1
|
Martinat M, Varvarais A, Heraud C, Surget A, Lanuque A, Terrier F, Roy J. Effects of a Plant-Based Diet During the First Month of Feeding on Alevin Rainbow Trout ( Oncorhynchus mykiss) in the Development of Tongue Sensory System Regulating Feeding Behavior. AQUACULTURE NUTRITION 2025; 2025:6690967. [PMID: 40321318 PMCID: PMC12049252 DOI: 10.1155/anu/6690967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/12/2025] [Indexed: 05/08/2025]
Abstract
Taste perception is essential for animals to detect nutrients, providing critical dietary information necessary for growth and survival. Since the early growth performance of alevin rainbow trout (Oncorhynchus mykiss) can be affected by food intake influenced by terrestrial ingredients without fish meal and fish oil, our study aimed to evaluate the role of taste receptors in nutrient detection and the associated signaling pathways leading to central nervous system activation in the regulation of feeding behavior. We conducted a nutritional experiment from the first feeding to 30 days, comparing the performance of fish fed a commercial-like diet (C diet: a blend of fish meal, fish oil, and plant ingredients) with those on a totally plant-based diet (V diet). After 5 and 30 days of feeding, fish were fasted for 16 h and then fed either the C or V diet, with sampling conducted at 20 min and 6 h post-meal. We evaluated the expression of nutrient-sensing genes related to fatty acids, amino acids, and sweetness, and taste receptor genes for flavors. Additionally, we examined calcium signaling pathways in the tongue, focusing on indolamine and catecholamine pathways, alongside appetite-regulating neuropeptides in the brain and intestinal hormones in the gut of alevins. Results indicated that fish on the V diet experienced a decrease in body weight gain starting 10 days after feeding to 30 days, along with changes in feed intake during the periods of 0-10 days and 21-30 days after the first meal. In tongue tissue, after 5 days of feeding, fish on the C diet showed a slight upregulation of nutrient taste receptors, but not those related to flavor, along with an upregulation of the calcium signaling pathway. By 30 days, there was a general upregulation of nutrient and flavor taste receptors, although the calcium signaling pathway showed less clear evidence of regulation. A significant dysregulation of the serotonin pathway, along with its degradation, was observed in the tongues of fish fed the V diet at both 5 and 30 days. For the first time in fish, catecholamine quantification levels in the tongue emerged as a potential marker for nutrient detection, with high quantification of L-DOPA after 5 days on the V diet, but much lower after 30 days. This impaired monoamine and catecholamine turnover in the tongue could be linked to a failure in activating the tongue-brain axis, potentially contributing to reduced food intake, as indicated by poorly regulated brain neuropeptides but also intestinal hormones in fish fed the V diet after 30 days. Overall, these findings demonstrate that the V diet disrupts the feeding response at an early stage, underscoring the heightened sensitivity of rainbow trout alevins' tongue sensing systems to novel food sources during critical early development.
Collapse
Affiliation(s)
- Maud Martinat
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Amelle Varvarais
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| | - Jérôme Roy
- Université de Pau et des Pays de l'Adour, INRAE, Aquapôle, NUMEA 64310, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
2
|
Reid RM, Turkmen S, Cleveland BM, Biga PR. Direct actions of growth hormone in rainbow trout, Oncorhynchus mykiss, skeletal muscle cells in vitro. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111725. [PMID: 39122107 DOI: 10.1016/j.cbpa.2024.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The growth hormone (GH)-insulin-like growth factor-1 (IGF-1) system regulates skeletal muscle growth and function. GH has a major function of targeting the liver to regulate IGF-1 production and release, and IGF-1 mediates the primary anabolic action of GH on growth. However, skeletal muscle is a target tissue of GH as evidenced by dynamic GH receptor expression, but it is unclear if GH elicits any direct actions on extrahepatic tissues as it is difficult to distinguish the effects of IGF-1 from GH. Fish growth regulation is complex compared to mammals, as genome duplication events have resulted in multiple isoforms of GHs, GHRs, IGFs, and IGFRs expressed in most fish tissues. This study investigated the potential for GH direct actions on fish skeletal muscle using an in vitro system, where rainbow trout myogenic precursor cells (MPCs) were cultured in normal and serum-deprived media, to mimic in vivo fasting conditions. Fasting reduces IGF-1 signaling in the muscle, which is critical for disentangling the roles of GH from IGF-1. The direct effects of GH were analyzed by measuring changes in myogenic proliferation and differentiation genes, as well as genes regulating muscle growth and proteolysis. This study provides the first in-depth analysis of the direct actions of GH on serum-deprived fish muscle cells in vitro. Data suggest that GH induces the expression of markers for proliferation and muscle growth in the presence of serum, but all observed GH action was blocked in serum-deprived conditions. Additionally, serum deprivation alone reduced the expression of several proliferation and differentiation markers, while increasing growth and proteolysis markers. Results also demonstrate dynamic gene expression response in the presence of GH and a JAK inhibitor in serum-provided but not serum-deprived conditions. These data provide a better understanding of GH signaling in relation to serum in trout muscle cells in vitro.
Collapse
Affiliation(s)
- Ross M Reid
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Serhat Turkmen
- Department of Cell Development and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville, WV 25430, USA
| | - Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Evidence of the Autophagic Process during the Fish Immune Response of Skeletal Muscle Cells against Piscirickettsia salmonis. Animals (Basel) 2023; 13:ani13050880. [PMID: 36899738 PMCID: PMC10000225 DOI: 10.3390/ani13050880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Autophagy is a fundamental cellular process implicated in the health of the cell, acting as a cytoplasmatic quality control machinery by self-eating unfunctional organelles and protein aggregates. In mammals, autophagy can participate in the clearance of intracellular pathogens from the cell, and the activity of the toll-like receptors mediates its activation. However, in fish, the modulation of autophagy by these receptors in the muscle is unknown. This study describes and characterizes autophagic modulation during the immune response of fish muscle cells after a challenge with intracellular pathogen Piscirickettsia salmonis. For this, primary cultures of muscle cells were challenged with P. salmonis, and the expressions of immune markers il-1β, tnfα, il-8, hepcidin, tlr3, tlr9, mhc-I and mhc-II were analyzed through RT-qPCR. The expressions of several genes involved in autophagy (becn1, atg9, atg5, atg12, lc3, gabarap and atg4) were also evaluated with RT-qPCR to understand the autophagic modulation during an immune response. In addition, LC3-II protein content was measured via Western blot. The challenge of trout muscle cells with P. salmonis triggered a concomitant immune response to the activation of the autophagic process, suggesting a close relationship between these two processes.
Collapse
|
4
|
Hew JJ, Parungao RJ, Mooney CP, Smyth JK, Kim S, Tsai KHY, Shi H, Chong C, Chan RCF, Attia B, Nicholls C, Li Z, Solon-Biet SM, Le Couteur DG, Simpson SJ, Jeschke MG, Maitz PK, Wang Y. Low-protein diet accelerates wound healing in mice post-acute injury. BURNS & TRAUMA 2021; 9:tkab010. [PMID: 34377708 PMCID: PMC8350350 DOI: 10.1093/burnst/tkab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Wound healing processes are influenced by macronutrient intake (protein, carbohydrate and fat). The most favourable diet for cutaneous wound healing is not known, although high-protein diets are currently favoured clinically. This experimental study investigates the optimal macronutrient balance for cutaneous wound healing using a mouse model and the Geometric Framework, a nutrient modelling method, capable of analyzing the individual and interactive effects of a wide spectrum of macronutrient intake. METHODS Two adjacent and identical full-thickness skin excisions (1 cm2) were surgically created on the dorsal area of male C57BL/6 mice. Mice were then allocated to one of 12 high-energy diets that varied in protein, carbohydrate and fat content. In select diets, wound healing processes, cytokine expression, energy expenditure, body composition, muscle and fat reserves were assessed. RESULTS Using the Geometric Framework, we show that a low-protein intake, coupled with a balanced intake of carbohydrate and fat is optimal for wound healing. Mice fed a low-protein diet progressed quickly through wound healing stages with favourable wound inflammatory cytokine expression and significantly accelerated collagen production. These local processes were associated with an increased early systemic inflammatory response and a higher overall energy expenditure, related to metabolic changes occurring in key macronutrient reserves in lean body mass and fat depots. CONCLUSIONS The results suggest that a low-protein diet may have a greater potential to accelerate wound healing than the current clinically used high-protein diets.
Collapse
Affiliation(s)
- Jonathan J Hew
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Roxanne J Parungao
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Craig P Mooney
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Julian K Smyth
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Sarah Kim
- Bone Biology Group, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Kevin H-Y Tsai
- Adrenal Steroids Laboratory, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Huaikai Shi
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Cassandra Chong
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Renee C F Chan
- Electron Microscopy Unit, Anatomical Pathology, Concord Hospital, Sydney, Australia 2139
| | - Beba Attia
- Electron Microscopy Unit, Anatomical Pathology, Concord Hospital, Sydney, Australia 2139
| | - Caroline Nicholls
- Burns Unit, Concord Repatriation General Hospital, Concord, Australia 2139
| | - Zhe Li
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
- Burns Unit, Concord Repatriation General Hospital, Concord, Australia 2139
| | - Samantha M Solon-Biet
- Ageing and Alzheimer Institute and ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Australia 2006
| | - David G Le Couteur
- Ageing and Alzheimer Institute and ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Australia 2006
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada, M4N 3M5
| | - Peter K Maitz
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
- Burns Unit, Concord Repatriation General Hospital, Concord, Australia 2139
| | - Yiwei Wang
- Burns Research and Reconstructive Surgery, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia 2139
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China 210023
| |
Collapse
|
5
|
Tesseraud S, Avril P, Bonnet M, Bonnieu A, Cassar-Malek I, Chabi B, Dessauge F, Gabillard JC, Perruchot MH, Seiliez I. Autophagy in farm animals: current knowledge and future challenges. Autophagy 2021; 17:1809-1827. [PMID: 32686564 PMCID: PMC8386602 DOI: 10.1080/15548627.2020.1798064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy (a process of cellular self-eating) is a conserved cellular degradative process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Surprisingly, little attention has been paid to the role of this cellular function in species of agronomical interest, and the details of how autophagy functions in the development of phenotypes of agricultural interest remain largely unexplored. Here, we first provide a brief description of the main mechanisms involved in autophagy, then review our current knowledge regarding autophagy in species of agronomical interest, with particular attention to physiological functions supporting livestock animal production, and finally assess the potential of translating the acquired knowledge to improve animal development, growth and health in the context of growing social, economic and environmental challenges for agriculture.Abbreviations: AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ASC: adipose-derived stem cells; ATG: autophagy-related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BVDV: bovine viral diarrhea virus; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSD: cathepsin D; DAP: Death-Associated Protein; ER: endoplasmic reticulum; GFP: green fluorescent protein; Gln: Glutamine; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; IF: immunofluorescence; IVP: in vitro produced; LAMP2A: lysosomal associated membrane protein 2A; LMS: lysosomal membrane stability; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MDBK: Madin-Darby bovine kidney; MSC: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NDV: Newcastle disease virus; NECTIN4: nectin cell adhesion molecule 4; NOD1: nucleotide-binding oligomerization domain 1; OCD: osteochondritis dissecans; OEC: oviduct epithelial cells; OPTN: optineurin; PI3K: phosphoinositide-3-kinase; PPRV: peste des petits ruminants virus; RHDV: rabbit hemorrhagic disease virus; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy.
Collapse
Affiliation(s)
| | - Pascale Avril
- INRAE, UAR1247 Aquapôle, Saint Pée Sur Nivelle, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Anne Bonnieu
- DMEM, Univ Montpellier, INRAE, Montpellier, France
| | - Isabelle Cassar-Malek
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | | | - Frédéric Dessauge
- INRAE, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE, Rennes, France
| | | | - Marie-Hélène Perruchot
- INRAE, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE, Rennes, France
| | - Iban Seiliez
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
6
|
Pharmacological and nutritional modulation of autophagy in a rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1. In Vitro Cell Dev Biol Anim 2020; 56:659-669. [PMID: 32901427 DOI: 10.1007/s11626-020-00490-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is involved in the modulation of nutrition, immunity, and disease in humans and animals. To understand the impact of autophagy modulation on a rainbow trout gill cell line, RTgill-W1, treatments including reduced nutrition (2% fetal bovine serum compared with 10% control), rapamycin, 3-methyladenine, deoxynivalenol, and chloroquine were tested. Western blot and immunofluorescence were used to detect microtubule-associated protein 1A/1B-light chain protein and quantitative polymerase chain reaction was used to detect the expression of 10 autophagy-related genes. At 3-d post-treatment, reduced nutrition significantly (p < 0.05) increased autophagy while deoxynivalenol significantly (p < 0.01) suppressed it compared to controls. These phenomena were confirmed by using immunofluorescence to detect the number of autophagosomes in RTgill-W1. Chloroquine is critical to allow observation of microtubule-associated protein 1A/1B-light chain protein in this model. The commonly used autophagy-modulating chemicals rapamycin and 3-methyladenine either activated or suppressed microtubule-associated protein 1A/1B-light chain protein, respectively, as expected from the literature, but did not act in a consistently significant manner. Expression of five of the 10 Atg genes, including lc3, gabarap, atg4, atg7, and atg12, were altered in a similar pattern to microtubule-associated protein 1A/1B-light chain protein. The consistent trend of autophagy-related gene upregulation including becn1, lc3, gabarap, and atg9 following treatment with 3-methyladenine and chloroquine is suggestive of a novel feedback regulation in the autophagy machinery.
Collapse
|
7
|
Effect of dietary selenium on postprandial protein deposition in the muscle of juvenile rainbow trout ( Oncorhynchus mykiss). Br J Nutr 2020; 125:721-731. [PMID: 32778191 DOI: 10.1017/s000711452000313x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Se, an essential biological trace element, is required for fish growth. However, the underlying mechanisms remain unclear. Protein deposition in muscle is an important determinant for fish growth. This study was conducted on juvenile rainbow trout (Oncorhynchus mykiss) to explore the nutritional effects of Se on protein deposition in fish muscle by analysing the postprandial dynamics of both protein synthesis and protein degradation. Trout were fed a basal diet supplemented with or without 4 mg/kg Se (as Se yeast), which has been previously demonstrated as the optimal supplemental level for rainbow trout growth. After 6 weeks of feeding, dietary Se supplementation exerted no influence on fish feed intake, whereas it increased fish growth rate, feed efficiency, protein retention rate and muscle protein content. Results of postprandial dynamics (within 24 h after feeding) of protein synthesis and degradation in trout muscle showed that dietary Se supplementation led to a persistently hyperactivated target of rapamycin complex 1 pathway and the suppressive expression of numerous genes related to the ubiquitin-proteasome system and the autophagy-lysosome system after the feeding. However, the ubiquitinated proteins and microtubule-associated light chain 3B (LC3)-II:LC3-I ratio, biomarkers for ubiquitination and autophagy activities, respectively, exhibited no significant differences among the fish fed different experimental diets throughout the whole postprandial period. Overall, this study demonstrated a promoting effect of nutritional level of dietary Se on protein deposition in fish muscle by accelerating postprandial protein synthesis. These results provide important insights about the regulatory role of dietary Se in fish growth.
Collapse
|
8
|
Qin Q, Cao XF, Dai YJ, Wang LN, Zhang DD, Jiang GZ, Liu WB. Effects of dietary protein level on growth performance, digestive enzyme activity, and gene expressions of the TOR signaling pathway in fingerling Pelteobagrus fulvidraco. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1747-1757. [PMID: 31297679 DOI: 10.1007/s10695-019-00664-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
An 8-week feeding trial was conducted to investigate effects of dietary protein levels (37, 40, and 43%) on the growth performance, feed utilization, digestive enzyme activity, and gene expressions of target of rapamycin (TOR) signaling pathway in fingerling yellow catfish. One hundred and eighty fingerlings (average weight 0.77 ± 0.03 g) were equally distributed across four replicate tanks for each of the three treatments, with 15 fish per tank. No difference (P > 0.05) was observed in initial body weight, survival rate (SR), hepatosomatic index (HSI), viscera index (VSI), dressing percentage (DP), and condition factor (CF) among all the treatments. The diet containing 40% protein increased significantly (P < 0.05) final body weight, weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), nitrogen retention (NRE), and energy retention (ERE) in fish. The highest protease activity in the stomach and intestine was observed in the P40 group (P < 0.05), while amylase and lipase were not significantly different (P > 0.05). The transcriptional levels of IGF-1, IGF-1R, and Akt were significantly (P < 0.05) higher in fish fed P40 or P43 than those of fish fed P37. TOR and S6K1 mRNA expressions were significantly (P < 0.05) increased in the P40 groups. Hence, the diet containing 40% protein would be suitable for the optimum growth and effective protein utilization of fingerling Pelteobagrus fulvidraco. In vitro, the transcriptional levels of IGF-1, IGF-1R, Akt, TOR, and S6K1 in hepatocyte supplemented with a 40-μM mixed amino acids were significantly (P < 0.05) higher compared to other treatments. No difference (P > 0.05) was observed in eukaryotic translation initiation factor 4E-binding protein 1 in vivo and in vitro among all the treatments. Effects of dietary protein level on growth performance likely are involved in the activation of TOR signaling pathway in fingerling Pelteobagrus fulvidraco.
Collapse
Affiliation(s)
- Qin Qin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Freshwater Fisheries Research Institute of Jiangsu Province, No. 1 Weigang Road, Nanjing, 210017, People's Republic of China
| | - Xiu-Fei Cao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yong-Jun Dai
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Li-Na Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Freshwater Fisheries Research Institute of Jiangsu Province, No. 1 Weigang Road, Nanjing, 210017, People's Republic of China
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China.
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
9
|
Autophagy flux in critical illness, a translational approach. Sci Rep 2019; 9:10762. [PMID: 31341174 PMCID: PMC6656759 DOI: 10.1038/s41598-019-45500-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/07/2019] [Indexed: 01/28/2023] Open
Abstract
Recent clinical trials suggest that early nutritional support might block the induction of autophagy in critically ill patients leading to the development of organ failure. However, the regulation of autophagy, especially by nutrients, in critical illness is largely unclear. The autophagy flux (AF) in relation to critical illness and nutrition was investigated by using an in vitro model of human primary myotubes incubated with serum from critically ill patients (ICU). AF was calculated as the difference of p62 expression in the presence and absence of chloroquine (50 µM, 6 h), in primary myotubes incubated for 24 h with serum from healthy volunteers (n = 10) and ICU patients (n = 93). We observed 3 different phenotypes in AF, non-altered (ICU non-responder group), increased (ICU inducer group) or blocked (ICU blocker group). This block was not associate with a change in amino acids serum levels and was located at the accumulation of autophagosomes. The increase in the AF was associated with lower serum levels of non-essential amino acids. Thus, early nutrition during critical illness might not block autophagy but could attenuate the beneficial effect of starvation on reactivation of the autophagy process. This could be of clinical importance in the individual patients in whom this process is inhibited by the critical illness insult.
Collapse
|
10
|
Kostyniuk DJ, Culbert BM, Mennigen JA, Gilmour KM. Social status affects lipid metabolism in rainbow trout, Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2018; 315:R241-R255. [PMID: 29561648 DOI: 10.1152/ajpregu.00402.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Juvenile rainbow trout ( Oncorhynchus mykiss) confined in pairs form social hierarchies in which socially subordinate fish display characteristic traits, including reduced growth rates and altered glucose metabolism. These effects are, in part, mediated by chronically elevated cortisol levels and/or reduced feeding. To determine the effects of social status on lipid metabolism, trout were held in pairs for 4 days, following which organismal and liver-specific indexes of lipid metabolism were measured. At the organismal level, circulating triglycerides were elevated in dominant trout, whereas subordinate trout exhibited elevated concentrations of circulating free fatty acids (FFAs) and lowered plasma total cholesterol levels. At the molecular level, increased expression of lipogenic genes in dominant trout and cpt1a in subordinate trout was identified, suggesting a contribution of increased de novo lipogenesis to circulating triglycerides in dominant trout and reliance on circulating FFAs for β-oxidation in the liver of subordinates. Given the emerging importance of microRNAs (miRNA) in the regulation of hepatic lipid metabolism, candidate miRNAs were profiled, revealing increased expression of the lipogenic miRNA-33 in dominant fish. Because the Akt-TOR-S6-signaling pathway is an important upstream regulator of hepatic lipid metabolism, its signaling activity was quantified. However, the only difference detected among groups was a strong increase in S6 phosphorylation in subordinate trout. In general, the changes observed in lipid metabolism of subordinates were not mimicked by either cortisol treatment or fasting alone, indicating the existence of specific, emergent effects of subordinate social status itself on this fuel.
Collapse
Affiliation(s)
| | - Brett M Culbert
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | | |
Collapse
|
11
|
Fuentes EN, Zuloaga R, Almarza O, Mendez K, Valdés JA, Molina A, Pulgar J. Upwelling-derived oceanographic conditions impact growth performance and growth-related gene expression in intertidal fish. Comp Biochem Physiol B Biochem Mol Biol 2017; 214:12-18. [PMID: 28899845 DOI: 10.1016/j.cbpb.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
Growth is one of the main biological processes in aquatic organisms that is affected by environmental fluctuations such as upwelling (characterized by food-rich waters). In fish, growth is directly related with skeletal muscle increase; which represents the largest tissue of body mass. However, the effects of upwelling on growth, at the physiological and molecular level, are unknown. This study used Girella laevifrons (one of the most abundant intertidal fish in Eastern South Pacific) as a biological model, considering animals from upwelling (U) and non-upwelling (NU) areas. Here, we evaluated the effect of nutritional composition and food availability on growth performance and expression of key growth-related genes (insulin-kike growth factor 1 (igf1) and myosin heavy-chain (myhc)) and atrophy-related genes (muscle ring-finger 1 (murf1), F-box only protein 32 (atrogin-1) and BCL2/adenovirus E1B 19kDa-interacting protein 3 (bnip3)). We reported that, among zones, U fish displayed higher growth performance in response to nutritional composition, specifically between protein- and fiber-rich diets (~1g). We also found in NU fish that atrophy-related genes were upregulated with fiber-rich diet and during fasting (~2-fold at minimum respect U). In conclusion, our results suggest that the growth potential of upwelling fish may be a consequence of differential muscle gene expression. Our data provide a preliminary approach contributing on how upwelling influence fish growth at the physiological and molecular levels. Future studies are required to gain further knowledge about molecular differences between U and NU animals, as well as the possible applications of this knowledge in the aquaculture industry.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción 4030000, Chile
| | - Rodrigo Zuloaga
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción 4030000, Chile; Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago 8370371, Chile
| | - Oscar Almarza
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción 4030000, Chile; Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago 8370371, Chile
| | - Katterinne Mendez
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago 8370371, Chile
| | - Juan Antonio Valdés
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción 4030000, Chile; Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago 8370371, Chile
| | - Alfredo Molina
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción 4030000, Chile; Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago 8370371, Chile
| | - Jose Pulgar
- Departamento de Ecología & Biodiversidad, Universidad Andrés Bello, República 470, Santiago 8370371, Chile.
| |
Collapse
|
12
|
Qi H, Yi Y, Weng S, Zou W, He J, Dong C. Differential autophagic effects triggered by five different vertebrate iridoviruses in a common, highly permissive mandarinfish fry (MFF-1) cell model. FISH & SHELLFISH IMMUNOLOGY 2016; 49:407-419. [PMID: 26748344 DOI: 10.1016/j.fsi.2015.12.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Autophagy of five vertebrate iridoviruses, including one megalocytivirus (infectious spleen and kidney necrosis virus, ISKNV) and four ranaviruses (Chinese giant salamander iridovirus, CGSIV; Tiger frog virus, TFV; Grouper iridovirus, GIV; and Largemouth bass virus, LMBV) were investigated in a common, highly permissive mandarinfish fry (MFF-1) cell model. The results showed marked autophagosome formation in GIV- and LMBV-infected cells but not in ISKNV-, CGSIV- and TFV-infected MFF-1 cells. Strong evidence for the autophagosomes was provided by transmission electron microscopy, the detection of mandarinfish microtubule-associated protein 1 light chain 3B (mLC3)-based fluorescent dot formation and mLC3-I/mLC3-II conversion was provided by Western blotting. Pharmacological tests indicated that autophagy plays an antiviral role during GIV or LMBV infection. Collectively, our data are the first to show that antiviral autophagic effects can be triggered by GIV and LMBV but not by ISKNV, TFV and CGSIV in a common susceptible cell model. These results suggest that differential host-virus interaction strategies may be utilized against different vertebrate iridoviruses; they also indicate the potential effectiveness of an antiviral treatment that modulates autophagy to control iridoviral infections, such as GIV and LMBV.
Collapse
Affiliation(s)
- Hemei Qi
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yang Yi
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaoping Weng
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weibing Zou
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Chuanfu Dong
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Bairong Aquatic Breeding Products Co., Ltd, Xiaan, Danzhao Town, Nanhai District, Foshan 528000, PR China.
| |
Collapse
|
13
|
Xia XJ, Gao YY, Zhang J, Wang L, Zhao S, Che YY, Ao CJ, Yang HJ, Wang JQ, Lei LC. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-γ-induced malignant transformation of primary bovine mammary epithelial cells. Cell Death Discov 2016; 2:15065. [PMID: 27551491 PMCID: PMC4979444 DOI: 10.1038/cddiscovery.2015.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/26/2022] Open
Abstract
Autophagy has been linked to the regulation of both the prevention and progression of cancer. IFN-γ has been shown to induce autophagy in multiple cell lines in vitro. However, whether IFN-γ can induce autophagy and whether autophagy promotes malignant transformation in healthy lactating bovine mammary epithelial cells (BMECs) remain unclear. Here, we provide the first evidence of the correlation between IFN-γ treatment, autophagy and malignant transformation and of the mechanism underlying IFN-γ-induced autophagy and subsequent malignant transformation in primary BMECs. IFN-γ levels were significantly increased in cattle that received normal long-term dietary corn straw (CS) roughage supplementation. In addition, an increase in autophagy was clearly observed in the BMECs from the mammary tissue of cows expressing high levels of IFN-γ. In vitro, autophagy was clearly induced in primary BMECs by IFN-γ within 24 h. This induced autophagy could subsequently promote dramatic primary BMEC transformation. Furthermore, we found that IFN-γ promoted arginine depletion, activated the general control nonderepressible-2 kinase (GCN2) signalling pathway and resulted in an increase in autophagic flux and the amount of autophagy in BMECs. Overall, our findings are the first to demonstrate that arginine depletion and kinase GCN2 expression mediate IFN-γ-induced autophagy that may promote malignant progression and that immunometabolism, autophagy and cancer are strongly correlated. These results suggest new directions and paths for preventing and treating breast cancer in relation to diet.
Collapse
Affiliation(s)
- X-J Xia
- College of Veterinary Medicine, Jilin University , Changchun, PR China
| | - Y-Y Gao
- College of Animal Science, Jilin University , Changchun, PR China
| | - J Zhang
- Changchun University of Chinese Medicine , Changchun, PR China
| | - L Wang
- College of Animal Science, Henan Institute of Science and Technology , Xinxiang, PR China
| | - S Zhao
- College of Animal Science, Jilin University , Changchun, PR China
| | - Y-Y Che
- College of Veterinary Medicine, Jilin University , Changchun, PR China
| | - C-J Ao
- College of Animal Science, Inner Mongolian Agricultural University , Hohhot, PR China
| | - H-J Yang
- College of Animal Science and Technology, China Agricultural University , Beijing, PR China
| | - J-Q Wang
- Institute of Animal Science, Chinese Academy of Agricultural Science , Beijing, PR China
| | - L-C Lei
- College of Veterinary Medicine, Jilin University , Changchun, PR China
| |
Collapse
|
14
|
|
15
|
Zhang Z, Guo M, Zhao S, Xu W, Shao J, Zhang F, Wu L, Lu Y, Zheng S. The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomed Pharmacother 2015; 74:17-29. [DOI: 10.1016/j.biopha.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023] Open
|
16
|
Rolland M, Dalsgaard J, Holm J, Gómez-Requeni P, Skov PV. Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets. Comp Biochem Physiol B Biochem Mol Biol 2014; 181:33-41. [PMID: 25479406 DOI: 10.1016/j.cbpb.2014.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
The effects of dietary level of methionine were investigated in juvenile rainbow trout (Oncorhynchus mykiss) fed five plant-based diets containing increasing content of crystalline methionine (Met), in a six week growth trial. Changes in the hepatic expression of genes related to i) the somatotropic axis: including the growth hormone receptor I (GHR-I), insulin-like growth hormones I and II (IGF-I and IGF-II, respectively), and insulin-like growth hormone binding protein-1b (IGFBP-1b); and ii) protein turnover: including the target of rapamycin protein (TOR), proteasome 20 delta (Prot 20D), cathepsin L, calpains 1 and 2 (Capn 1 and Capn 2, respectively), and calpastatin long and short isoforms (CAST-L and CAST-S, respectively) were measured for each dietary treatment. The transcript levels of GHR-I and IGF-I increased linearly with the increase of dietary Met content (P<0.01), reflecting overall growth performances. The apparent capacity for hepatic protein degradation (derived from the gene expression of TOR, Prot 20D, Capn 1, Capn 2, CAST-L and CAST-S) decreased with increasing dietary Met level in a relatively linear manner. Our results suggest that Met availability affects, directly or indirectly, the expression of genes involved in the GH/IGF axis response and protein turnover, which are centrally involved in the regulation of growth.
Collapse
Affiliation(s)
- Marine Rolland
- BioMar A/S, Mylius Erichsensvej 35, DK-7330 Brande, Denmark; Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark.
| | - Johanne Dalsgaard
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark
| | - Jørgen Holm
- BioMar A/S, Mylius Erichsensvej 35, DK-7330 Brande, Denmark
| | | | - Peter V Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark
| |
Collapse
|
17
|
Seiliez I, Dias K, Cleveland BM. Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1330-7. [PMID: 25274907 DOI: 10.1152/ajpregu.00370.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is recognized as the major contributor to total proteolysis in mammalian skeletal muscle, responsible for 50% or more of total protein degradation in skeletal muscle, whereas the autophagic-lysosome system (ALS) plays a more minor role. While the relative contribution of these systems to muscle loss is well documented in mammals, little is known in fish species. The current study uses myotubes derived from rainbow trout myogenic precursor cells as an in vitro model of white muscle tissue. Cells were incubated in complete or serum-deprived media or media supplemented with insulin-like growth factor-1 (IGF-1) and exposed to selective proteolytic inhibitors to determine the relative contribution of the ALS and UPS to total protein degradation in myotubes in different culture conditions. Results indicate that the ALS is responsible for 30-34% and 50% of total protein degradation in myotubes in complete and serum-deprived media, respectively. The UPS appears to contribute much less to total protein degradation at almost 4% in cells in complete media to nearly 17% in serum-deprived cells. IGF-1 decreases activity of both systems, as it inhibited the upregulation of both proteolytic systems induced by serum deprivation. The combined inhibition of both the ALS and UPS reduced degradation by a maximum of 55% in serum-deprived cells, suggesting an important contribution of other proteolytic systems to total protein degradation. Collectively, these data identify the ALS as a potential target for strategies aimed at improving muscle protein retention and fillet yield through reductions in protein degradation.
Collapse
Affiliation(s)
- Iban Seiliez
- Institut National de la Recherche Agronomique, Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France; and
| | - Karine Dias
- Institut National de la Recherche Agronomique, Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France; and
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/United States Department of Agriculture, Kearneysville, West Virginia
| |
Collapse
|
18
|
Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss). Br J Nutr 2014; 112:493-503. [PMID: 24877663 DOI: 10.1017/s0007114514001226] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methionine is a limiting essential amino acid in most plant-based ingredients of fish feed. In the present study, we aimed to determine the effect of dietary methionine concentrations on several main factors involved in the regulation of mRNA translation and the two major proteolytic pathways (ubiquitin-proteasome and autophagy-lysosomal) in the white muscle of rainbow trout (Oncorhynchus mykiss). The fish were fed for 6 weeks one of the three isonitrogenous diets providing three different methionine concentrations (deficient (DEF), adequate (ADQ) and excess (EXC)). At the end of the experiment, the fish fed the DEF diet had a significantly lower body weight and feed efficiency compared with those fed the EXC and ADQ diets. This reduction in the growth of fish fed the DEF diet was accompanied by a decrease in the activation of the translation initiation factors ribosomal protein S6 and eIF2α. The levels of the main autophagy-related markers (LC3-II and beclin 1) as well as the expression of several autophagy genes (atg4b, atg12 l, Uvrag, SQSTM1, Mul1 and Bnip3) were higher in the white muscle of fish fed the DEF diet. Similarly, the mRNA levels of several proteasome-related genes (Fbx32, MuRF2, MuRF3, ZNF216 and Trim32) were significantly up-regulated by methionine limitation. Together, these results extend our understanding of mechanisms regulating the reduction of muscle growth induced by dietary methionine deficiency, providing valuable information on the biomarkers of the effects of low-fishmeal diets.
Collapse
|