1
|
Unique Features of River Lamprey (Lampetra fluviatilis) Myogenesis. Int J Mol Sci 2022; 23:ijms23158595. [PMID: 35955736 PMCID: PMC9368804 DOI: 10.3390/ijms23158595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
The river lamprey (L. fluviatilis) is a representative of the ancestral jawless vertebrate group. We performed a histological analysis of trunk muscle fiber differentiation during embryonal, larval, and adult musculature development in this previously unstudied species. Investigation using light, transmission electron (TEM), and confocal microscopy revealed that embryonal and larval musculature differs from adult muscle mass. Here, we present the morphological analysis of L. fluviatilis myogenesis, from unsegmented mesoderm through somite formation, and their differentiation into multinucleated muscle lamellae. Our analysis also revealed the presence of myogenic factors LfPax3/7 and Myf5 in the dermomyotome. In the next stages of development, two types of muscle lamellae can be distinguished: central surrounded by parietal. This pattern is maintained until adulthood, when parietal muscle fibers surround the central muscles on both sides. The two types show different morphological characteristics. Although lampreys are phylogenetically distant from jawed vertebrates, somite morphology, especially dermomyotome function, shows similarity. Here we demonstrate that somitogenesis is a conservative process among all vertebrates. We conclude that river lamprey myogenesis shares features with both ancestral and higher vertebrates.
Collapse
|
2
|
Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet 2021; 140:381-400. [PMID: 32728807 PMCID: PMC7939107 DOI: 10.1007/s00439-020-02212-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
3
|
Zhang L, Hu D, Wang S, Zhang Y, Pang L, Tao L, Jia W. Association between dense PAX1 promoter methylation and HPV16 infection in cervical squamous epithelial neoplasms of Xin Jiang Uyghur and Han women. Gene 2020; 723:144142. [PMID: 31589957 DOI: 10.1016/j.gene.2019.144142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
DNA methylation is an epigenetic alteration that may lead to carcinogenesis by silencing key tumor suppressor genes. Hypermethylation of the paired box gene 1 (PAX1) promoter is important in cervical cancer development. Here, PAX1 methylation levels were compared between Uyghur and Han patients with cervical lesions. Data on PAX1 methylation in different cervical lesions were obtained from the Gene Expression Omnibus (GEO) database, whereas data on survival and PAX1 mRNA expression in invasive cervical cancer (ICC) were retrieved from the Cancer Genome Atlas (TCGA) database. MassARRAY spectrometry was used to detect methylation of 19 CpG sites in the promoter region of PAX1, whereas gene mass spectrograms were drawn by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Human papillomavirus (HPV) 16 infection was detected by polymerase chain reaction. PAX1 methylation in high-grade squamous intraepithelial lesion (HSIL) and ICC was significantly higher than in normal tissues. PAX1 hypermethylation was associated with poor prognosis and reduced transcription. ICC-specific PAX1 promoter methylation involved distinct CpG sites in Uyghur and Han patients HPV16 infection in HSIL and ICC patient was significantly higher than in normal women (p < 0.05). Our study revealed a strong association between PAX1 methylation and the development of cervical cancer. Moreover, hypermethylation of distinct CpG sites may induce HSIL transformation into ICC in both Uyghur and Han patients. Our results suggest the existence of ethnic differences in the genetic susceptibility to cervical cancer. Finally, PAX1 methylation and HPV infection exhibited synergistic effects on cervical carcinogenesis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China; Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Danni Hu
- Department of Pathology, The First People's Hospital of Changde City, Changde 415003, China
| | - Shasha Wang
- Department of Pathology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China; Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Ying Zhang
- Department of Pathology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China; Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Lijuan Pang
- Department of Pathology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China; Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Lin Tao
- Department of Pathology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China; Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Wei Jia
- Department of Pathology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China; Department of Pathology, Shihezi University School of Medicine, Shihezi, China.
| |
Collapse
|
4
|
Campbell MTD, Jones DS, Andrews GP, Li S. Understanding the physicochemical properties and degradation kinetics of nicotinamide riboside, a promising vitamin B 3nutritional supplement. Food Nutr Res 2019; 63:3419. [PMID: 31807125 PMCID: PMC6878970 DOI: 10.29219/fnr.v63.3419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/11/2019] [Accepted: 10/16/2019] [Indexed: 11/20/2022] Open
Abstract
Nicotinamide riboside (NR), a newly recognised form of vitamin B3 and a precursor to nicotinamide adenine dinucleotide (NAD+), has been demonstrated to show therapeutic potential and the possibility of becoming a drug compound in addition to its proven role in rejuvenating ageing cells in mice. However, current literature is devoid of information relating to the physicochemical characterisation of NR and its respective impact upon formulation and final product processing. Here we report physicochemical properties of NR including pKa, log P, solubility, melting point, degradation mechanics, and kinetics, with a special focus on its stability under thermal and physiologically relevant conditions. A simple and rapid HPLC method confirms a base-catalysed hydrolysis degradation of NRCl to nicotinamide and sugar in simulated gastrointestinal (GI) fluids. Given the antagonising effect of nicotinamide against NR, the presented data have a profound impact on how NRCl should be handled both during formulation and storage to prevent formation and to limit accumulation of nicotinamide. The innovative combinatorial use of 1H NMR and Differential Scanning Calorimetry (DSC) was employed to investigate thermal events during NR melting. NRCl degrades upon melting and in solution undergoes hydrolysis in a buffer and in simulated intestinal environments. The results suggest that a proper and evidence-based formulation of NRCl is vital to enable further investigation and clinical analysis of this promising and novel nutrient. Any formulation would need to promote the stability of NRCl and protect it from hostile environments to prevent the accumulation of a potentially antagonistic degradation product. With the current work, we have filled a niche but vital gap in NR literature and the data presented may prove useful in furthering the understanding, specifically the formulation and processing of NRCl.
Collapse
Affiliation(s)
| | - David S Jones
- School of Pharmacy, Queens University Belfast, Belfast, Norther Ireland, UK
| | - Gavin P Andrews
- School of Pharmacy, Queens University Belfast, Belfast, Norther Ireland, UK
| | - Shu Li
- School of Pharmacy, Queens University Belfast, Belfast, Norther Ireland, UK
| |
Collapse
|
5
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
6
|
Salzano FM. Remembering the past - studies on evolution done by the genetics group at Universidade Federal do Rio Grande do Sul (UFRGS). Genet Mol Biol 2018; 41:181-188. [PMID: 29583152 PMCID: PMC5913724 DOI: 10.1590/1678-4685-gmb-2017-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
After a brief introduction about the factors that are involved in science development, and world and Brazilian evolutionary genetics, the studies developed in Porto Alegre in this area were reviewed. Four periods in the development of this group were distinguished: (a) Origins and first expansion (1949-1961); (b) Second expansion (1962-1988); (c) Third expansion (1989-2001); and (d) The last 15 years (2002-present). The international Porto Alegre Biological Evolution Workshops (PABEWs), with five biannual events from 2007 o 2015, were also mentioned. The final message stressed the importance of the maintenance of this and other Brazilian groups of research through adequate finance and recognition.
Collapse
Affiliation(s)
- Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Heterochronic evolution explains novel body shape in a Triassic coelacanth from Switzerland. Sci Rep 2017; 7:13695. [PMID: 29057913 PMCID: PMC5651877 DOI: 10.1038/s41598-017-13796-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 11/10/2022] Open
Abstract
A bizarre latimeriid coelacanth fish from the Middle Triassic of Switzerland shows skeletal features deviating from the uniform anatomy of coelacanths. The new form is closely related to a modern-looking coelacanth found in the same locality and differences between both are attributed to heterochronic evolution. Most of the modified osteological structures in the new coelacanth have their developmental origin in the skull/trunk interface region in the embryo. Change in the expression of developmental patterning genes, specifically the Pax1/9 genes, may explain a rapid evolution at the origin of the new coelacanth. This species broadens the morphological disparity range within the lineage of these ‘living fossils’ and exemplifies a case of rapid heterochronic evolution likely trigged by minor changes in gene expression.
Collapse
|
8
|
Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T. Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Dev Biol 2017; 426:301-324. [DOI: 10.1016/j.ydbio.2016.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/27/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
|
9
|
Tan B, Wang J, Song Q, Wang N, Jia Y, Wang C, Yao B, Liu Z, Zhang X, Cheng Y. Prognostic value of PAX9 in patients with esophageal squamous cell carcinoma and its prediction value to radiation sensitivity. Mol Med Rep 2017; 16:806-816. [PMID: 28560390 PMCID: PMC5482201 DOI: 10.3892/mmr.2017.6626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
Abnormal paired box 9 (PAX9) expression is associated with tumorigenesis, cancer development, invasion and metastasis. The present study investigated the prognostic significance of PAX9 in esophageal squamous cell carcinoma (ESCC) and its role in predicting radiation sensitivity. A total of 52.8% (121/229) ESCC tissues were positive for PAX9. The 1-, 3- and 5-year disease-free survival (DFS) rates were 72.2, 35.2 and 5.6%, respectively, and the overall survival (OS) rates were and 86.1, 44.4, and 23.1%, respectively, in PAX9-positive tumors. In PAX9-negative tumors, the one-, three- and five-year DFS rates were 76.9, 47.9 and 24.0%, and the OS rates were 90.9, 57.9 and 38.8%, respectively. Univariate analysis revealed that PAX9, differentiation, T stage, lymph node metastasis, and tumor-node-metastasis stage were associated with OS. Multivariate analysis of DFS and OS revealed that the hazard ratios for PAX9 were 0.624 (95% CI: 0.472–0.869, P=0.004) and 0.673 (95% CI: 0.491–0.922, P=0.014), respectively. Patients that received adjuvant therapy exhibited significant differences in the 5-year DFS (P<0.001) and OS (P<0.001). PAX9-positive ESCC patients who received post-surgery radiotherapy had a significantly greater 5-year DFS (P=0.011) and OS (P=0.009) than patients who received surgery only. Thus, PAX9 may be an independent prognostic factor for the surgical treatment of ESCC and a possible predictor of radiation sensitivity.
Collapse
Affiliation(s)
- Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Nana Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yibin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Yao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhulong Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaomei Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
10
|
Navet S, Buresi A, Baratte S, Andouche A, Bonnaud-Ponticelli L, Bassaglia Y. The Pax gene family: Highlights from cephalopods. PLoS One 2017; 12:e0172719. [PMID: 28253300 PMCID: PMC5333810 DOI: 10.1371/journal.pone.0172719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/08/2017] [Indexed: 01/15/2023] Open
Abstract
Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases. The existence of six Pax families (Pax1/9, Pax2/5/8, Pax3/7, Pax4/6, Paxβ, PoxNeuro) was confirmed and the lophotrochozoan Paxβ subfamily was further characterized. Contrary to the pattern reported in chordates, the Pax2/5/8 family is devoid of homeodomain in Lophotrochozoa. Expression patterns of the three main pax classes (pax2/5/8, pax3/7, pax4/6) during Sepia officinalis development showed that Pax roles taken as ancestral and common in metazoans are modified in S. officinalis, most likely due to either the morphological specificities of cephalopods or to their direct development. Some expected expression patterns were missing (e.g. pax6 in the developing retina), and some expressions in unexpected tissues have been found (e.g. pax2/5/8 in dermal tissue and in gills). This study underlines the diversity and functional plasticity of Pax genes and illustrates the difficulty of using probable gene homology as strict indicator of homology between biological structures.
Collapse
Affiliation(s)
- Sandra Navet
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Auxane Buresi
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Sébastien Baratte
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
- Univ. Paris Sorbonne-ESPE, Sorbonne Universités, Paris, France
| | - Aude Andouche
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Laure Bonnaud-Ponticelli
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Yann Bassaglia
- UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
- Univ. Paris Est Créteil-Val de Marne, Créteil, France
- * E-mail:
| |
Collapse
|
11
|
Martin-Montalvo A, Lorenzo PI, López-Noriega L, Gauthier BR. Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors. Expert Opin Ther Targets 2016; 21:77-89. [PMID: 27841034 DOI: 10.1080/14728222.2017.1257000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Four members of the PAX family, PAX2, PAX4, PAX6 and PAX8 are known to be expressed in the pancreas. Accumulated evidences indicate that several pancreatic expressed PAX genes play a significant role in pancreatic development/functionality and alterations in these genes are involved in the pathogenesis of pancreatic diseases. Areas covered: In this review, we summarize the ongoing research related to pancreatic PAX genes in diabetes mellitus and pancreatic neuroendocrine tumors. We dissect the current knowledge at different levels; from mechanistic studies in cell lines performed to understand the molecular processes controlled by pancreatic PAX genes, to in vivo studies using rodent models that over-express or lack specific PAX genes. Finally, we describe human studies associating variants on pancreatic-expressed PAX genes with pancreatic diseases. Expert opinion: Based on the current literature, we propose that future interventions to treat pancreatic neuroendocrine tumors and diabetes mellitus could be developed via the modulation of PAX4 and/or PAX6 regulated pathways.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Petra I Lorenzo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Livia López-Noriega
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Benoit R Gauthier
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| |
Collapse
|
12
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
DNA methylation in a sea lamprey vasotocin receptor gene promoter correlates with tissue- and life-stage-specific mRNA expression. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:56-66. [PMID: 27497665 DOI: 10.1016/j.cbpb.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 11/23/2022]
Abstract
The jawless vertebrate sea lamprey (Petromyzon marinus) genome has a different structure from both invertebrates and jawed vertebrates featuring high guanine-cytosine (GC) content. This raises the question of whether DNA methylation of cytosine-guanine (CpG) dinucleotides could function to regulate lamprey gene transcription. We previously characterized a lamprey arginine vasotocin (AVT) receptor gene (Pm807) possessing characteristics of both arginine vasopressin (AVP) V1A and oxytocin (OXT) receptor genes of jawed vertebrates. Lamprey Pm807 mRNA is highly expressed in adult heart and larval liver but not expressed in adult liver. Using high-resolution melt (HRM) PCR on bisulfite-converted DNA, we pinpointed a region with tissue-specific differences in DNA melt characteristics, indicating differences in methylation level. Sequencing revealed a pattern of methylation at specific CpGs at consistently higher levels in adult heart and larval liver than adult liver. These CpGs are associated with putative transcription factor binding sequences organized similarly to functional OXTR promoters in mammals, suggesting functional similarity in lamprey gene transcription regulation.
Collapse
|
14
|
Friedrich M. Evo-Devo gene toolkit update: at least seven Pax transcription factor subfamilies in the last common ancestor of bilaterian animals. Evol Dev 2016; 17:255-7. [PMID: 26372059 DOI: 10.1111/ede.12137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA.,Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Jiao S, Tan X, Li M, Sui Y, Du SJ, You F. The duplicated paired box protein 7 (pax7) genes differentially transcribed during Japanese flounder (Paralichthys olivaceus) embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2015; 189:62-8. [PMID: 26275626 DOI: 10.1016/j.cbpb.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
PAX are important regulators of developmental processes. PAX7 plays crucial roles in patterning of the dorsal central nervous system (CNS), neural crest (NC), and skeletal muscle. Here, we identified six spliced isoforms of pax7a and one pax7b and characterized their expression patterns. All of flounder Pax7a-1, Pax7a-2, Pax7a-3, and Pax7b contain a conserved paired domain (PD), an octapeptide motif (OP), and a paired type homeodomain (HD). However, the PD of Pax7a-4 and the HD of Pax7a-5 are not intact, and there is no HD in Pax7a-4 and Pax7a-6. pax7a and pax7b show distinct spatiotemporal expression patterns during embryogenesis. Whole-mount in situ hybridization demonstrates that the expression patterns of pax7a and pax7b are overlapping but distinguishable in the dorsal central nervous system. pax7a is expressed in most part of the brain and the neural tube, while pax7b is expressed exclusively in the diencephalon and the midbrain. In addition, pax7a is also expressed in the cranial NC and the trunk NC. RT-PCR results show that there were different expression patterns between the different isoforms. These results indicate subfunction partitioning of the duplicated pax7 genes. The duplicated pax7 may provide additional flexibility in fine-tuning neurogenesis and somitogenesis.
Collapse
Affiliation(s)
- Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China.
| | - Meijie Li
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yulei Sui
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shao Jun Du
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 701 E. Pratt St., Baltimore, MD 21202, USA
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
16
|
Origins and evolvability of the PAX family. Semin Cell Dev Biol 2015; 44:64-74. [DOI: 10.1016/j.semcdb.2015.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/07/2015] [Accepted: 08/22/2015] [Indexed: 01/18/2023]
|
17
|
Fabian P, Kozmikova I, Kozmik Z, Pantzartzi CN. Pax2/5/8 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain. Front Genet 2015; 6:228. [PMID: 26191073 PMCID: PMC4488758 DOI: 10.3389/fgene.2015.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022] Open
Abstract
Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordates and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a) mRNA isoform. As shown in our analysis, this splicing event is characteristic of Gnathostomata and is absent in the other chordate subphyla. Moreover, expression pattern of alternative spliced variants was compared between cephalochordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.
Collapse
Affiliation(s)
- Peter Fabian
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Chrysoula N Pantzartzi
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| |
Collapse
|
18
|
Jiao S, Tan X, Wang Q, Li M, Du SJ. The olive flounder (Paralichthys olivaceus) Pax3 homologues are highly conserved, encode multiple isoforms and show unique expression patterns. Comp Biochem Physiol B Biochem Mol Biol 2014; 180:7-15. [PMID: 25448050 DOI: 10.1016/j.cbpb.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 01/10/2023]
Abstract
Pax genes encode a highly conserved family of transcription factors that play crucial roles in the formation of tissues and organs during development. Pax3 plays crucial roles in patterning of the dorsal central nervous system (CNS), neural crest and skeletal muscle. Here, we identified two spliced isoforms of Pax3a and three spliced isoforms of Pax3b and characterized their expression patterns. Both of flounder Pax3a-1 and Pax3b-1 contain the conserved paired domain (PD), an octapeptide motif (OP), and a paired type homeodomain (HD). But the PD domain in Pax3a-2 and Pax3b-3 is not intact and there is no HD in Pax3b-2 and Pax3b-3. Pax3a and Pax3b show distinct temporal expression patterns during embryogenesis. Whole-mount in situ hybridization demonstrates that Pax3a and Pax3b are expressed in overlapping patterns in the dorsal central nervous system, with some subtle regional differences between the two genes. In addition, Pax3a is scattered in the somites while Pax3b is specifically expressed in the newly forming somites. RT-PCR results have shown that there were different expression patterns between the different isoforms. These results indicate subfunction partitioning of the duplicated Pax3 genes. The duplicated Pax3 may provide additional flexibility in fine-tuning neurogenesis and somitogenesis.
Collapse
Affiliation(s)
- Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China.
| | - Qian Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Meijie Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shao Jun Du
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 701 E. Pratt St, Baltimore, MD 21202, USA
| |
Collapse
|
19
|
Characterization of zebrafish Pax1b and Pax9 in fin bud development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:309385. [PMID: 25197636 PMCID: PMC4147360 DOI: 10.1155/2014/309385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/31/2014] [Accepted: 07/01/2014] [Indexed: 11/25/2022]
Abstract
Both Pax1 and Pax9 belong to the important paired box gene family (PAX), which mainly participates in animal development and sclerotome differentiation. To date, the precise molecular mechanism and related signaling pathway of Pax1 remain unclear. In our study, microinjection of morpholino- (MO-) modified antisense oligonucleotides against pax1b induced pectoral fin bud defects. Furthermore, we demonstrate that the phenotypes caused by the knockdown of Pax1b in zebrafish could not be phenocopied by pax9 MO and could not be rescued by either Pax1a or Pax9 overexpression. We further find that Pax1b affects the expression of col2a1, Uncx4.1, Noggin3, and aggrecan, confirming the role of Pax1b in chondrocyte differentiation and bone maturation. Moreover, we identify an interaction between PAX1 and FOXO1 and find that the interaction was enhanced under hypoxia stress. Together, this evidence for cell death caused by pax1b knockdown provides new insight into the role of the Pax protein family in cell fate determination and tissue specification.
Collapse
|