1
|
Fang P, Konyali D, Fischer E, Mayer RP, Huang J, Elena AX, Orzechowski GH, Tony-Odigie A, Kneis D, Dalpke A, Krebs P, Li B, Berendonk TU, Klümper U. Effects of Cigarette-Derived Compounds on the Spread of Antimicrobial Resistance in Artificial Human Lung Sputum Medium, Simulated Environmental Media, and Wastewater. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47003. [PMID: 40032488 PMCID: PMC11980918 DOI: 10.1289/ehp14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 11/20/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Antimicrobial resistance (AMR) and smoking of tobacco products are two of the most important threats to global human health. Both are associated with millions of deaths every year. Surprisingly, the immediate interactions between these two threats remain poorly understood. OBJECTIVES We aimed to elucidate the effect of toxic compounds from cigarette smoke, ashes, and filters on the spread of antibiotic resistance genes in human lung and environmental microbiomes. METHODS Conjugation experiments using donor and recipient strain pairs of either Pseudomonas putida or Escherichia coli and AMR-encoding plasmids were conducted under exposure to different concentrations of cigarette smoke condensate in lung sputum medium, as well as cigarette ash and filter leachate in environmental media. We further measured reactive oxygen species (ROS) production of the donor strain under exposure to the cigarette-derived compounds to explore whether stress experienced by the bacteria could be one of the underlying mechanisms of change in plasmid transfer frequencies. Furthermore, used cigarette filters were submerged in a wastewater stream for several weeks, and the colonizing communities were analyzed using high-throughput sequencing and high-throughput quantitative polymerase chain reaction and compared with communities colonizing unused control filters. RESULTS Exposure to cigarette smoke condensate at relevant concentrations resulted in > 2 -fold higher transfer rates of a multidrug-resistance-encoding plasmid in artificial lung sputum medium. This was associated with higher ROS production as part of the bacterial stress response when exposed to cigarette-derived toxicants. Similar results were obtained for cigarette ash leachate in an environmental medium. Further, used cigarette filters were colonized by different microbial communities compared with unused filters. Those communities were significantly enriched with potential human pathogens and AMR. DISCUSSION The results of this study suggest that cigarette-derived compounds can indeed promote the spread of AMR within simulated human lung and environmental conditions. This study highlights that the consumption of cigarettes has not only direct but may also have indirect adverse effects on human health by promoting AMR. https://doi.org/10.1289/EHP14704.
Collapse
Affiliation(s)
- Peiju Fang
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Diala Konyali
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Emily Fischer
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Robin Pascal Mayer
- Institute of Urban and Industrial Water Management, TU Dresden, Dresden, Germany
| | - Jin Huang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Alan Xavier Elena
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | | | - Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - David Kneis
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, TU Dresden, Dresden, Germany
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Thomas U. Berendonk
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universität (TU) Dresden, Dresden, Germany
| |
Collapse
|
2
|
Ithape D, Dalvi S, Srivastava AK. Chitosan-thiourea and their derivatives: Applications and action mechanisms for imparting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154365. [PMID: 39383780 DOI: 10.1016/j.jplph.2024.154365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
The increasing abiotic stresses from changing global climatic conditions, including drought, extreme temperatures, salinity, storms, pollutants, and floods, impend crop cultivation and sustainability. To mitigate these effects, numerous synthetic and non-synthetic chemicals or plant growth regulators are in practice. Chitosan, a natural organic substance rich in nitrogen and carbon, and thiourea, a synthetic plant growth regulator containing sulfur and nitrogen, have garnered significant interest for their roles in enhancing plant stress tolerance. Despite extensive use, the precise mechanisms of their actions remain unclear. Towards this endeavor, the present review examines how chitosan and thiourea contribute to stress tolerance in crop plants, particularly under drought conditions, to improve production and sustainability. It also explores thiourea's potential as a hydrogen sulfide (H2S) donor and the possible applications of thiolated chitosan derivatives and chitosan-thiourea combinations, emphasizing their biological functions and benefits for sustainable agriculture.
Collapse
Affiliation(s)
- Dinesh Ithape
- Tissue Culture Section, Agri. Sci & Tech. Dept. Vasantdada Sugar Institute, Manjari(Bk), Pune, 412307, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sunil Dalvi
- Tissue Culture Section, Agri. Sci & Tech. Dept. Vasantdada Sugar Institute, Manjari(Bk), Pune, 412307, India.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha Atomic Research Center, Mumbai, 400094, India
| |
Collapse
|
3
|
Ahmad M, Waraich EA, Zulfiqar U, Yong JWH, Ishfaq M, Din KU, Ullah A, Abbas A, Awan MI, Moussa IM, Elshikh MS. Thiourea improves yield and quality traits of Brassica napus L. by upregulating the antioxidant defense system under high temperature stress. Sci Rep 2024; 14:12195. [PMID: 38806561 PMCID: PMC11133410 DOI: 10.1038/s41598-024-62257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ejaz Ahmad Waraich
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Aman Ullah
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Masood Iqbal Awan
- Department of Agronomy, University of Agriculture, Faisalabad, Depalpur-Okara Campus, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Fiaz K, Maqsood MF, Shahbaz M, Zulfiqar U, Naz N, Gaafar ARZ, Tariq A, Farhat F, Haider FU, Shahzad B. Application of thiourea ameliorates drought induced oxidative injury in Linum usitatissimum L. by regulating antioxidant defense machinery and nutrients absorption. Heliyon 2024; 10:e25510. [PMID: 38390139 PMCID: PMC10881316 DOI: 10.1016/j.heliyon.2024.e25510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Thiourea (TU) is considered an essential and emerging biostimulant against the negative impacts of severe environmental stresses, including drought stress in plants. However, the knowledge about the foliar application of TU to mitigate drought stress in Linum usitatissimum L., has yet to be discovered. The present study was designed to assess the impact of foliar application of TU for its effects against drought stress in two flax cultivars. The study comprised two irrigation regimes [60% field capacity (FC) and the control (100% FC)], along with TU (0, 500, 1000 mg L-1) application at the vegetative stage. The findings indicated that drought stress reduced the shoot fresh weight (44.2%), shoot dry weight (67.5%), shoot length (41.5%), total chlorophyll (51.6%), and carotenoids (58.8%). Drought stress increased both cultivars' hydrogen peroxide (H2O2) and malondialdehyde (MDA). Foliar application of TU (1000 mg L-1) enhanced the growth and chlorophyll contents with or without drought stress. Under drought stress (60% FC), TU decreased MDA and H2O2 contents up to twofold. Moreover, TU application increased catalase (40%), peroxidase (13%), superoxide dismutase (30%), and total soluble protein contents (32.4%) differentially in both cultivars. Nevertheless, TU increased calcium (Ca2+) (42.8%), potassium (K+) (33.4%), and phosphorus (P) (72%) in shoots and decreased the elevated sodium (Na+) (28.2%) ions under drought stress. It is suggested that TU application (1000 mg L-1) enhances the growth potential of flax by enhancing photosynthetic pigment, nutrient uptake, and antioxidant enzymes under drought stress. Research outcomes, therefore, recommend that TU application can ameliorate drought-induced negative effects in L. usitatissimum L. seedlings, resulting in improved plant growth and mineral composition, as depicted by balanced primary and secondary metabolite accumulation.
Collapse
Affiliation(s)
- Khazra Fiaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arneeb Tariq
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Fozia Farhat
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
5
|
Harisha CB, Narayanpur VB, Rane J, Ganiger VM, M. Prasanna S, Vishwanath YC, G. Reddi S, Halli HM, Boraiah KM, Basavaraj PS, Mahmoud EA, Casini R, Elansary HO. Promising Bioregulators for Higher Water Productivity and Oil Quality of Chia under Deficit Irrigation in Semiarid Regions. PLANTS (BASEL, SWITZERLAND) 2023; 12:662. [PMID: 36771746 PMCID: PMC9921998 DOI: 10.3390/plants12030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Appropriate water management practices are essential for the successful cultivation of chia in water-scarce situations of semiarid regions. This is highly essential when new crops such as chia are introduced for ensuring diversity and water saving. Therefore, field trials (2020-21 and 2021-22) were conducted to understand the impact of deficit irrigation and bioregulators (BRs) on the seed yield, water productivity, and oil quality of chia. The effect of foliar application of BRs such as thiourea (TU; 400 ppm), salicylic acid (SA; 1.0 mM), potassium nitrate (KN; 0.15%), potassium silicate (KS; 100 ppm), kaolin (KO; 5%), and sodium benzoate (SB; 200 ppm) were monitored at different levels of irrigation: 100 (I100), 75 (I75), 50 (I50), and 25 (I25) percent of cumulative pan evaporation (CPE). Deficit irrigation at I25, I50, and I75 led to 55.3, 20.1, and 3.3% reductions in seed yield; 42.5, 22.5, and 4.2% in oil yield; and 58.9, 24.5, and 5.7% in omega-3 yield, respectively, relative to I100. Bioregulators could reduce the adverse impact of water deficit stress on seed, oil, and omega-3 yield. However, their beneficial effect was more conspicuous under mild water stress (I75), as revealed by higher seed yield (4.3-6.9%), oil yield (4.4-7.1%), and omega-3 yield (4.7-8.5%) over control (I100 + no BRs). Further, BRs (KN, TU, and SA) maintained oil quality in terms of linolenic acid and polyunsaturated fatty acid contents, even under mild stress (I75). Foliar application of KN, TU, and SA could save water to an extent of 36-40%. Therefore, the adverse impact of deficit irrigation on seed, oil, and omega-3 yields of chia could be minimized using BRs such as KN, TU, and SA, which can also contribute to improved water productivity.
Collapse
Affiliation(s)
- Chowdasandra Byregowda Harisha
- ICAR–National Institute of Abiotic Stress Management, Baramati, Pune 413115, Maharashtra, India
- College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, Karnataka, India
| | - Vijaykumar B. Narayanpur
- College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, Karnataka, India
| | - Jagadish Rane
- ICAR–National Institute of Abiotic Stress Management, Baramati, Pune 413115, Maharashtra, India
| | - Vasant M. Ganiger
- College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, Karnataka, India
| | - Sugooru M. Prasanna
- College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, Karnataka, India
| | | | - Sanjeevraddi G. Reddi
- College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, Karnataka, India
| | - Hanamant M. Halli
- ICAR–National Institute of Abiotic Stress Management, Baramati, Pune 413115, Maharashtra, India
| | - Karnar Manjanna Boraiah
- ICAR–National Institute of Abiotic Stress Management, Baramati, Pune 413115, Maharashtra, India
| | | | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt
| | - Ryan Casini
- School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, USA
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Weise K, Winter L, Fischer E, Kneis D, de la Cruz Barron M, Kunze S, Berendonk TU, Jungmann D, Klümper U. Multiwalled Carbon Nanotubes Promote Bacterial Conjugative Plasmid Transfer. Microbiol Spectr 2022; 10:e0041022. [PMID: 35384690 PMCID: PMC9045119 DOI: 10.1128/spectrum.00410-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) regularly enter aquatic environments due to their ubiquity in consumer products and engineering applications. However, the effects of MWCNT pollution on the environmental microbiome are poorly understood. Here, we evaluated whether these carbon nanoparticles can elevate the spread of antimicrobial resistance by promoting bacterial plasmid transfer, which has previously been observed for copper nanomaterials with antimicrobial properties as well as for microplastics. Through a combination of experimental liquid mating assays between Pseudomonas putida donor and recipient strains with plasmid pKJK5::gfpmut3b and mathematical modeling, we here demonstrate that the presence of MWCNTs leads to increased plasmid transfer rates in a concentration-dependent manner. The percentage of transconjugants per recipient significantly increased from 0.21 ± 0.04% in absence to 0.41 ± 0.09% at 10 mg L-1 MWCNTs. Similar trends were observed when using an Escherichia coli donor hosting plasmid pB10. The identified mechanism underlying the observed dynamics was the agglomeration of MWCNTs. A significantly increased number of particles with >6 μm diameter was detected in the presence of MWCNTs, which can in turn provide novel surfaces for bacterial interactions between donor and recipient cells after colonization. Fluorescence microscopy confirmed that MWCNT agglomerates were indeed covered in biofilms that contained donor bacteria as well as elevated numbers of green fluorescent transconjugant cells containing the plasmid. Consequently, MWCNTs provide bacteria with novel surfaces for intense cell-to-cell interactions in biofilms and can promote bacterial plasmid transfer, hence potentially elevating the spread of antimicrobial resistance. IMPORTANCE In recent decades, the use of carbon nanoparticles, especially multiwalled carbon nanotubes (MWCNTs), in a variety of products and engineering applications has been growing exponentially. As a result, MWCNT pollution into environmental compartments has been increasing. We here demonstrate that the exposure to MWCNTs can affect bacterial plasmid transfer rates in aquatic environments, an important process connected to the spread of antimicrobial resistance genes in microbial communities. This is mechanistically explained by the ability of MWCNTs to form bigger agglomerates, hence providing novel surfaces for bacterial interactions. Consequently, increasing pollution with MWCNTs has the potential to elevate the ongoing spread of antimicrobial resistance, a major threat to human health in the 21st century.
Collapse
Affiliation(s)
- Katrin Weise
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Lena Winter
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Emily Fischer
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - David Kneis
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Magali de la Cruz Barron
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of River Ecology, Magdeburg, Germany
| | - Steffen Kunze
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | | | - Dirk Jungmann
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| |
Collapse
|
7
|
Upadhyay MK, Majumdar A, Srivastava AK, Bose S, Suprasanna P, Srivastava S. Antioxidant enzymes and transporter genes mediate arsenic stress reduction in rice (Oryza sativa L.) upon thiourea supplementation. CHEMOSPHERE 2022; 292:133482. [PMID: 34979210 DOI: 10.1016/j.chemosphere.2021.133482] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Thiourea (TU) is a chemo-priming agent and non-physiological reactive oxygen species (ROS) scavenger whose application has been found to reduce As accumulation in rice grains along with improved growth and yield. The present field study explored TU-mediated mechanistic changes in silicon (Si) assimilation in root/shoot, biochemical and molecular mechanisms of arsenic (As) stress amelioration in rice cultivars. Gosai and Satabdi (IET-4786) rice cultivars were selected for field experiment at three different places; control field and two other As contaminated experimental fields (EF1 and EF2) in West Bengal, India. The average As reduction was observed to be 9.5% and 19.8% whereas the yield increment was 8.8% and 17.7% for gosai and satabdi, respectively among all the three experimental fields. The positive interrelation was also observed between improved internal ultrastructure anatomy and enhanced Si assimilation (36%-423%) upon TU application. The level of photosynthetic pigments was increased by 29.8%-99.2%. Further, activities of antioxidant enzymes were harmonically altered in TU supplemented plants. The expression of various As related transporter genes in flag leaf and developing grains (inflorescence) was changed in both the rice cultivars (gosai and satabdi). It was also presumably responsible for observed As reduction in grains. Thus, TU application was found to be an efficient and sustainable agronomic practice for amelioration of As toxicity in rice plants in As contaminated field conditions.
Collapse
Affiliation(s)
- Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, West Bengal, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Centre, Mumbai, Maharashtra, 400094, India
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, West Bengal, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Pandey M, Paladi RK, Srivastava AK, Suprasanna P. Thiourea and hydrogen peroxide priming improved K + retention and source-sink relationship for mitigating salt stress in rice. Sci Rep 2021; 11:3000. [PMID: 33542250 PMCID: PMC7862675 DOI: 10.1038/s41598-020-80419-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Plant bioregulators (PBRs) represent low-cost chemicals for boosting plant defense, especially under stress conditions. In the present study, redox based PBRs such as thiourea (TU; a non-physiological thiol-based ROS scavenger) and hydrogen peroxide (H2O2; a prevalent biological ROS) were assessed for their ability to mitigate NaCl stress in rice variety IR 64. Despite their contrasting redox chemistry, TU or H2O2 supplementation under NaCl [NaCl + TU (NT) or NaCl + H2O2 (NH)] generated a reducing redox environment in planta, which improved the plant growth compared with those of NaCl alone treatment. This was concomitant with better K+ retention and upregulated expression of NaCl defense related genes including HAK21, LEA1, TSPO and EN20 in both NT and NH treated seedlings. Under field conditions, foliar applications of TU and H2O2, at vegetative growth, pre-flowering and grain filling stages, increased growth and yield attributes under both control and NaCl stress conditions. Principal component analysis revealed glutathione reductase dependent reduced ROS accumulation in source (flag leaves) and sucrose synthase mediated sucrose catabolism in sink (developing inflorescence), as the key variables associated with NT and NH mediated effects, respectively. In addition, photosystem-II efficiency, K+ retention and source-sink relationship were also improved in TU and H2O2 treated plants. Taken together, our study highlights that reducing redox environment acts as a central regulator of plant's tolerance responses to salt stress. In addition, TU and H2O2 are proposed as potential redox-based PBRs for boosting rice productivity under the realistic field conditions.
Collapse
Affiliation(s)
- Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Radha Krishna Paladi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
9
|
|
10
|
Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10070938] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
Collapse
|
11
|
Taras-Goslinska K, Vetica F, Barata-Vallejo S, Triantakostanti V, Marciniak B, Chatgilialoglu C. Converging Fate of the Oxidation and Reduction of 8-Thioguanosine. Molecules 2019; 24:E3143. [PMID: 31470553 PMCID: PMC6749358 DOI: 10.3390/molecules24173143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Thione-containing nucleobases have attracted the attention of the scientific community for their application in oncology, virology, and transplantology. The detailed understanding of the reactivity of the purine derivative 8-thioguanosine (8-TG) with reactive oxygen species (ROS) and free radicals is crucial for its biological relevance. An extensive investigation on the fate of 8-TG under both reductive and oxidative conditions is here reported, and it was tested by employing steady-state photooxidation, laser flash photolysis, as well as γ-radiolysis in aqueous solutions. The characterization of the 8-TG T1 excited state by laser flash photolysis and the photooxidation experiments confirmed that singlet oxygen is a crucial intermediate in the formation of the unexpected reduced product guanosine, without the formation of the usual oxygenated sulfinic or sulfonic acids. Furthermore, a thorough screening of different radiolytic conditions upon γ-radiation afforded the reduced product. These results were rationalized by performing control experiments in the predominant presence of each reactive species formed by radiolysis of water, and the mechanistic pathway scenario was postulated on these bases.
Collapse
Affiliation(s)
| | - Fabrizio Vetica
- R&D Laboratory, Lipinutragen srl, Via Piero Gobetti 101, 40129 Bologna, Italy
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Sebastián Barata-Vallejo
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimíca, Departamento de Quimíca Organíca, Junin 954, RA-1113 Buenos Aires, Argentina
| | | | - Bronisław Marciniak
- Adam Mickiewicz University, Faculty of Chemistry, Wieniawskiego 1, 61-712 Poznań, Poland
- Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Poznań, Poland
| | - Chryssostomos Chatgilialoglu
- R&D Laboratory, Lipinutragen srl, Via Piero Gobetti 101, 40129 Bologna, Italy.
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Poznań, Poland.
| |
Collapse
|
12
|
Srivastava AK, Sablok G, Hackenberg M, Deshpande U, Suprasanna P. Thiourea priming enhances salt tolerance through co-ordinated regulation of microRNAs and hormones in Brassica juncea. Sci Rep 2017; 7:45490. [PMID: 28382938 PMCID: PMC5382540 DOI: 10.1038/srep45490] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Activation of stress tolerance mechanisms demands transcriptional reprogramming. Salt stress, a major threat to plant growth, enhances ROS production and affects transcription through modulation of miRNAs and hormones. The present study delineates salt stress ameliorating action of thiourea (TU, a ROS scavenger) in Brassica juncea and provides mechanistic link between redox, microRNA and hormones. The ameliorative potential of TU towards NaCl stress was related with its ability to decrease ROS accumulation in roots and increase Na+ accumulation in shoots. Small RNA sequencing revealed enrichment of down-regulated miRNAs in NaCl + TU treated roots, indicating transcriptional activation. Ranking analysis identified three key genes including BRX4, CBL10 and PHO1, showing inverse relationship with corresponding miRNA expression, which were responsible for TU mediated stress mitigation. Additionally, ABA level was consistently higher till 24 h in NaCl, while NaCl + TU treated roots showed only transient increase at 4 h suggesting an effective stress management. Jasmonate and auxin levels were also increased, which prioritized defence and facilitated root growth, respectively. Thus, the study highlights redox as one of the "core" components regulating miRNA and hormone levels, and also strengthens the use of TU as a redox priming agent for imparting crop resilience to salt stress.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Gaurav Sablok
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Michael Hackenberg
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, 1s8071, Spain
| | - Uday Deshpande
- Cancer Genetics India (Bioserve), CNR complex, Mallapur Road, Hyderabad - 500076, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
13
|
Waqas MA, Khan I, Akhter MJ, Noor MA, Ashraf U. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11459-11471. [PMID: 28316047 DOI: 10.1007/s11356-017-8768-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/08/2017] [Indexed: 05/15/2023]
Abstract
Chilling stress hampers the optimal performance of maize under field conditions precipitously by inducing oxidative stress. To confer the damaging effects of chilling stress, the present study aimed to investigate the effects of some natural and synthetic plant growth regulators, i.e., salicylic acid (SA), thiourea (TU), sorghum water extract (SWE), and moringa leaf extract (MLE) on chilling stress tolerance in autumn maize hybrid. Foliar application of growth regulators at low concentrations was carried out at six leaf (V6) and tasseling stages. An increase in crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), plant height (PH), grain yield (GY), and total dry matter accumulation (TDM) was observed in exogenously applied plants as compared to control. In addition, improved physio-biochemical, phenological, and grain nutritional quality attributes were noticed in foliar-treated maize plots as compared to non-treated ones. SA-treated plants reduced 20% electrolyte leakage in cell membrane against control. MLE and SA were proved best in improving total phenolic, relative water (19-23%), and chlorophyll contents among other applications. A similar trend was found for photosynthetic and transpiration rates, whereas MLE and SWE were found better in improving CGR, LAI, LAD, TDM, PH, GY, grains per cob, 1000 grain weight, and biological yield among all treatments including control. TU and MLE have significantly reduced the duration in phenological events of crop at the reproductive stage. MLE, TU, and SA also improved the grain protein, oil, and starch contents as compared to control. Enhanced crop water productivity was also observed in MLE-treated plants. Economic analysis suggested that MLE and SA applications were more economical in inducing chilling stress tolerance under field conditions. Although eliciting behavior of all growth regulators improved morpho-physiological attributes against suboptimal temperature stress conditions, MLE and SA acted as leading agents which proved to be better stress alleviators by improving plant physio-biochemical attributes and maize growth.
Collapse
Affiliation(s)
| | - Imran Khan
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Mehmood Ali Noor
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, 100081, China.
| | - Umair Ashraf
- Department of Crop science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, 510642, China
| |
Collapse
|
14
|
Vlasova EA, Kuznetsova AA, Golovashova ES, Makarov SV. Interaction of hydrogen peroxide and thiourea or its oxides with terephthalic acid. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217040065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Bhardwaj AR, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla RN, Bankar KG, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Agarwal M. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC PLANT BIOLOGY 2015; 15:9. [PMID: 25604693 PMCID: PMC4310166 DOI: 10.1186/s12870-014-0405-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/22/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature or drought stress. To gain global insights into genes, transcription factors and kinases regulated by these stresses and to explore information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de-novo assembly to discover B. juncea transcriptome associated with high temperature and drought stresses. RESULTS We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS). More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPdenovo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Many of these were responsive to high temperature, drought or both stresses. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families, respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. CONCLUSIONS Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resource generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity.
Collapse
Affiliation(s)
- Ankur R Bhardwaj
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| | - Gopal Joshi
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| | - Bharti Kukreja
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| | - Vidhi Malik
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| | - Priyanka Arora
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| | - Ritu Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Delhi, 110021, India.
| | | | | | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Delhi, 110021, India.
| | - Shailendra Goel
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| | - Arun Jagannath
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| | - Amar Kumar
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| | - Manu Agarwal
- Department of Botany, University of Delhi Main Campus, Delhi, 110007, India.
| |
Collapse
|
16
|
Srivastava AK, Srivastava S, Mishra S, D'Souza SF, Suprasanna P. Identification of redox-regulated components of arsenate (AsV) tolerance through thiourea supplementation in rice. Metallomics 2014; 6:1718-30. [DOI: 10.1039/c4mt00039k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, the effect of the interaction between As and thiourea was utilized for the identification of redox regulatory mechanisms of As tolerance in rice.
Collapse
Affiliation(s)
- A. K. Srivastava
- Nuclear Agriculture and Biotechnology Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | - S. Srivastava
- Nuclear Agriculture and Biotechnology Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | - S. Mishra
- UFZ – Helmholtz Centre for Environmental Research
- Department of Analytical Chemistry
- D-04318 Leipzig, Germany
| | - S. F. D'Souza
- Nuclear Agriculture and Biotechnology Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| | - P. Suprasanna
- Nuclear Agriculture and Biotechnology Division
- Bhabha Atomic Research Centre
- Mumbai 400085, India
| |
Collapse
|