and 0.76, respectively. In summary, SR-PCI-CT images are close to the histological level, and a variety of cartilage can be identified on synchrotron radiation CT images compared with histological examination, while artificial intelligence image segmentation model can realize automatic analysis and data generation through deep learning, and further determine the objectivity and accuracy of SR-PCI-CT in identifying various cartilage tissues. Therefore, this imaging technique combined with deep learning image segmentation model can effectively evaluate the effect of diabetes on the morphological and structural changes of callus during fracture healing in mice.
Collapse
Affiliation(s)
- Liping Liu
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Bozhi Cai
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Lingling Liu
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Xiaoning Zhuang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Zhidan Zhao
- Complexity Computation Lab, Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, People's Republic of China
| | - Xin Huang
- Complexity Computation Lab, Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, People's Republic of China
| | - Jianfa Zhang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
| |
Collapse
|
2
|
Truong M, Dreier T, Wassélius J, Sundius L, Persson A, Lovric G, Bonnin A, Goncalves I, Bech M. Sub-micrometer morphology of human atherosclerotic plaque revealed by synchrotron radiation-based μCT—A comparison with histology. PLoS One 2022; 17:e0265598. [PMID: 35471989 PMCID: PMC9041845 DOI: 10.1371/journal.pone.0265598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Histology is a long standing and well-established gold standard for pathological characterizations. In recent years however, synchrotron radiation-based micro-computed tomography (SRμCT) has become a tool for extending the imaging of two-dimensional thin sections into three-dimensional imaging of tissue blocks, enabling so-called virtual histology with arbitrary clipping planes, volumetric rendering and automatic segmentation. In this study, we present a thorough characterization of human carotid plaques after endarterectomy of patients with stroke or transient ischemic attack (TIA), investigating several different pathologic structures using both SRμCT and histology. Phase-contrast SRμCT was performed with two different magnifications (voxel sizes 6.5 μm and 0.65 μm, respectively), and histology was performed with multiple different stainings (Alpha-actin, Glycophorin A, von Kossa, Movat, CD68). The 0.65 μm high-resolution SRμCT was performed on selected areas with plaque typical relevant morphology, identified on the 6.5 μm low-resolution SRμCT. The tomography datasets were reconstructed with additional 3D volume rendering and compared to histology. In total, nine different regions with typical pathologic structures were identified and imaged with high-resolution SRμCT. The results show many characteristics typical for advanced atherosclerotic plaques, clinically relevant, namely ruptures with thrombosis, neo-vascularization, inflammatory infiltrates in shoulder regions, lipid rich necrotic cores (LRNC), thin fibrous cap, calcifications, lumen irregularities, and changes in vessel wall structures such as the internal elastic membrane. This method’s non-destructive nature renders details of micro-structures with an excellent visual likeness to histology, with the additional strength of multiplanar and 3D visualization and the possibility of multiple re-scans.
Collapse
Affiliation(s)
- My Truong
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Till Dreier
- Department for Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Excillum AB, Kista, Sweden
| | - Johan Wassélius
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Lena Sundius
- Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Ana Persson
- Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Goran Lovric
- Center for Biomedical Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Isabel Goncalves
- Cardiology, Skåne University Hospital and Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Martin Bech
- Department for Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
3
|
X-ray Micro-Computed Tomography: An Emerging Technology to Analyze Vascular Calcification in Animal Models. Int J Mol Sci 2020; 21:ijms21124538. [PMID: 32630604 PMCID: PMC7352990 DOI: 10.3390/ijms21124538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification describes the formation of mineralized tissue within the blood vessel wall, and it is highly associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. In this article, we briefly review different rodent models used to study vascular calcification in vivo, and critically assess the strengths and weaknesses of the current techniques used to analyze and quantify calcification in these models, namely 2-D histology and the o-cresolphthalein assay. In light of this, we examine X-ray micro-computed tomography (µCT) as an emerging complementary tool for the analysis of vascular calcification in animal models. We demonstrate that this non-destructive technique allows us to simultaneously quantify and localize calcification in an intact vessel in 3-D, and we consider recent advances in µCT sample preparation techniques. This review also discusses the potential to combine 3-D µCT analyses with subsequent 2-D histological, immunohistochemical, and proteomic approaches in correlative microscopy workflows to obtain rich, multifaceted information on calcification volume, calcification load, and signaling mechanisms from within the same arterial segment. In conclusion we briefly discuss the potential use of µCT to visualize and measure vascular calcification in vivo in real-time.
Collapse
|
4
|
Vågberg W, Persson J, Szekely L, Hertz HM. Cellular-resolution 3D virtual histology of human coronary arteries using x-ray phase tomography. Sci Rep 2018; 8:11014. [PMID: 30030461 PMCID: PMC6054690 DOI: 10.1038/s41598-018-29344-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/11/2018] [Indexed: 11/27/2022] Open
Abstract
High-spatial-resolution histology of coronary artery autopsy samples play an important role for understanding heart disease such as myocardial infarction. Unfortunately, classical histology is often destructive, has thick slicing, requires extensive sample preparation, and is time-consuming. X-ray micro-CT provides fast nondestructive 3D imaging but absorption contrast is often insufficient, especially for observing soft-tissue features with high resolution. Here we show that propagation-based x-ray phase-contrast tomography has the resolution and contrast to image clinically relevant soft-tissue features in intact coronary artery autopsy samples with cellular resolution. We observe microscopic lipid-rich plaques, individual adipose cells, ensembles of few foam cells, and the thin fibrous cap. The method relies on a small-spot laboratory x-ray microfocus source, and provides high-spatial resolution in all three dimensions, fast data acquisition, minimum sample distortion and requires no sample preparation.
Collapse
Affiliation(s)
- William Vågberg
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm, Sweden.
| | - Jonas Persson
- Karolinska Institutet, Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, Sweden
| | - Laszlo Szekely
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.,Department of Pathology, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hans M Hertz
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm, Sweden
| |
Collapse
|
5
|
Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography. Invest Radiol 2017; 52:223-231. [PMID: 28079701 DOI: 10.1097/rli.0000000000000346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to determine the diagnostic accuracy of grating-based phase-contrast computed tomography (gb-PCCT) to classify and quantify coronary vessel characteristics in comparison with optical coherence tomography (OCT) and histopathology in an ex vivo setting. MATERIALS AND METHODS After excision from 5 heart specimens, 15 human coronary arteries underwent gb-PCCT examination using an experimental imaging setup consisting of a rotating molybdenum anode x-ray tube, a Talbot-Lau grating interferometer, and a single photon counting detector. Subsequently, all vessels were imaged by OCT and histopathologically processed. Optical coherence tomography, gb-PCCT, and histopathology images were manually matched using anatomical landmarks. Optical coherence tomography and gb-PCCT were reviewed by 2 independent observers blinded to histopathology. Vessel, lumen, and plaque area were measured, and plaque characteristics (lipid rich, calcified, and fibrous) were determined for each section. Measures of diagnostic accuracy were derived, applying histopathology as the standard of reference. RESULTS Of a total of 286 assessed cross sections, 241 corresponding sections were included in the statistical analysis. Quantitative measures derived from gb-PCCT were significantly higher than from OCT (P < 0.001) and were strongly correlated with histopathology (Pearson r ≥0.85 for gb-PCCT and ≥0.61 for OCT, respectively). Results of Bland-Altman analysis demonstrated smaller mean differences between OCT and histopathology than for gb-PCCT and histopathology. Limits of agreement were narrower for gb-PCCT with regard to lumen area, for OCT with regard to plaque area, and were comparable with regard to vessel area. Based on histopathology, 228/241 (94.6%) sections were classified as fibrous, calcified, or lipid rich. The diagnostic accuracy of gb-PCCT was excellent for the detection of all plaque components (sensitivity, ≥0.95; specificity, ≥0.94), whereas the results for OCT showed sensitivities of ≥0.73 and specificities of ≥0.66. CONCLUSIONS In this ex vivo setting, gb-PCCT provides excellent results in the assessment of coronary atherosclerotic plaque characteristics and vessel dimensions in comparison to OCT and histopathology. Thus, the technique may serve as adjunct nondestructive modality for advanced plaque characterization in an experimental setting.
Collapse
|
6
|
Giuliani A, Mazzoni S, Mele L, Liccardo D, Tromba G, Langer M. Synchrotron Phase Tomography: An Emerging Imaging Method for Microvessel Detection in Engineered Bone of Craniofacial Districts. Front Physiol 2017; 8:769. [PMID: 29085301 PMCID: PMC5649129 DOI: 10.3389/fphys.2017.00769] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023] Open
Abstract
The engineering of large 3D constructs, such as certain craniofacial bone districts, is nowadays a critical challenge. Indeed, the amount of oxygen needed for cell survival is able to reach a maximum diffusion distance of ~150–200 μm from the original vascularization vector, often hampering the long-term survival of the regenerated tissues. Thus, the rapid growth of new blood vessels, delivering oxygen and nutrients also to the inner cells of the bone grafts, is mandatory for their long-term function in clinical practice. Unfortunately, significant progress in this direction is currently hindered by a lack of methods with which to visualize these processes in 3D and reliably quantify them. In this regard, a challenging method for simultaneous 3D imaging and analysis of microvascularization and bone microstructure has emerged in recent years: it is based on the use of synchrotron phase tomography. This technique is able to simultaneously identify multiple tissue features in a craniofacial bone site (e.g., the microvascular and the calcified tissue structure). Moreover, it overcomes the intrinsic limitations of both histology, achieving only a 2D characterization, and conventional tomographic approaches, poorly resolving the vascularization net in the case of an incomplete filling of the newly formed microvessels by contrast agents. Indeed, phase tomography, being based on phase differences among the scattered X-ray waves, is capable of discriminating tissues with similar absorption coefficients (like vessels and woven bone) in defined experimental conditions. The approach reviewed here is based on the most recent experiences applied to bone regeneration in the craniofacial region.
Collapse
Affiliation(s)
- Alessandra Giuliani
- Sezione di Biochimica, Biologia e Fisica Applicata, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Serena Mazzoni
- Sezione di Biochimica, Biologia e Fisica Applicata, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Luigi Mele
- Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Davide Liccardo
- Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | | | - Max Langer
- Centre de Recherche en Acquisition et Traitment d'Images pour la Santé (CREATIS), Centre National de la Recherche Scientifique (CNRS) UMR 5220, Institut national de la santé et de la recherche médicale (Inserm) U1206, Université de Lyon, INSA-Lyon, Villeurbanne, France
| |
Collapse
|
7
|
Horn F, Gelse K, Jabari S, Hauke C, Kaeppler S, Ludwig V, Meyer P, Michel T, Mohr J, Pelzer G, Rieger J, Riess C, Seifert M, Anton G. High-energy x-ray Talbot–Lau radiography of a human knee. ACTA ACUST UNITED AC 2017; 62:6729-6745. [DOI: 10.1088/1361-6560/aa7721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Hetterich H, Webber N, Willner M, Herzen J, Birnbacher L, Auweter S, Schüller U, Bamberg F, Notohamiprodjo S, Bartsch H, Wolf J, Marschner M, Pfeiffer F, Reiser M, Saam T. Dark-field imaging in coronary atherosclerosis. Eur J Radiol 2017; 94:38-45. [PMID: 28941758 DOI: 10.1016/j.ejrad.2017.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/21/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. METHODS Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. RESULTS Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. CONCLUSIONS Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability.
Collapse
Affiliation(s)
- Holger Hetterich
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany.
| | - Nicole Webber
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Marian Willner
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Julia Herzen
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Lorenz Birnbacher
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Sigrid Auweter
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University Hospital, Munich, Germany; Institute for Neuropathology, University Medical Center Hamburg, Germany; Department for Pediatric Hematology and Oncology, University Medical Center Hamburg, Germany
| | - Fabian Bamberg
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Susan Notohamiprodjo
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Harald Bartsch
- Institute of Pathology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Johannes Wolf
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Mathias Marschner
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Franz Pfeiffer
- Physics Department & Institute for Medical Engineering, Technical University Munich, Garching, Germany
| | - Maximilian Reiser
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Tobias Saam
- Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
9
|
Lin YC, Hwu Y, Huang GS, Hsiao M, Lee TT, Yang SM, Lee TK, Chen NY, Yang SS, Chen A, Ka SM. Differential synchrotron X-ray imaging markers based on the renal microvasculature for tubulointerstitial lesions and glomerulopathy. Sci Rep 2017; 7:3488. [PMID: 28615647 PMCID: PMC5471266 DOI: 10.1038/s41598-017-03677-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
High resolution synchrotron microtomography capable of revealing microvessels in three dimensional (3D) establishes distinct imaging markers of mouse kidney disease strongly associated to renal tubulointerstitial (TI) lesions and glomerulopathy. Two complementary mouse models of chronic kidney disease (CKD), unilateral ureteral obstruction (UUO) and focal segmental glomerulosclerosis (FSGS), were used and five candidates of unique 3D imaging markers were identified. Our characterization to differentially reflect the altered microvasculature of renal TI lesions and/or glomerulopathy demonstrated these image features can be used to differentiate the disease status and the possible cause therefore qualified as image markers. These 3D imaging markers were further correlated with the histopathology and renal microvessel-based molecular study using antibodies against vascular endothelial cells (CD31), the connective tissue growth factor or the vascular endothelial growth factor. We also found that these 3D imaging markers individually characterize the development of renal TI lesions or glomerulopathy, quantitative and integrated use of all of them provide more information for differentiating the two renal conditions. Our findings thus establish a practical strategy to characterize the CKD-associated renal injuries by the microangiography-based 3D imaging and highlight the impact of dysfunctional microvasculature as a whole on the pathogenesis of the renal lesions.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yeukuang Hwu
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tsung-Tse Lee
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Shun-Min Yang
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Ting-Kuo Lee
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Nan-Yow Chen
- National Center for High-Performance Computing, Hsinchu, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Abstract
OBJECTIVE The objective of this study was to assess the potential of grating-based phase-contrast computed tomography (gb-PCCT) for the detection and characterization of human coronary artery disease in an experimental ex vivo validation study. MATERIALS AND METHODS The study was approved by the institutional review board, and informed consent was obtained from all patients. Specimens were examined using a conventional low-coherence x-ray tube (40 kV) and a Talbot-Lau grating interferometer. Histopathologic assessment was used as the standard of reference. Signal characteristics of calcified, fibrous (FIB), and lipid-rich (LIP) tissue were visually and quantitatively assessed by phase-contrast Hounsfield units (HU). Conventional absorption-based HU values were also measured. Conservative measurements of diagnostic accuracy for the detection and differentiation of plaque components as well as quantitative measurements of vessel dimensions were obtained, and receiver operating characteristic curve analysis for plaque differentiation was performed. RESULTS A total of 15 coronary arteries from 5 subjects were available for analysis (386 sections). Calcified, FIB, and LIP displayed distinct gb-PCCT signal criteria. The diagnostic accuracy of gb-PCCT was high with sensitivity, specificity, and negative and positive predictive values of 0.89 or greater for all plaque components with good interrater agreement (к ≥ 0.88). In addition, quantitative measurements of vessel dimensions in gb-PCCT were strongly correlated with measurements obtained from histopathology (Pearson R ≥ 0.86). Finally, phase-contrast Hounsfield units were superior to conventional HU in differentiating FIB and LIP (receiver operating characteristic analysis, 0.86 vs. 0.77, respectively; P < 0.05). CONCLUSIONS In an ex vivo setting, gb-PCCT provides improved differentiation and quantification of coronary atherosclerotic plaque and may thus serve as a tool for nondestructive histopathology.
Collapse
|
11
|
Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography. Sci Rep 2016; 6:24022. [PMID: 27040492 PMCID: PMC4819174 DOI: 10.1038/srep24022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/18/2016] [Indexed: 11/08/2022] Open
Abstract
The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.
Collapse
|
12
|
AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography. Eur Radiol 2015; 26:3223-33. [PMID: 26679184 DOI: 10.1007/s00330-015-4143-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/20/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the potential of grating-based phase-contrast computed-tomography (gb-PCCT) to classify human carotid and coronary atherosclerotic plaques according to modified American Heart Association (AHA) criteria. METHODS Experiments were carried out at a laboratory-based set-up consisting of X-ray tube (40 kVp), grating-interferometer and detector. Eighteen human carotid and coronary artery specimens were examined. Histopathology served as the standard of reference. Vessel cross-sections were classified as AHA lesion type I/II, III, IV/V, VI, VII or VIII plaques by two independent reviewers blinded to histopathology. Conservative measurements of diagnostic accuracies for the detection and differentiation of plaque types were evaluated. RESULTS A total of 127 corresponding gb-PCCT/histopathology sections were analyzed. Based on histopathology, lesion type I/II was present in 12 (9.5 %), III in 18 (14.2 %), IV/V in 38 (29.9 %), VI in 16 (12.6 %), VII in 34 (26.8 %) and VIII in 9 (7.0 %) cross-sections. Sensitivity, specificity and positive and negative predictive value were ≥0.88 for most analyzed plaque types with a good level of agreement (Cohen's kappa = 0.90). Overall, results were better in carotid (kappa = 0.97) than in coronary arteries (kappa = 0.85). Inter-observer agreement was high with kappa = 0.85, p < 0.0001. CONCLUSIONS These results indicate that gb-PCCT can reliably classify atherosclerotic plaques according to modified AHA criteria with excellent agreement to histopathology. KEY POINTS • Different atherosclerotic plaque types display distinct morphological features in phase-contrast CT. • Phase-contrast CT can detect and differentiate AHA plaque types. • Calcifications caused streak artefacts and reduced sensitivity in type VI lesions. • Overall agreement was higher in carotid than in coronary arteries.
Collapse
|
13
|
Sun W, Zhang Y, Gao F, Li Z, Li G, Pan L. Phase-contrast imaging with synchrotron hard X-ray of micro lesions of the cartilage of the femoral head in rabbits. Int J Clin Exp Med 2015; 8:20086-20091. [PMID: 26884921 PMCID: PMC4723766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND To observe micro lesions on the cartilage of the rabbit femoral head using phase-contrast imaging with synchrotron hard X-ray and to prove that this method can be useful in the study of the degeneration of cartilage. METHODS New Zealand white rabbits were used in a micro lesion model of rabbit femoral head cartilage. Bilateral femoral heads were excised from rabbits, and micro lesions were made on one side with a specially made knife with a blade 20 μm in width. The other femur was left intact to serve as the control. Phase-contrast imaging with synchrotron hard X-ray and conventional X-ray imaging were used to observe the cartilage. Histological changes were investigated using modified Golden tri-color staining. RESULTS Phase-contrast imaging with synchrotron hard X-ray clearly showed the 20 μm lesions on the cartilage on the heads of rabbit femurs. These lesions were not visible with conventional X-ray imaging. Histological observation confirmed the presence of the microscopic lesions. CONCLUSION Phase-contrast imaging with synchrotron hard X-ray can detect microscopic lesions on cartilage that cannot be detected by conventional absorption-contrast X-ray. This provides an unequivocal, non-invasive alternative to histological examination in the diagnosis of joint disease. It should be considered a new tool in osteoarthritis and cartilage research.
Collapse
Affiliation(s)
- Wei Sun
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, China-Japan Friendship HospitalBeijing 100029, China
| | - Yong Zhang
- Department of Cardiovascular Surgery, Jinan Command General Hospital of PLAJinan 250031, China
| | - Fuqiang Gao
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, China-Japan Friendship HospitalBeijing 100029, China
| | - Zirong Li
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, China-Japan Friendship HospitalBeijing 100029, China
| | - Gang Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsBeijing 100039, China
| | - Lin Pan
- China-Japan Friendship Institute of Clinical Medical ScienceBeijing 100029, China
| |
Collapse
|
14
|
Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging. Sci Rep 2015; 5:12119. [PMID: 26183486 PMCID: PMC4648396 DOI: 10.1038/srep12119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/09/2015] [Indexed: 11/08/2022] Open
Abstract
Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed.
Collapse
|
15
|
Meletta R, Borel N, Stolzmann P, Astolfo A, Klohs J, Stampanoni M, Rudin M, Schibli R, Krämer SD, Müller Herde A. Ex vivo differential phase contrast and magnetic resonance imaging for characterization of human carotid atherosclerotic plaques. Int J Cardiovasc Imaging 2015; 31:1425-34. [DOI: 10.1007/s10554-015-0706-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022]
|
16
|
Ultra-high-resolution 3D imaging of atherosclerosis in mice with synchrotron differential phase contrast: a proof of concept study. Sci Rep 2015; 5:11980. [PMID: 26165698 PMCID: PMC4499839 DOI: 10.1038/srep11980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details.
Collapse
|
17
|
Velroyen A, Bech M, Tapfer A, Yaroshenko A, Müller M, Paprottka P, Ingrisch M, Cyran CC, Auweter SD, Nikolaou K, Reiser MF, Pfeiffer F. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging. PLoS One 2015; 10:e0129512. [PMID: 26134130 PMCID: PMC4489901 DOI: 10.1371/journal.pone.0129512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/08/2015] [Indexed: 12/22/2022] Open
Abstract
The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.
Collapse
Affiliation(s)
- Astrid Velroyen
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
- * E-mail:
| | - Martin Bech
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Arne Tapfer
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Andre Yaroshenko
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Mark Müller
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Philipp Paprottka
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Michael Ingrisch
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Clemens C. Cyran
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Sigrid D. Auweter
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Konstantin Nikolaou
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Maximilian F. Reiser
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| |
Collapse
|
18
|
Xu Y, Pickering JG, Nong Z, Gibson E, Arpino JM, Yin H, Ward AD. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis. PLoS One 2015; 10:e0126817. [PMID: 26024221 PMCID: PMC4449209 DOI: 10.1371/journal.pone.0126817] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p < 0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for analysis of diseased microvasculature.
Collapse
Affiliation(s)
- Yiwen Xu
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - J. Geoffrey Pickering
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Zengxuan Nong
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Eli Gibson
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - John-Michael Arpino
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Hao Yin
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Aaron D. Ward
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Department of Oncology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Hu J, Cao Y, Wu T, Li D, Lu H. 3D angioarchitecture changes after spinal cord injury in rats using synchrotron radiation phase-contrast tomography. Spinal Cord 2015; 53:585-90. [PMID: 25823804 DOI: 10.1038/sc.2015.49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A basic experiment study. OBJECTIVES An understanding of the three-dimensional (3D) angioarchitecture changes that occur after SCI will improve our knowledge of the pathogenesis of SCI and aid in the development of valuable therapeutic strategies to improve its poor outcomes. Our aim was to visualize the normal and traumatized spinal angioarchitecture in 3D using a high-resolution synchrotron radiation phase-contrast tomography (SR-PCT) and evaluate its diagnostic capability. SETTING SCI Center of Xiangya Hospital of Central South University in China. METHODS SR-PCT was used as novel high-resolution imaging tool to detect 3D morphological alterations in spinal cord microvasculature after injury. RESULTS In a rat model, the morphology of the microvasculature on 2D digital slices was matched with histological findings in both the normal and injured spinal cord. 3D angioarchitecture changes after SCI were successfully obtained via SR-PCT without the use of a contrast agent. Quantitative analysis on 3D images of the injured spinal cord revealed a significant decrease in the number and volume of vascular networks. This was especially relevant to vessels with a diameter <50 μm. CONCLUSION The 3D local blood supply to the spinal cord was severely disrupted after the acute violent injury. Our results indicate that the use of SR-PCT may improve our understanding of the pathogenesis of SCI and provide a new approach to the morphological investigation of neurovascular diseases in preclinical research.
Collapse
Affiliation(s)
- J Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Y Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - T Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - D Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - H Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
In-line phase-contrast and grating-based phase-contrast synchrotron imaging study of brain micrometastasis of breast cancer. Sci Rep 2015; 5:9418. [PMID: 25818989 PMCID: PMC4377630 DOI: 10.1038/srep09418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/27/2015] [Indexed: 01/23/2023] Open
Abstract
Current bio-medical imaging researches aim to detect brain micrometastasis in early stage for its increasing incidence and high mortality rates. Synchrotron phase-contrast imaging techniques, such as in-line phase-contrast (IPC) and grating-based phase-contrast (GPC) imaging, could provide a high spatial and density imaging study of biological specimens' 3D structures. In this study, we demonstrated the detection efficiencies of these two imaging tools on breast cancer micrometastasis in an ex vivo mouse brain. We found that both IPC and GPC can differentiate abnormal brain structures induced by micrometastasis from the surrounding normal tissues. We also found that GPC was more sensitive in detecting the small metastasis as compared to IPC.
Collapse
|
21
|
Wang H, Berujon S, Herzen J, Atwood R, Laundy D, Hipp A, Sawhney K. X-ray phase contrast tomography by tracking near field speckle. Sci Rep 2015; 5:8762. [PMID: 25735237 PMCID: PMC4349152 DOI: 10.1038/srep08762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/03/2015] [Indexed: 11/09/2022] Open
Abstract
X-ray imaging techniques that capture variations in the x-ray phase can yield higher
contrast images with lower x-ray dose than is possible with conventional absorption
radiography. However, the extraction of phase information is often more difficult
than the extraction of absorption information and requires a more sophisticated
experimental arrangement. We here report a method for three-dimensional (3D) X-ray
phase contrast computed tomography (CT) which gives quantitative volumetric
information on the real part of the refractive index. The method is based on the
recently developed X-ray speckle tracking technique in which the displacement of
near field speckle is tracked using a digital image correlation algorithm. In
addition to differential phase contrast projection images, the method allows the
dark-field images to be simultaneously extracted. After reconstruction, compared to
conventional absorption CT images, the 3D phase CT images show greatly enhanced
contrast. This new imaging method has advantages compared to other X-ray imaging
methods in simplicity of experimental arrangement, speed of measurement and relative
insensitivity to beam movements. These features make the technique an attractive
candidate for material imaging such as in-vivo imaging of biological systems
containing soft tissue.
Collapse
Affiliation(s)
- Hongchang Wang
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Sebastien Berujon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Julia Herzen
- Institue of Materials Science, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Robert Atwood
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - David Laundy
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Alexander Hipp
- Institue of Materials Science, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Kawal Sawhney
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| |
Collapse
|
22
|
Velroyen A, Bech M, Zanette I, Schwarz J, Rack A, Tympner C, Herrler T, Staab-Weijnitz C, Braunagel M, Reiser M, Bamberg F, Pfeiffer F, Notohamiprodjo M. X-ray phase-contrast tomography of renal ischemia-reperfusion damage. PLoS One 2014; 9:e109562. [PMID: 25299243 PMCID: PMC4192129 DOI: 10.1371/journal.pone.0109562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/02/2014] [Indexed: 01/28/2023] Open
Abstract
Purpose The aim of the study was to investigate microstructural changes occurring in unilateral renal ischemia-reperfusion injury in a murine animal model using synchrotron radiation. Material and Methods The effects of renal ischemia-reperfusion were investigated in a murine animal model of unilateral ischemia. Kidney samples were harvested on day 18. Grating-Based Phase-Contrast Imaging (GB-PCI) of the paraffin-embedded kidney samples was performed at a Synchrotron Radiation Facility (beam energy of 19 keV). To obtain phase information, a two-grating Talbot interferometer was used applying the phase stepping technique. The imaging system provided an effective pixel size of 7.5 µm. The resulting attenuation and differential phase projections were tomographically reconstructed using filtered back-projection. Semi-automated segmentation and volumetry and correlation to histopathology were performed. Results GB-PCI provided good discrimination of the cortex, outer and inner medulla in non-ischemic control kidneys. Post-ischemic kidneys showed a reduced compartmental differentiation, particularly of the outer stripe of the outer medulla, which could not be differentiated from the inner stripe. Compared to the contralateral kidney, after ischemia a volume loss was detected, while the inner medulla mainly retained its volume (ratio 0.94). Post-ischemic kidneys exhibited severe tissue damage as evidenced by tubular atrophy and dilatation, moderate inflammatory infiltration, loss of brush borders and tubular protein cylinders. Conclusion In conclusion GB-PCI with synchrotron radiation allows for non-destructive microstructural assessment of parenchymal kidney disease and vessel architecture. If translation to lab-based approaches generates sufficient density resolution, and with a time-optimized image analysis protocol, GB-PCI may ultimately serve as a non-invasive, non-enhanced alternative for imaging of pathological changes of the kidney.
Collapse
Affiliation(s)
- Astrid Velroyen
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
| | - Martin Bech
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Irene Zanette
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
| | - Jolanda Schwarz
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
| | - Alexander Rack
- European Synchrotron Radiation Facility, Grenoble, France
| | - Christiane Tympner
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja Herrler
- Department of General, Trauma, Hand, and Plastic Surgery, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Claudia Staab-Weijnitz
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum Munich, Munich, Germany
| | - Margarita Braunagel
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
| | - Maximilian Reiser
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
| | - Fabian Bamberg
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
- Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
| | - Mike Notohamiprodjo
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
- Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
23
|
Hagen CK, Diemoz PC, Endrizzi M, Rigon L, Dreossi D, Arfelli F, Lopez FCM, Longo R, Olivo A. Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography. OPTICS EXPRESS 2014; 22:7989-8000. [PMID: 24718174 DOI: 10.1364/oe.22.007989] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.
Collapse
|