1
|
Shuai Y, Xu N, Zhao C, Yang F, Ning Z, Li G. MicroRNA-10 Family Promotes Renal Fibrosis through the VASH-1/Smad3 Pathway. Int J Mol Sci 2024; 25:5232. [PMID: 38791272 PMCID: PMC11120755 DOI: 10.3390/ijms25105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Renal fibrosis (RF) stands as a pivotal pathological process in the advanced stages of chronic kidney disease (CKD), and impeding its progression is paramount for delaying the advancement of CKD. The miR-10 family, inclusive of miR-10a and miR-10b, has been implicated in the development of various fibrotic diseases. Nevertheless, the precise role of miR-10 in the development of RF remains enigmatic. In this study, we utilized both an in vivo model involving unilateral ureteral obstruction (UUO) in mice and an in vitro model employing TGF-β1 stimulation in HK-2 cells to unravel the mechanism underlying the involvement of miR-10a/b in RF. The findings revealed heightened expression of miR-10a and miR-10b in the kidneys of UUO mice, accompanied by a substantial increase in p-Smad3 and renal fibrosis-related proteins. Conversely, the deletion of these two genes led to a notable reduction in p-Smad3 levels and the alleviation of RF in mouse kidneys. In the in vitro model of TGF-β1-stimulated HK-2 cells, the co-overexpression of miR-10a and miR-10b fostered the phosphorylation of Smad3 and RF, while the inhibition of miR-10a and miR-10b resulted in a decrease in p-Smad3 levels and RF. Further research revealed that miR-10a and miR-10b, through binding to the 3'UTR region of Vasohibin-1 (VASH-1), suppressed the expression of VASH-1, thereby promoting the elevation of p-Smad3 and exacerbating the progression of RF. The miR-10 family may play a pivotal role in RF.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoxia Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
2
|
Lee ES, Suzuki Y, Tomioka H, Nakagami H, Sato Y. Development of a Novel and Simple Anti-Metastatic Cancer Treatment Targeting Vasohibin-2. TOHOKU J EXP MED 2023; 261:239-247. [PMID: 37704418 DOI: 10.1620/tjem.2023.j076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Vasohibin-2 (VASH2), a homologue of vasohibin-1 (VASH1), is overexpressed in various cancer cells and promotes tumor progression. We therefore regard VASH2 as a molecular target for cancer treatment. Here we applied vaccine technology to develop a therapy against VASH2. We selected two amino acid sequences of VASH2 protein; the MTG and RRR peptides, which contain possible B cell epitopes. These sequences are identical between the human and murine VASH2 proteins and distinct from those of the VASH1 protein. We conjugated these peptides with the carrier protein keyhole limpet hemocyanin, mixed with an adjuvant, and injected subcutaneously twice at a 2-week interval in mice. Both vaccines increased antibodies against the antigen peptide; however, only the MTG peptide vaccine increased antibodies that recognized the recombinant VASH2 protein. When Lewis lung cancer (LLC) cells were subcutaneously inoculated, tumors isolated from mice immunized with the MTG peptide vaccine showed a significant decrease in the expression of epithelial-to-mesenchymal transition (EMT) markers. EMT is responsible for cancer cell invasion and metastasis. When the LLC cells were injected into the tail vein, the MTG peptide vaccine inhibited lung metastasis. Moreover, the MTG peptide vaccine inhibited the metastasis of pancreatic cancer cells to the liver in an orthotopic mouse model, and there was a significant inverse correlation between the ELISA titer and metastasis inhibition. Therefore, we propose that the MTG peptide vaccine is a novel anti-metastatic cancer treatment that targets VASH2 and can be applied even in the most malignant and highly metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Eun-Seo Lee
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
- New Industry Creation Hatchery Center, Tohoku University
| | | | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
- New Industry Creation Hatchery Center, Tohoku University
| |
Collapse
|
3
|
Feng ML, Sun MJ, Xu BY, Liu MY, Zhang HJ, Wu C. Mechanism of ELL-associated factor 2 and vasohibin 1 regulating invasion, migration, and angiogenesis in colorectal cancer. World J Gastroenterol 2023; 29:3770-3792. [PMID: 37426316 PMCID: PMC10324531 DOI: 10.3748/wjg.v29.i24.3770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1 (VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colorectal cancer (CRC). Knockdown of VASH1 enhanced transforming growth factor-β1 (TGF-β1)/Smad3 pathway activity and type I/III collagen production. Our previous findings suggest that ELL-associated factor 2 (EAF2) may play a tumor suppressor and protective role in the development and progression of CRC by regulating signal transducer and activator of transcription 3 (STAT3)/TGF-β1 signaling pathway. However, the functional role and mechanism of VASH1-mediated TGF-β1 related pathway in CRC has not been elucidated.
AIM To investigate the expression of VASH1 in CRC and its correlation with the expression of EAF2. Furthermore, we studied the functional role and mechanism of VASH1 involved in the regulation and protection of EAF2 in CRC cells in vitro.
METHODS We collected colorectal adenocarcinoma and corresponding adjacent tissues to investigate the clinical expression of EAF2 protein and VASH1 protein in patients with advanced CRC. Following, we investigated the effect and mechanism of EAF2 and VASH1 on the invasion, migration and angiogenesis of CRC cells in vitro using plasmid transfection.
RESULTS Our findings indicated that EAF2 was down-regulated and VASH1 was up-regulated in advanced CRC tissue compared to normal colorectal tissue. Kaplan-Meier survival analysis showed that the higher EAF2 Level group and the lower VASH1 Level group had a higher survival rate. Overexpression of EAF2 might inhibit the activity of STAT3/TGF-β1 pathway by up-regulating the expression of VASH1, and then weaken the invasion, migration and angiogenesis of CRC cells.
CONCLUSION This study suggests that EAF2 and VASH1 may serve as new diagnostic and prognostic markers for CRC, and provide a clinical basis for exploring new biomarkers for CRC. This study complements the mechanism of EAF2 in CRC cells, enriches the role and mechanism of CRC cell-derived VASH1, and provides a new possible subtype of CRC as a therapeutic target of STAT3/TGF-β1 pathway.
Collapse
Affiliation(s)
- Ming-Liang Feng
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming-Jun Sun
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bo-Yang Xu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Meng-Yuan Liu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hui-Jing Zhang
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| | - Can Wu
- Department of Endoscopy, The First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
4
|
Chepkwony M, Wragg D, Latré de Laté P, Paxton E, Cook E, Ndambuki G, Kitala P, Gathura P, Toye P, Prendergast J. Longitudinal transcriptome analysis of cattle infected with Theileria parva. Int J Parasitol 2022; 52:799-813. [PMID: 36244429 DOI: 10.1016/j.ijpara.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
The apicomplexan cattle parasite Theileria parva is a major barrier to improving the livelihoods of smallholder farmers in Africa, killing over one million cattle on the continent each year. Although exotic breeds not native to Africa are highly susceptible to the disease, previous studies have illustrated that such breeds often show innate tolerance to infection by the parasite. The mechanisms underlying this tolerance remain largely unclear. To better understand the host response to T. parva infection we characterised the transcriptional response over 15 days in tolerant and susceptible cattle (n = 29) naturally exposed to the parasite. We identify key genes and pathways activated in response to infection as well as, importantly, several genes differentially expressed between the animals that ultimately survived or succumbed to infection. These include genes linked to key cell proliferation and infection pathways. Furthermore, we identify response expression quantitative trait loci containing genetic variants whose impact on the expression level of nearby genes changes in response to the infection. These therefore provide an indication of the genetic basis of differential host responses. Together these results provide a comprehensive analysis of the host transcriptional response to this under-studied pathogen, providing clues as to the mechanisms underlying natural tolerance to the disease.
Collapse
Affiliation(s)
- M Chepkwony
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - D Wragg
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK
| | - P Latré de Laté
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - E Paxton
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK
| | - E Cook
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - G Ndambuki
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - P Kitala
- College of Agriculture and Veterinary Sciences (CAVS), University of Nairobi, P.O. Box 29053-00624, Kangemi, Nairobi, Kenya
| | - P Gathura
- College of Agriculture and Veterinary Sciences (CAVS), University of Nairobi, P.O. Box 29053-00624, Kangemi, Nairobi, Kenya
| | - P Toye
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya.
| | - J Prendergast
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK.
| |
Collapse
|
5
|
LAZOGLU A, KELEŞ MS, LALOĞLU E, YILMAZEL UCAR E, YILMAZ S. Determining the Vasohibin-1 Levels of the Serum and Broncoalveolar Lavage Fluid in the Patients with Lung Cancer”. KONURALP TIP DERGISI 2022. [DOI: 10.18521/ktd.1066032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Abstract
Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.
Collapse
|
7
|
Vasohibin-1 rescues erectile function through up-regulation of angiogenic factors in the diabetic mice. Sci Rep 2021; 11:1114. [PMID: 33441910 PMCID: PMC7807034 DOI: 10.1038/s41598-020-80925-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022] Open
Abstract
Neovascularization of the erectile tissue emerges as a beneficial curative approach to treat erectile dysfunction (ED). Here we for the first time report the unexpected role of vasohibin-1 (VASH1), mainly known as an anti-angiogenic factor, in restoring erectile function in diabetic mice. A diabetic patient has lower cavernous VASH1 expression than in the potent man. VASH1 was mainly expressed in endothelial cells. There were significant decreases in cavernous endothelial cell and pericyte contents in VASH1 knockout mice compared with those in wild-type mice, which resulted in impairments in erectile function. Intracavernous injection of VASH1 protein successfully restored erectile function in the diabetic mice (~ 90% of control values). VASH1 protein reinstated endothelial cells, pericytes, and endothelial cell–cell junction proteins and induced phosphorylation of eNOS (Ser1177) in the diabetic mice. The induction of angiogenic factors, such as angiopoietin-1 and vascular endothelial growth factor, is responsible for cavernous angiogenesis and the restoration of erectile function mediated by VASH1. Altogether, these findings suggest that VASH1 is proangiogenic in diabetic penis and is a new potential target for diabetic ED.
Collapse
|
8
|
Kobayashi M, Wakabayashi I, Suzuki Y, Fujiwara K, Nakayama M, Watabe T, Sato Y. Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. Angiogenesis 2020; 24:159-176. [PMID: 33052495 DOI: 10.1007/s10456-020-09754-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023]
Abstract
Receptor endocytosis is crucial for integrating extracellular stimuli of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), into the cell via signal transduction. VEGF not only triggers various angiogenic events including endothelial cell (EC) migration, but also induces the expression of negative regulators of angiogenesis, including vasohibin-1 (VASH1). While we have previously reported that VASH1 inhibits angiogenesis in vitro and in vivo, its mode of action on EC behavior remains elusive. Recently VASH1 was shown to have tubulin carboxypeptidase (TCP) activity, mediating the post-translational modification of microtubules (MTs) by detyrosination of α-tubulin within cells. However, the role of VASH1 TCP activity in angiogenesis has not yet been clarified. Here, we showed that VASH1 detyrosinated α-tubulin in ECs and suppressed in vitro and in vivo angiogenesis. In cultured ECs, VASH1 impaired endocytosis and trafficking of VEGF receptor 2 (VEGFR2), which resulted in the decreased signal transduction and EC migration. These effects of VASH1 could be restored by tubulin tyrosine ligase (TTL) in ECs, suggesting that detyrosination of α-tubulin negatively regulates angiogenesis. Furthermore, we found that detyrosinated tubulin-rich MTs were not adequate as trafficking rails for VEGFR2 endocytosis. Consistent with these results, inhibition of TCP activity of VASH1 led to the inhibition of VASH1-mediated suppression of VEGF-induced signals, EC migration, and in vivo angiogenesis. Our results indicate a novel mechanism of VASH1-mediated inhibition of pro-angiogenic factor receptor trafficking via modification of MTs.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan. .,Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.
| | - Ikumi Wakabayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan. .,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
9
|
Wang H, Deng Q, Lv Z, Ling Y, Hou X, Chen Z, Dinglin X, Ma S, Li D, Wu Y, Peng Y, Huang H, Chen L. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer 2019; 18:181. [PMID: 31823788 PMCID: PMC6902331 DOI: 10.1186/s12943-019-1108-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Brain metastasis (BM) is one of the principal causes of mortality for lung cancer patients. While the molecular events that govern BM of lung cancer remain frustrating cloudy. METHODS The miRNA expression profiles are checked in the paired human BM and primary lung cancer tissues. The effect of miR-143-3p on BM of lung cancer cells and its related mechanisms are investigated. RESULTS miR-143-3p is upregulated in the paired BM tissues as compared with that in primary cancer tissues. It can increase the invasion capability of in vitro blood brain barrier (BBB) model and angiogenesis of lung cancer by targeting the three binding sites of 3'UTR of vasohibin-1 (VASH1) to inhibit its expression. Mechanistically, VASH1 can increase the ubiquitylation of VEGFA to trigger the proteasome mediated degradation, further, it can endow the tubulin depolymerization through detyrosination to increase the cell motility. m6A methyltransferase Mettl3 can increase the splicing of precursor miR-143-3p to facilitate its biogenesis. Moreover, miR-143-3p/VASH1 axis acts as adverse prognosis factors for in vivo progression and overall survival (OS) rate of lung cancer. CONCLUSIONS Our work implicates a causal role of the miR-143-3p/VASH1 axis in BM of lung cancers and suggests their critical roles in lung cancer pathogenesis.
Collapse
Affiliation(s)
- Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Qianqian Deng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Ziyan Lv
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yuyi Ling
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xue Hou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhuojia Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiaoxiao Dinglin
- Cancer Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Shuxiang Ma
- Department of Medical Oncology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Delan Li
- Department of Medical Oncology, Zhongshan City People Hospital, Zhongshan, 528403, Guangdong, China
| | - Yingmin Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yanxi Peng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbing Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
10
|
Tanimura S, Tanabe K, Miyake H, Masuda K, Tsushida K, Morioka T, Sugiyama H, Sato Y, Wada J. Renal tubular injury exacerbated by vasohibin-1 deficiency in a murine cisplatin-induced acute kidney injury model. Am J Physiol Renal Physiol 2019; 317:F264-F274. [PMID: 31091125 DOI: 10.1152/ajprenal.00045.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is frequently encountered in clinical practice, particularly secondarily to cardiovascular surgery and administration of nephrotoxic agents, and is increasingly recognized for initiating a transition to chronic kidney disease. Clarifying the pathogenesis of AKI could facilitate the development of novel preventive strategies, because the occurrence of hospital-acquired AKI is often anticipated. Vasohibin-1 (VASH1) was initially identified as an antiangiogenic factor derived from endothelial cells. VASH1 expression in endothelial cells has subsequently been reported to enhance cellular stress tolerance. Considering the importance of maintaining peritubular capillaries in preventing the progression of AKI, the present study aimed to examine whether VASH1 deletion is involved in the pathogenesis of cisplatin-induced AKI. For this, we injected male C57BL/6J wild-type (WT) and VASH1 heterozygous knockout (VASH1+/-) mice intraperitoneally with either 20 mg/kg cisplatin or vehicle solution. Seventy-two hours after cisplatin injection, increased serum creatinine concentrations and renal tubular injury accompanied by apoptosis and oxidative stress were more prominent in VASH1+/- mice than in WT mice. Cisplatin-induced peritubular capillary loss was also accelerated by VASH1 deficiency. Moreover, the increased expression of ICAM-1 in the peritubular capillaries of cisplatin-treated VASH1+/- mice was associated with a more marked infiltration of macrophages into the kidney. Taken together, VASH1 expression could have protective effects on cisplatin-induced AKI probably by maintaining the number and function of peritubular capillaries.
Collapse
Affiliation(s)
- Satoshi Tanimura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Hiromasa Miyake
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Kana Masuda
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Keigo Tsushida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Tomoyo Morioka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University , Sendai , Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| |
Collapse
|
11
|
Zhou CF, Ma J, Huang L, Yi HY, Zhang YM, Wu XG, Yan RM, Liang L, Zhong M, Yu YH, Wu S, Wang W. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene 2018; 38:1256-1268. [PMID: 30254211 PMCID: PMC6363643 DOI: 10.1038/s41388-018-0511-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/03/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Cancer-secreted exosomal miRNAs are emerging mediators of cancer-stromal cross-talk in the tumor environment. Our previous miRNAs array of cervical squamous cell carcinoma (CSCC) clinical specimens identified upregulation of miR-221-3p. Here, we show that miR-221-3p is closely correlated with peritumoral lymphangiogenesis and lymph node (LN) metastasis in CSCC. More importantly, miR-221-3p is characteristically enriched in and transferred by CSCC-secreted exosomes into human lymphatic endothelial cells (HLECs) to promote HLECs migration and tube formation in vitro, and facilitate lymphangiogenesis and LN metastasis in vivo according to both gain-of-function and loss-of-function experiments. Furthermore, we identify vasohibin-1 (VASH1) as a novel direct target of miR-221-3p through bioinformatic target prediction and luciferase reporter assay. Re-expression and knockdown of VASH1 could respectively rescue and simulate the effects induced by exosomal miR-221-3p. Importantly, the miR-221-3p-VASH1 axis activates the ERK/AKT pathway in HLECs independent of VEGF-C. Finally, circulating exosomal miR-221-3p levels also have biological function in promoting HLECs sprouting in vitro and are closely associated with tumor miR-221-3p expression, lymphatic VASH1 expression, lymphangiogenesis, and LN metastasis in CSCC patients. In conclusion, CSCC-secreted exosomal miR-221-3p transfers into HLECs to promote lymphangiogenesis and lymphatic metastasis via downregulation of VASH1 and may represent a novel diagnostic biomarker and therapeutic target for metastatic CSCC patients in early stages.
Collapse
Affiliation(s)
- Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Hong-Yan Yi
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Mei Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, 510515, China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, 510515, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Watanabe T, Hosaka T, Ohmori‐Matsuda K, Suzuki Y, Suzuki H, Yabuki H, Matsuda Y, Noda M, Sakurada A, Okada Y, Sato Y. High preoperative plasma vasohibin-1 concentration predicts better prognosis in patients with non-small cell lung carcinoma. Health Sci Rep 2018; 1:e40. [PMID: 30623077 PMCID: PMC6266348 DOI: 10.1002/hsr2.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/12/2018] [Accepted: 02/21/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND AIM Vasohibin-1 (VASH1) is an angiogenesis inhibitor synthesized and secreted by endothelial cells, whose expression is induced by angiogenic stimuli such as vascular endothelial growth factor. We have previously demonstrated that VASH1 is immunohistochemically evident in endothelial cells in the tumor microenvironment of patients with non-small cell lung cancer (NSCLC) and is positively correlated with that of vascular endothelial growth factor in cancer cells. Here, we determined the preoperative plasma concentration of VASH1 in patients with NSCLC and evaluated the association between the preoperative VASH1 levels and certain outcomes. METHODS We analyzed presurgical plasma VASH1 concentrations in a total of 79 lung cancer patients (51 males and 28 females; 34-83 y of age; 46 adenocarcinomas, 27 squamous cell carcinomas, and 6 other types) who underwent lung resection. The impact of preoperative VASH1 level was analyzed using clinical characteristics and prognosis. RESULTS Plasma VASH1 concentration ranged from 34.1 to 1190.4 fmol/mL. We divided the patients into 3 groups according to plasma VASH1 level for this assessment: low VASH1 group (n = 26), medium VASH1 group (n = 27), and high VASH1 group (n = 26). The death and recurrence rates of the high, medium, and low VASH1 groups were 5.5, 16.2, and 12.7 per 100 person-years, respectively. Multivariate adjusted hazard ratio of death and recurrence of the high VASH1 group was lower than that of the low VASH1 group (hazard ratio 0.42; 95% CI 0.17-0.99). CONCLUSION The present analysis suggests that high preoperative plasma VASH1 concentration is associated with better prognosis in patients with NSCLC. We propose preoperative VASH1 level as a biomarker for the prognosis of patients with non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Vascular Biology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Tomoko Hosaka
- Department of Vascular Biology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Thoracic SurgeryJapan Organization of Occupational Health and Safety Tohoku Rosai HospitalSendaiJapan
| | - Kaori Ohmori‐Matsuda
- Division of Epidemiology, Department of Public Health and Forensic MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Hirotoshi Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Hiroshi Yabuki
- Department of Thoracic Surgery, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Yasushi Matsuda
- Department of Thoracic Surgery, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Masafumi Noda
- Department of Thoracic Surgery, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Akira Sakurada
- Department of Thoracic Surgery, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|
13
|
Abstract
Pericytes are a heterogeneous population of cells located in the blood vessel wall. They were first identified in the 19th century by Rouget, however their biological role and potential for drug targeting have taken time to be recognised. Isolation of pericytes from several different tissues has allowed a better phenotypic and functional characterization. These findings revealed a tissue-specific, multi-functional group of cells with multilineage potential. Given this emerging evidence, pericytes have acquired specific roles in pathobiological events in vascular diseases. In this review article, we will provide a compelling overview of the main diseases in which pericytes are involved, from well-established mechanisms to the latest findings. Pericyte involvement in diabetes and cancer will be discussed extensively. In the last part of the article we will review therapeutic approaches for these diseases in light of the recently acquired knowledge. To unravel pericyte-related vascular pathobiological events is pivotal not only for more tailored treatments of disease but also to establish pericytes as a therapeutic tool.
Collapse
|
14
|
Takeda E, Suzuki Y, Sato Y. Age-associated downregulation of vasohibin-1 in vascular endothelial cells. Aging Cell 2016; 15:885-92. [PMID: 27325558 PMCID: PMC5013028 DOI: 10.1111/acel.12497] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Vasohibin-1 (VASH1) is an angiogenesis-inhibiting factor synthesized by endothelial cells (ECs) and it also functions to increase stress tolerance of ECs, which function is critical for the maintenance of vascular integrity. Here, we examined whether the expression of VASH1 would be affected by aging. We passaged human umbilical vein endothelial cells (HUVECs) and observed that VASH1 was downregulated in old HUVECs. This decrease in VASH1 expression with aging was confirmed in mice. To explore the mechanism of this downregulation, we compared the expression of microRNAs between old and young HUVECs by performing microarray analysis. Among the top 20 microRNAs that were expressed at a higher level in old HUVECs, the third highest microRNA, namely miR-22-3p, had its binding site on the 3' UTR of VASH1 mRNA. Experiments with microRNA mimic and anti-miR revealed that miR-22-3p was involved at least in part in the downregulation of VASH1 in ECs during replicative senescence. We then clarified the significance of this defective expression of VASH1 in the vasculature. When a cuff was placed around the femoral arteries of wild-type mice and VASH1-null mice, neointimal formation was augmented in the VASH1-null mice accompanied by an increase in adventitial angiogenesis, macrophage accumulation in the adventitia, and medial/neointimal proliferating cells. These results indicate that in replicative senescence, the downregulation of VASH1 expression in ECs was caused, at least in part, by the alteration of microRNA expression. Such downregulation of VASH1 might be involved in the acceleration of age-associated vascular diseases.
Collapse
Affiliation(s)
- Eichi Takeda
- Department of Vascular Biology Institute of Development, Aging and Cancer Tohoku University 4‐1, Seiryo‐machi, Aoba‐ku Sendai 980‐8575 Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology Institute of Development, Aging and Cancer Tohoku University 4‐1, Seiryo‐machi, Aoba‐ku Sendai 980‐8575 Japan
| | - Yasufumi Sato
- Department of Vascular Biology Institute of Development, Aging and Cancer Tohoku University 4‐1, Seiryo‐machi, Aoba‐ku Sendai 980‐8575 Japan
| |
Collapse
|
15
|
Liu S, Han B, Zhang Q, Dou J, Wang F, Lin W, Sun Y, Peng G. Vasohibin-1 suppresses colon cancer. Oncotarget 2016; 6:7880-98. [PMID: 25797264 PMCID: PMC4480723 DOI: 10.18632/oncotarget.3493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 01/01/2023] Open
Abstract
Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor.However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Oncology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, P. R. China.,Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Bing Han
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Qunyuan Zhang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jie Dou
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Fang Wang
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, P. R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, P. R. China
| | - Guangyong Peng
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
16
|
Sanchez-Pulido L, Ponting CP. Vasohibins: new transglutaminase-like cysteine proteases possessing a non-canonical Cys-His-Ser catalytic triad. Bioinformatics 2016; 32:1441-5. [PMID: 26794318 PMCID: PMC4866520 DOI: 10.1093/bioinformatics/btv761] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Vasohibin-1 and Vasohibin-2 regulate angiogenesis, tumour growth and metastasis. Their molecular functions, however, were previously unknown, in large part owing to their perceived lack of homology to proteins of known structure and function. To identify their functional amino acids and domains, their molecular activity and their evolutionary history, we undertook an in-depth analysis of Vasohibin sequences. We find that Vasohibin proteins are previously undetected members of the transglutaminase-like cysteine protease superfamily, and all possess a non-canonical Cys-His-Ser catalytic triad. We further propose a calcium-dependent activation mechanism for Vasohibin proteins. These findings can now be used to design constructs for protein structure determination and to develop enzyme inhibitors as angiogenic regulators to treat metastasis and tumour growth. CONTACT luis.sanchezpulido@dpag.ox.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
17
|
Sato Y. Novel Molecular Basis for Vascular Health Regulated by Vasohibin-1. J Lipid Atheroscler 2016. [DOI: 10.12997/jla.2016.5.2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Japan
| |
Collapse
|
18
|
Experimental cancer cachexia: Evolving strategies for getting closer to the human scenario. Semin Cell Dev Biol 2015; 54:20-7. [PMID: 26343953 DOI: 10.1016/j.semcdb.2015.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/22/2023]
Abstract
Cancer cachexia is a frequent syndrome that dramatically affects patient quality of life, anti-cancer treatment effectiveness, and overall survival. To date, no effective treatment is available and most of the studies are performed in experimental models in order to uncover the underlying mechanisms and to design prospective therapeutic strategies. This review summarizes the most relevant information regarding the use of animal models for studying cancer cachexia. Technical limitations and degree of recapitulation of the features of human cachexia are highlighted, in order to help investigators choose the most suitable model according to study-specific endpoints.
Collapse
|
19
|
Sato Y. Novel Link between Inhibition of Angiogenesis and Tolerance to Vascular Stress. J Atheroscler Thromb 2015; 22:327-34. [PMID: 25739825 DOI: 10.5551/jat.28902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The functional integrity of the vascular endothelium is an essential component required for the maintenance of vascular health, thus counteracting the onset of vascular diseases, including atherosclerosis and vascular complications of diabetes. In light of this important role, the vascular endothelium is expected to have a self-defense system. One candidate factor of such a system is vasohibin-1 (VASH1), a protein that is preferentially expressed in vascular endothelial cells (ECs). The unique features of VASH1 are its anti-angiogenic activity and ability to promote the stress tolerance and survival of ECs. This review summarizes current knowledge regarding VASH1 in terms of its roles in maintaining vascular integrity and protecting the vasculature against various forms of stress.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
| |
Collapse
|
20
|
Liu J, Li J, Ren Y, Liu P. DLG5 in cell polarity maintenance and cancer development. Int J Biol Sci 2014; 10:543-9. [PMID: 24910533 PMCID: PMC4046881 DOI: 10.7150/ijbs.8888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/17/2014] [Indexed: 01/11/2023] Open
Abstract
Failure in establishment and maintenance of epithelial cell polarity contributes to tumorigenesis. Loss of expression and function of cell polarity proteins is directly related to epithelial cell polarity maintenance. The polarity protein discs large homolog 5 (DLG5) belongs to a family of molecular scaffolding proteins called Membrane Associated Guanylate Kinases (MAGUKs). As the other family members, DLG5 contains the multi-PDZ, SH3 and GUK domains. DLG5 has evolved in the same manner as DLG1 and ZO1, two well-studied MAGUKs proteins. Just like DLG1 and ZO1, DLG5 plays a role in cell migration, cell adhesion, precursor cell division, cell proliferation, epithelial cell polarity maintenance, and transmission of extracellular signals to the membrane and cytoskeleton. Since the roles of DLG5 in inflammatory bowel disease (IBD) and Crohn's disease (CD) have been reviewed, here, our review focuses on the roles of DLG5 in epithelial cell polarity maintenance and cancer development.
Collapse
Affiliation(s)
- Jie Liu
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Juan Li
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Yu Ren
- 2. Department of Surgical Oncology, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Peijun Liu
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University College of Medicine
| |
Collapse
|
21
|
Vasohibin-1 expression detected by immunohistochemistry correlates with prognosis in non-small cell lung cancer. Med Oncol 2014; 31:963. [DOI: 10.1007/s12032-014-0963-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/08/2014] [Indexed: 11/26/2022]
|