1
|
ShangGuan Y, Huang K, Zhu Z, Yuan Y, Song Y, Wang H, Chen L, Yu S, Zheng G, Liang Q. Effects of low-intensity blood flow restriction training on myocardial injury indices, antioxidant and anti-apoptotic capacity in rats. Front Physiol 2025; 16:1508305. [PMID: 40182686 PMCID: PMC11966203 DOI: 10.3389/fphys.2025.1508305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Objective This study aims to investigate the effects of low-intensity blood flow restriction training on myocardial tissue in rats. By measuring the levels of myocardial injury biomarkers in serum and the expression of anti-apoptotic and antioxidant proteins in myocardial tissue, the study preliminarily explores the underlying mechanisms. Methods Male 3-month-old Sprague-Dawley rats were randomly divided into the following groups: control group (CON), low-intensity training group (LIRT), high-intensity training group (HIRT), and low-intensity blood flow restriction training group (LIBFR), with 6 rats in each group. Body weight, maximum voluntary carrying capacity, myocardial morphology, myocardial injury biomarkers, and the expression levels of Bcl-2, Bax, Nrf2, and Keap1 proteins in myocardial tissue were evaluated. Results (1)cTn1 Detection: The HIRT group showed a significant increase in cTn1 levels (P < 0.01), while the LIBFR group had a lower cTn1 level compared to the HIRT group (P < 0.05). (2)Nrf2 and Keap1 Results: Compared to the CON group, the LIBFR group showed an increase in Nrf2 (P < 0.05), and a significant increase in Keap1 (P < 0.01). (3)Bcl-2 and Bax Results: Compared to the CON group, Bcl-2 levels were significantly elevated in the HIRT group (P < 0.01) and increased in the LIBFR group (P < 0.05), while Bax expression was significantly reduced in the LIBFR group (P < 0.05). Regarding the Bcl-2/Bax ratio, the LIRT, HIRT, and LIBFR groups exhibited significantly higher values compared to the CON group (P < 0.01). Furthermore, the HIRT and LIBFR groups showed significantly higher Bcl-2/Bax ratios than the LIRT group (P < 0.01). Conclusion Low-intensity blood flow restriction training can effectively reduce cTn1 in rat serum, decrease cardiomyocyte apoptosis, and improve antioxidant capacity, which has a certain protective effect on the myocardium.
Collapse
Affiliation(s)
- Yuwen ShangGuan
- Institute of Competitive Sports, Nanjing Sport Institute, Nanjing, China
- Department of Exercise Physiology, Kunsan National University, Gunsan, Republic of Korea
| | - Kunyi Huang
- Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Zining Zhu
- Department of Exercise Physiology, Kunsan National University, Gunsan, Republic of Korea
| | - Yuan Yuan
- Department of Exercise Physiology, Kunsan National University, Gunsan, Republic of Korea
| | - Yawei Song
- Institute of Competitive Sports, Nanjing Sport Institute, Nanjing, China
| | - Hao Wang
- Institute of Competitive Sports, Nanjing Sport Institute, Nanjing, China
| | - Liang Chen
- Institute of Competitive Sports, Nanjing Sport Institute, Nanjing, China
| | - Shiqi Yu
- School of Sports and Health, Shanghai University of Sport, Shanghai, China
| | - Guangzhi Zheng
- Department of Exercise Physiology, Kunsan National University, Gunsan, Republic of Korea
| | - Qi Liang
- School of Sports and Health, Linyi Vocational College, Liny, China
| |
Collapse
|
2
|
Kalmari A, Colagar AH. Exploration of SOD3 from gene to therapeutic prospects: a brief review. Mol Biol Rep 2024; 51:980. [PMID: 39269510 DOI: 10.1007/s11033-024-09919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Superoxide dismutase 3 (SOD3) is a type of antioxidant enzyme, which plays an important role in converting superoxide anion into hydrogen peroxide through its extracellular activity. This enzyme has been widely studied and evaluated from various points of view, including maintaining cellular redox balance, protecting against oxidative damage, and enhancing overall cellular resilience. The current paper focuses on SOD3 expression from a functional perspective. In addition to a detailed examination of the gene and protein structure, we found ample evidence indicating that the expression level of SOD3 undergoes alterations in response to various transcription factors, signaling pathways, and diverse conditions. These fluctuations, by disrupting the homeostasis of SOD3, can serve as crucial indicators of the onset or exacerbation of specific diseases. In this regard, significant efforts have been dedicated in recent years to the treatment of diseases through the regulation of SOD3 expression. The ultimate goal of this review is to extensively highlight and demonstrate the immense potential of SOD3 as a therapeutic target, emphasizing its profound impact on health outcomes.
Collapse
Affiliation(s)
- Amin Kalmari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, 47416-95447, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, 47416-95447, Mazandaran, Iran.
| |
Collapse
|
3
|
Patintingan CG, Louisa M, Juniantito V, Arozal W, Hanifah S, Wanandi SI, Thandavarayan R. Moringa oleifera Leaves Extract Ameliorates Doxorubicin-Induced Cardiotoxicity via Its Mitochondrial Biogenesis Modulatory Activity in Rats. J Exp Pharmacol 2023; 15:307-319. [PMID: 37525636 PMCID: PMC10387274 DOI: 10.2147/jep.s413256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023] Open
Abstract
Background Doxorubicin, an anthracycline class of anticancer, is an effective chemotherapeutic agent with serious adverse effects, mainly cardiotoxicity. Several possible causes of doxorubicin cardiotoxicity are increased oxidative stress, nucleic acid and protein synthesis inhibition, cardiomyocyte apoptosis, and mitochondrial biogenesis disruptions. Moringa oleifera (MO), a naturally derived medicine, is known for its antioxidative properties and activity in alleviating mitochondrial dysfunction. To determine the potency and possible cardioprotective mechanism of MO leaves aqueous extract via the mitochondrial biogenesis pathway in doxorubicin-induced rats. Methods Twenty-four Sprague-Dawley rats were divided into four groups of six. The first group was normal rats; the second group was treated with doxorubicin 4 mg/kg BW intraperitoneally once weekly for four weeks; the third and fourth groups were treated with doxorubicin 4 mg/kg BW intraperitoneally once weekly, and MO leaves extract at 200 mg/kg BW or 400 mg/kg BW orally daily, for four weeks. At the end of the fourth week, blood and cardiac tissues were obtained and analyzed for cardiac biomarkers, mitochondrial DNA copy number, mRNA expressions of peroxisome-activated receptor-gamma coactivator-1 alpha (PGC-1α), the nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2), caspase 3, the activity of glutathione peroxidase (GPx), levels of 8-hydroxy-2-deoxyguanosine (8-OH-dG), and malondialdehyde. Results MO leaves extract was shown to decrease biomarkers of cardiac damage (LDH and CK-MB), malondialdehyde levels, and GPx activity. These changes align with the reduction of mRNA expressions of caspase-3, the increase of mRNA expressions of PGC-1α and Nrf2, and the elevation of mitochondrial DNA copy number. MO leaves extracts did not influence the mRNA expressions of superoxide dismutase 2 (SOD2) or the levels of 8-OH-dG. Conclusion Moringa oleifera leaves extract ameliorates doxorubicin-induced cardiotoxicity by reducing apoptosis and restoring gene expression of PGC-1α and Nrf2, a key regulator in mitochondrial biogenesis.
Collapse
Affiliation(s)
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vetnizah Juniantito
- Department of Veterinary Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Agriculture Institute of Bogor, Bogor, Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Silmi Hanifah
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Rajarajan Thandavarayan
- Department of Cardiovascular Sciences Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
4
|
Janini Gomes M, Sabela AK, Ferreira ITP, de Souza SLB, Mota GAF, da Silva VL, de Campos DHS, Lima ARR, Carvalho MR, Bazan SGZ, Corrêa CR, Cicogna AC, Okoshi MP, Pacagnelli FL. Effects of aerobic exercise on cardiac function and gene expression of NADPH oxidases in diaphragm muscle of rats with aortic stenosis-induced heart failure. Front Physiol 2023; 14:1182303. [PMID: 37362442 PMCID: PMC10285051 DOI: 10.3389/fphys.2023.1182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
We evaluated the influence of aerobic physical exercise (EX) on gene-encoding proteins associated with oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure (HF). Wistar male rats were divided into four groups: Control sedentary (C); Control exercise (C-Ex); Sedentary aortic stenosis (AS); Aortic stenosis exercise (AS-Ex). Exercised rats trained 5 times a week for 10 weeks on a treadmill. Statistical analysis was performed by ANOVA or Kruskal-Wallis test. In the final echocardiogram, animals with aortic stenosis subjected to exercise demonstrated improvement in systolic function compared to the sedentary aortic stenosis group. In diaphragm muscle, the activity of antioxidant enzymes, malondialdehyde malondialdehyde concentration, protein carbonylation, and protein expression of p65 and its inhibitor IκB did not differ between groups. Alterations in gene expression of sources that generate reactive species of oxygen were observed in AS-Ex group, which showed decreased mRNA abundance of NOX2 and NOX4 compared to the aortic stenosis group (p < 0.05). We concluded that aerobic exercise has a positive impact during heart failure, ameliorating systolic dysfunction and biomarkers of oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure.
Collapse
Affiliation(s)
- Mariana Janini Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Ana Karenina Sabela
- Physiotherapy Department, UNOESTE, Presidente Prudente, Brazil
- Post-graduate Program, Animal Science, UNOESTE, Presidente Prudente, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | - Francis Lopes Pacagnelli
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
- Physiotherapy Department, UNOESTE, Presidente Prudente, Brazil
| |
Collapse
|
5
|
Alipour M, Hajipour-Verdom B, Javan M, Abdolmaleki P. Static and Electromagnetic Fields Differently Affect Proliferation and Cell Death Through Acid Enhancement of ROS Generation in Mesenchymal Stem Cells. Radiat Res 2022; 198:384-395. [PMID: 35867630 DOI: 10.1667/rade-21-00037.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Magnetic fields remotely influence cellular homeostasis as a physical agent through the changes in cell physicochemical reactions. Magnetic fields affect cell fate, which may provide an important and interesting challenge in stem cell behaviors. Here, we investigated the effects of the static magnetic field (SMF, 20 mT) and electromagnetic field (EMF, 20 mT-50 Hz) on reactive oxygen species (ROS) production and the acidic pH conditions as stimuli to change cell cycle progression and cell death in mesenchymal stem cells. Results show that SMF, EMF, and their simultaneous (SMF+EMF) administration increase ROS and expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2), and glutathione-S-transferase (GST) as an antioxidant defense system. Besides, intracellular pH (pHi) decreases in presence of either EMF or SMF+EMF, but not SMF. Decreased ROS content using ascorbic acid in these treatments leads to increased pH compared to the magnetic field treatments alone. Furthermore, each magnetic field has different effects on the cellular process of stem cells, including cell cycle, apoptosis and necrosis. Moreover, treatment by SMF enhances the cell viability after 24 h, while EMF or SMF+EMF decreases it. These observations indicate that fluctuations of ROS generation and acid enhancement during SMF and EMF treatments may reveal their beneficial and adverse effects on the molecular and cellular mechanisms involved in the growth, death, and differentiation of stem cells.
Collapse
Affiliation(s)
| | | | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | | |
Collapse
|
6
|
Zhong C, Yin C, Niu G, Ning L, Pan J. MicroRNA miR-497 is closely associated with poor prognosis in patients with cerebral ischemic stroke. Bioengineered 2021; 12:2851-2862. [PMID: 34152256 PMCID: PMC8806653 DOI: 10.1080/21655979.2021.1940073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebral ischemic stroke (CIS) is the most common type of stroke, which is highly hazardous. This investigation aims to analyze the correlation of miR-497 with CIS, so as to provide reliable evidence for clinical response to CIS and lay a solid foundation for follow-up research. Eighty-nine CIS patients and 39 concurrent physical examinees selected between June 2017 and October 2018 were enrolled as the research participants. Additionally, SD rats with increased miR-497 expression and normal SD rats were purchased for CIS modeling to observe the clinical implications of miR-497 in CIS, as well as the water content of brain tissue and neuronal apoptosis of rats. miR-497 expression was lower in CIS patients than in physical examinees, and that in patients with complete stroke (CS) was the lowest, which increased after treatment. As determined by the receiver operating characteristic curve (ROC) analysis, miR-497 had an outstanding diagnostic efficacy for CIS and was negatively correlated with the National Institutes of Health Stroke Scale (NIHSS) and MDA concentration, while positively related to SOD concentration. Prognostic follow-up demonstrated that decreased miR-497 expression in patients after treatment predicted an increased risk of prognostic death and recurrence. However, observed in rats, the water content of the brain tissue of rats with increased miR-497 expression was reduced, and the neuronal apoptosis rate of the brain tissue was inhibited. Taken together, with low expression in CIS, miR-497 is strongly related to CIS progression and is a candidate CIS marker.
Collapse
Affiliation(s)
- Changyang Zhong
- Department of Neurology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Congguo Yin
- Department of Neurology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Guozhong Niu
- Department of Neurology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Li Ning
- Nursing Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Jinbo Pan
- Department of ICU, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Lyu X, Gao Y, Liu Q, Zhao H, Zhou H, Pan S. Exercise-induced muscle damage: multi-parametric MRI quantitative assessment. BMC Musculoskelet Disord 2021; 22:239. [PMID: 33653313 PMCID: PMC7927395 DOI: 10.1186/s12891-021-04085-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To explore the value of magnetic resonance quantitative analysis using diffusion tensor imaging, T2 mapping, and intravoxel incoherent motion in the evaluation of eccentric exercise-induced muscle damage and to compare the effects of various eccentric exercise modes at different time points in rats. METHODS A total of 174 Sprague-Dawley male rats were randomly divided into five groups: control, once-only exercise, continuous exercise, intermittent exercise, and once-fatigue exercise groups. Each experimental group was divided into seven time-subgroups: 0.5 h, 24 h, 48 h, 72 h, 96 h, 120 h and 168 h after exercise. The quadriceps femoris muscles were then scanned using magnetic resonance imaging. The apparent diffusion coefficient and fractional anisotropy values of diffusion tensor imaging, T2 values of T2 mapping, D and D* values of intravoxel incoherent motion and optical density values of desmin were measured. Associations among different eccentric exercise programmes, magnetic resonance imaging findings, and histopathological results were evaluated. Dunnett's test, two-way repeated measures analysis of variance, and Pearson correlation analysis were used for statistical analysis. RESULTS Diffusion tensor imaging showed that the number of muscle fibre bundles decreased to varying degrees with different time points and eccentric exercises. Apparent diffusion coefficient values of the exercise groups showed a trend that first increased and then decreased, the opposite of fractional anisotropy. The specimens in all eccentric exercise programmes showed high signal T2 values after exercise, the highest among which was in the once-fatigue exercise group. D and D* in the experimental groups were significantly higher than those in the control group at 0.5-48 h after exercise. The apparent diffusion coefficient, fractional anisotropy, T2, D and D* values correlated with the optical density values of desmin. CONCLUSIONS Diffusion tensor imaging, T2 mapping, and intravoxel incoherent motion technology accurately reflect the degree of skeletal muscle damage and recovery associated with eccentric exercise. The degree of muscle damage was the lowest in the continuous exercise group and the highest in the once-fatigue exercise group, which may provide more information and guidance for the formulation of physical and athletic training programmes.
Collapse
Affiliation(s)
- Xiaohong Lyu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.,Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yue Gao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Qiang Liu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Huadong Zhou
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
8
|
Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol 2020; 32:101508. [PMID: 32220789 PMCID: PMC7109453 DOI: 10.1016/j.redox.2020.101508] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular superoxide dismutase (EcSOD) is the only extracellular scavenger of superoxide anion (O2.-) with unique binding capacity to cell surface and extracellular matrix through its heparin-binding domain. Enhanced EcSOD activity prevents oxidative stress and damage, which are fundamental in a variety of disease pathologies. In this review we will discuss the findings in humans and animal studies supporting the benefits of EcSOD induced by exercise training in reducing oxidative stress in various tissues. In particularly, we will highlight the importance of skeletal muscle EcSOD, which is induced by endurance exercise and redistributed through the circulation to the peripheral tissues, as a molecular transducer of exercise training to confer protection against oxidative stress and damage in various disease conditions.
Collapse
Affiliation(s)
- Zhen Yan
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Hannah R Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
9
|
Chang P, Zhang X, Zhang M, Li G, Hu L, Zhao H, Zhu X, Wu J, Wang X, Wang K, Zhang J, Ren M, Chen B, Zhu X, Zhu M, Yu J. Swimming exercise inhibits myocardial ER stress in the hearts of aged mice by enhancing cGMP‑PKG signaling. Mol Med Rep 2019; 21:549-556. [PMID: 31974605 PMCID: PMC6947875 DOI: 10.3892/mmr.2019.10864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022] Open
Abstract
The purpose of the present study was to explore aging‑associated cardiac dysfunction and the possible mechanism by which swimming exercise modulates cardiac dysfunction in aged mice. Aged mice were divided into two groups: i) Aged mice; and ii) aged mice subjected to swimming exercises. Another cohort of 4‑month‑old male mice served as the control group. Cardiac structure and function in mice were analyzed using hematoxylin and eosin staining, and echocardiography. The levels of oxidative stress were determined by measuring the levels of superoxide dismutase, malondialdehyde and reactive oxygen species (ROS). Levels of the endoplasmic reticulum (ER) stress‑related protein PKR‑like ER kinase, glucose‑regulated protein 78 and C/EBP homologous protein were determined to evaluate the level of ER stress. The aged group exhibited an abnormal cardiac structure and decreased cardiac function, both of which were ameliorated by swimming exercise. The hearts of the aged mice exhibited pronounced oxidative and ER stress, which were ameliorated by exercise, and was accompanied by the reactivation of myocardial cGMP and suppression of cGMP‑specific phosphodiesterase type 5 (PDE5). The inhibition of PDE5 attenuated age‑induced cardiac dysfunction, blocked ROS production and suppressed ER stress. An ER stress inducer abolished the beneficial effects of the swimming exercise on cardiac function and increased ROS production. The present study suggested that exercise restored cardiac function in mice with age‑induced cardiac dysfunction by inhibiting oxidative stress and ER stress, and increasing cGMP‑protein kinase G signaling.
Collapse
Affiliation(s)
- Pan Chang
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaomeng Zhang
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Guohua Li
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lang Hu
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huishou Zhao
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoxing Zhu
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Juan Wu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xihui Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Kaiyan Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Minggang Ren
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Baoying Chen
- Central Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Xiaoling Zhu
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Miaozhang Zhu
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Yu
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
10
|
Lin B, Feng D, Xu J. Cardioprotective effects of microRNA-18a on acute myocardial infarction by promoting cardiomyocyte autophagy and suppressing cellular senescence via brain derived neurotrophic factor. Cell Biosci 2019; 9:38. [PMID: 31168354 PMCID: PMC6509849 DOI: 10.1186/s13578-019-0297-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background The prevention of cardiovascular diseases is a matter of great concern, of which acute myocardial infarction (AMI) remains one of the leading causes of death resulting in high morbidity worldwide. Emerging evidence highlights the importance of microRNAs (miRNAs) as functional regulators in cardiovascular disease. In this study, an AMI rat model was established in order to investigate the effect of miR-18a on cardiomyocyte autophagy and senescence in AMI and the underlying mechanism. Methods In the present study, an AMI model was induced by ligating the anterior descending branch of left coronary artery in Wistar rats. Dual-luciferase reporter gene assay was introduced for exploration on the relationship between miR-18a and brain derived neurotrophic factor (BDNF). The gain- and loss-of-function experiments were performed to elucidate miR-18a and BDNF effects on cell autophagy and senescence in AMI by transfecting hypoxia-exposed H9c2 cells with miR-18a inhibitor or mimic, siRNA against BDNF, or hypoxia-exposed H9c2 cell treatment with an agonist of the Akt/mTOR axis (LM22B-10). Results Upregulation of miR-18a was found in AMI, while downregulation was present in BDNF to activate the Akt/mTOR axis. Compared with the miR-18a inhibitor group, the expression of p-Akt and p-mTOR increased and the number of senescent cells increased in the miR-18a inhibitor + LM22B-10 group, and the expression of Beclin1, LC3-II, p62 decreased and autophagy decreased (all p < 0.05). Furthermore, this could be rescued by knocking down BDNF or Akt/mTOR axis activation by LM22B-10. Conclusion All in all, downregulation of miR-18a could promote BDNF expression, which offers protection against AMI by inactivating the Akt/mTOR axis, highlighting a promising therapeutic strategy for AMI treatment.
Collapse
Affiliation(s)
- Bin Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 1, Jianshe East Road, Zhengzhou, 450052 Henan People's Republic of China
| | - Deguang Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 1, Jianshe East Road, Zhengzhou, 450052 Henan People's Republic of China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 1, Jianshe East Road, Zhengzhou, 450052 Henan People's Republic of China
| |
Collapse
|
11
|
H 2O 2 Signaling-Triggered PI3K Mediates Mitochondrial Protection to Participate in Early Cardioprotection by Exercise Preconditioning. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1916841. [PMID: 30147831 PMCID: PMC6083504 DOI: 10.1155/2018/1916841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/05/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that early exercise preconditioning (EEP) imparts a protective effect on acute cardiovascular stress. However, how mitophagy participates in exercise preconditioning- (EP-) induced cardioprotection remains unclear. EEP may involve mitochondrial protection, which presumably crosstalks with predominant H2O2 oxidative stress. Our EEP protocol involves four periods of 10 min running with 10 min recovery intervals. We added a period of exhaustive running and a pretreatment using phosphoinositide 3-kinase (PI3K)/autophagy inhibitor wortmannin to test this protective effect. By using transmission electron microscopy (TEM), laser scanning confocal microscopy, and other molecular biotechnology methods, we detected related markers and specifically analyzed the relationship between mitophagic proteins and mitochondrial translocation. We determined that exhaustive exercise associated with various elevated injuries targeted the myocardium, oxidative stress, hypoxia-ischemia, and mitochondrial ultrastructure. However, exhaustion induced limited mitochondrial protection through a H2O2-independent manner to inhibit voltage-dependent anion channel isoform 1 (VDAC1) instead of mitophagy. EEP was apparently safe to the heart. In EEP-induced cardioprotection, EEP provided suppression to exhaustive exercise (EE) injuries by translocating Bnip3 to the mitochondria by recruiting the autophagosome protein LC3 to induce mitophagy, which is potentially triggered by H2O2 and influenced by Beclin1-dependent autophagy. Pretreatment with the wortmannin further attenuated these effects induced by EEP and resulted in the expression of proapoptotic phenotypes such as oxidative injury, elevated Beclin1/Bcl-2 ratio, cytochrome c leakage, mitochondrial dynamin-1-like protein (Drp-1) expression, and VDAC1 dephosphorylation. These observations suggest that H2O2 generation regulates mitochondrial protection in EEP-induced cardioprotection.
Collapse
|
12
|
Wang MM, Lu M, Zhang CL, Wu X, Chen JX, Lv WW, Sun T, Qiu H, Huang SH. Oxidative stress modulates the expression of toll‑like receptor 3 during respiratory syncytial virus infection in human lung epithelial A549 cells. Mol Med Rep 2018; 18:1867-1877. [PMID: 29845280 DOI: 10.3892/mmr.2018.9089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/11/2018] [Indexed: 11/05/2022] Open
Abstract
Toll‑like receptor 3 (TLR3) can react with double stranded RNA and is involved in the inflammatory response to respiratory syncytial virus (RSV) infection. Also, oxidative stress has been reported to be involved in RSV infection. However, the correlation between oxidative stress and TLR3 activation during RSV infection is unclear. Therefore, the present study investigated the association between TLR3 expression and oxidative stress modulation during RSV infection in A549 cells. For comparison, seven treatment groups were established, including RSV‑treated cells, N‑acetyl‑L‑cysteine (NAC)+RSV‑treated cells, oxidant hydrogen peroxide (H2O2)+RSV‑treated cells, normal cell control, inactivated RSV control, NAC control and H2O2 control. The mRNA expression changes of TLR3, interferon regulatory factor‑3 (IRF3), nuclear factor‑κB (NF‑κB) and superoxide dismutase 1 (SOD1) were measured using semi‑quantitative reverse transcription‑polymerase chain reaction, and the protein changes of TLR3 and phospho‑NF‑κB p65 were determined using western blot in A549 cells from the different treatment groups. The present study also evaluated the differences in hydroxyl free radical (·OH), nitric oxide (NO) and total SOD activity in the different treatment groups. The results demonstrated that RSV infection of A549 cells increased the levels of ·OH and NO, while decreasing the activity of total SOD. Pretreatment of A549 cells with H2O2 prior to RSV infection upregulated the mRNA and protein expression of TLR3 and NF‑κB, and downregulated the mRNA expression of IRF3 and SOD1, as well as the total SOD activity. When the infected cells were pretreated with NAC, the mRNA and protein expression of these genes were reversed. These variations in the TLR3‑mediated signaling pathway molecules suggested that oxidative stress may be a key regulator for TLR3 activation during RSV infection. RSV‑induced oxidative stress may potentially activate TLR3 and enhance TLR3‑mediated inflammation. These results may provide better understanding of the RSV‑induced inflammatory and immune pathways, and may also contribute to the drug development and prevention of human RSV diseases.
Collapse
Affiliation(s)
- Min-Min Wang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Lu
- Department of Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chuan-Long Zhang
- Department of Pediatrics, The People's Hospital of Lu'an City, Lu'an, Anhui 237005, P.R. China
| | - Xuan Wu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jing-Xian Chen
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Wei Lv
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Sun
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huan Qiu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sheng-Hai Huang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
13
|
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018; 217:1915-1928. [PMID: 29669742 PMCID: PMC5987716 DOI: 10.1083/jcb.201708007] [Citation(s) in RCA: 1177] [Impact Index Per Article: 168.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Wang et al. review the dual role of superoxide dismutases in controlling reactive oxygen species (ROS) damage and regulating ROS signaling across model systems as well as their involvement in human diseases. Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Canada
| | - Alycia Noë
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
14
|
Enache I, Favret F, Doutreleau S, Goette Di Marco P, Charles AL, Geny B, Charloux A. Downhill exercise training in monocrotaline-injected rats: Effects on echocardiographic and haemodynamic variables and survival. Arch Cardiovasc Dis 2017; 110:106-115. [PMID: 28117249 DOI: 10.1016/j.acvd.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/29/2016] [Accepted: 05/18/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Eccentric exercise training has been shown to improve muscle force strength without excessive cardiovascular stress. Such an exercise modality deserves to be tested in pulmonary arterial hypertension. AIM We aimed to assess the effects of an eccentric training modality on cardiac function and survival in an experimental monocrotaline-induced model of pulmonary arterial hypertension with right ventricular dysfunction. METHODS Forty rats were randomly assigned to one of four groups: 40mg/kg monocrotaline-injected sedentary rats; 40mg/kg monocrotaline-injected eccentric-trained rats; sedentary control rats; or eccentric-trained control rats. Eccentric exercise training consisted of downhill running on a treadmill with a -15° slope for 30minutes, 5 days a week for 4 weeks. Training tolerance was assessed by echocardiography, right ventricle catheterization and the rats' maximal eccentric speed. RESULTS Survival in monocrotaline-injected eccentric-trained rats was not different from that in monocrotaline-injected sedentary rats. Monocrotaline-injected eccentric-trained rats tolerated this training modality well, and haemodynamic status did not deteriorate further compared with monocrotaline-injected sedentary rats. The eccentric maximal speed decline was less pronounced in trained compared with sedentary pulmonary arterial hypertension rats. CONCLUSIONS Eccentric exercise training had no detrimental effects on right heart pressure, cardiac function and survival in rats with stable monocrotaline-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Irina Enache
- Service de physiologie et d'explorations fonctionnelles, pôle de pathologie thoracique, hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France; Équipe d'accueil 3072, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France.
| | - Fabrice Favret
- Équipe d'accueil 3072, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| | - Stéphane Doutreleau
- Service de physiologie et d'explorations fonctionnelles, pôle de pathologie thoracique, hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France; Équipe d'accueil 3072, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| | - Paola Goette Di Marco
- Service de physiologie et d'explorations fonctionnelles, pôle de pathologie thoracique, hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France; Équipe d'accueil 3072, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| | - Anne-Laure Charles
- Équipe d'accueil 3072, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| | - Bernard Geny
- Service de physiologie et d'explorations fonctionnelles, pôle de pathologie thoracique, hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France; Équipe d'accueil 3072, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| | - Anne Charloux
- Service de physiologie et d'explorations fonctionnelles, pôle de pathologie thoracique, hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France; Équipe d'accueil 3072, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|