1
|
Ahmed FH, Liu JW, Royan S, Warden AC, Esquirol L, Pandey G, Newman J, Scott C, Peat TS. Structural insights into the enzymatic breakdown of azomycin-derived antibiotics by 2-nitroimdazole hydrolase (NnhA). Commun Biol 2024; 7:1676. [PMID: 39702827 DOI: 10.1038/s42003-024-07336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
The antibiotic 2-nitroimidazole (2NI) or azomycin, used for treating drug-resistant tuberculosis and imaging tumor hypoxia, requires activation by bacterial nitroreductases for its antibiotic and cytotoxic effect. Mycobacterium sp. JS330 produces 2-nitroimidazole nitrohydrolase (NnhA) that circumvents 2NI activation, conferring 2NI resistance by hydrolysing it to nitrite and imidazol-2-one (IM2O) instead. This study elucidates NnhA's structure, catalytic mechanism, and evolutionary background within the guanidino-group modifying enzyme (GME) superfamily, aided by a more soluble protein variant engineered through directed evolution. Despite low sequence similarity and limited occurrence in a few soil-dwelling mycobacteria and Actinomycetota, NnhA maintains the α/β propeller fold characteristic of GME superfamily enzymes and forms an unusual hexameric ring structure formed by a trimer of domain-swapped dimers. The similarity of its active site to arginine deiminases (ADIs) and human dimethylarginine dimethylaminohydrolases (DDAHs), along with molecular dynamics simulations, suggests NnhA's catalytic mechanism resembles the hydrolysis reactions of these related enzymes.
Collapse
Affiliation(s)
- F Hafna Ahmed
- Environment, CSIRO, Canberra, ACT, 2601, Australia.
- Advanced Engineering Biology Future Science Platform, CSIRO, Canberra, ACT, 2601, Australia.
| | - Jian-Wei Liu
- Environment, CSIRO, Canberra, ACT, 2601, Australia
| | - Santana Royan
- Manufacturing, CSIRO, 343 Royal Parade, Parkville, VIC, 3052, Australia
| | - Andrew C Warden
- Environment, CSIRO, Canberra, ACT, 2601, Australia
- Advanced Engineering Biology Future Science Platform, CSIRO, Canberra, ACT, 2601, Australia
| | - Lygie Esquirol
- Environment, CSIRO, Canberra, ACT, 2601, Australia
- Advanced Engineering Biology Future Science Platform, CSIRO, Canberra, ACT, 2601, Australia
| | | | - Janet Newman
- Manufacturing, CSIRO, 343 Royal Parade, Parkville, VIC, 3052, Australia
- BABS, UNSW, Kensington, NSW, 2052, Australia
| | - Colin Scott
- Environment, CSIRO, Canberra, ACT, 2601, Australia
- Advanced Engineering Biology Future Science Platform, CSIRO, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, CSIRO, Canberra, ACT, 2601, Australia
| | - Thomas S Peat
- Manufacturing, CSIRO, 343 Royal Parade, Parkville, VIC, 3052, Australia.
- BABS, UNSW, Kensington, NSW, 2052, Australia.
| |
Collapse
|
2
|
Kao MR, Parker J, Oehme D, Chang SC, Cheng LC, Wang D, Srivastava V, Wagner JM, Harris PJ, Hsieh YSY. Substrate Specificities of Variants of Barley (1,3)- and (1,3;1,4)-β-d-Glucanases Resulting from Mutagenesis and Segment Hybridization. Biochemistry 2024; 63:1194-1205. [PMID: 38598309 PMCID: PMC11080057 DOI: 10.1021/acs.biochem.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Barley (1,3;1,4)-β-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-β-d-glucanase, enabling the hydrolysis of (1,3;1,4)-β-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-β-d-glucan endohydrolase [(1,3;1,4)-β-d-glucanase] isoenzyme EII (HvEII) and (1,3)-β-d-glucan endohydrolase [(1,3)-β-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-β-d-glucanase and one variant that hydrolyzed both (1,3)-β-d-glucans and (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-β-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-β-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-β-d-glucans or (1,3)-β-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-β-d-glucans and (1,3)-β-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.
Collapse
Affiliation(s)
- Mu-Rong Kao
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jake Parker
- School
of Agriculture, Food and Wine, University
of Adelaide, Waite Campus, Glen Osmond SA 5064, Australia
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Daniel Oehme
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Shu-Chieh Chang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Lin-Chen Cheng
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Damao Wang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- College
of Food Science, Southwest University, Chongqing 400715, China
| | - Vaibhav Srivastava
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - John M. Wagner
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Philip J. Harris
- School of
Biological Sciences, The University of Auckland,
Auckland Mail Centre, Private Bag 92019, Auckland 1142, New Zealand
| | - Yves S. Y. Hsieh
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Andrys-Olek J, Kluza A, Tataruch M, Heider J, Korecki J, Borowski T. Bacteria at Work - Experimental and Theoretical Studies Reveal the Catalytic Mechanism of Ectoine Synthase. Chemistry 2024; 30:e202304163. [PMID: 38258332 DOI: 10.1002/chem.202304163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Ectoine synthase (EctC) catalyses the ultimate step of ectoine biosynthesis, a kosmotropic compound produced as compatible solute by many bacteria and some archaea or eukaryotes. EctC is an Fe2+-dependent homodimeric cytoplasmic protein. Using Mössbauer spectroscopy, molecular dynamics simulations and QM/MM calculations, we determined the most likely coordination number and geometry of the Fe2+ ion and proposed a mechanism of the EctC-catalysed reaction. Most notably, we show that apart from the three amino acids binding to the iron ion (Glu57, Tyr84 and His92), one water molecule and one hydroxide ion are required as additional ligands for the reaction to occur. They fill the first coordination sphere of the Fe2+-cofactor and act as critical proton donors and acceptors during the cyclization reaction.
Collapse
Affiliation(s)
- Justyna Andrys-Olek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Anna Kluza
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Mateusz Tataruch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Józef Korecki
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| |
Collapse
|
4
|
Chowdhury N, Naorem RS, Hazarika DJ, Goswami G, Dasgupta A, Bora SS, Boro RC, Barooah M. An oxalate decarboxylase-like cupin domain containing protein is involved in imparting acid stress tolerance in Bacillus amyloliquefaciens MBNC. World J Microbiol Biotechnol 2024; 40:64. [PMID: 38189984 DOI: 10.1007/s11274-023-03870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
We report here the structural and functional properties of an oxalate decarboxylase (OxDC)-like cupin domain-containing protein of Bacillus amyloliquefaciens MBNC and its role in imparting tolerance to acid stress conditions. Quantitative real-time PCR (qPCR) analysis revealed 32-fold and 20-fold upregulation of the target gene [(OxDC')cupin] under acetic acid stress and hydrochloric acid stress, respectively, indicating its association with the acid stress response. Bacterial cells with targeted inactivation of the (OxDC')cupin gene using the pMUTIN4 vector system showed decreased growth and survival rate in acidic pH, with drastically reduced exopolysaccharide production. In Silico protein-protein interaction studies revealed seven genes (viz. glmS, nagA, nagB, tuaF, tuaF, gcvT, and ykgA) related to cell wall biosynthesis and biofilm production to interact with OxDC-like cupin domain containing protein. While all these seven genes were upregulated in B. amyloliquefaciens MBNC after 6 h of exposure to pH 4.5, the mutant cells containing the inactivated (OxDC')cupin gene displayed significantly lower expression (RQ: 0.001-0.02) (compared to the wild-type cells) in both neutral and acidic pH. Our results indicate that the OxDC-like cupin domain containing protein is necessary for cell wall biosynthesis and biofilm production in Bacillus amyloliquefaciens MBNC for survival in acid-stress conditions.
Collapse
Affiliation(s)
- Naimisha Chowdhury
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Romen Singh Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Dibya Jyoti Hazarika
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Gunajit Goswami
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Abhisek Dasgupta
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sudipta Sankar Bora
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
5
|
Sun Y, Wang Y, Zhang Y, Hasan N, Yang N, Xie Y, Tang C. Identification and characterization of the Bicupin domain family and functional analysis of GhBCD11 in response to verticillium wilt in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111875. [PMID: 37769874 DOI: 10.1016/j.plantsci.2023.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Bicupin domain protein (BCD) family, an important component of Cupin domain superfamily, plays important roles in oxalic acid (OA) degradation and stress responses in high plants. However, no studies have been reported on the Cupin domain family in cotton up till now. In our study, a total 110 proteins including Cupin domain were identified from the upland cotton (Gossypium hirsutum). Among them, 17 proteins contained Bicupin domain. Subsequently, we found that V. dahliae produces OA leading to cotton leaf wilting. RT-qPCR analysis of GhBCDs revealed that OA and V. dahliae Vd080 significantly enhanced the expression of GhBCD11. The Virus-induced gene silencing and overexpression analysis showed that GhBCD11 positively regulates plant resistance to V. dahliae. Subcellular localization showed GhBCD11 located on the plasma membrane. The analysis of expression pattern showed that GhBCD11 can be induced via hormone-mediated signal pathway including salicylic acid (SA), ethephon (ET), methyl jasmonate (JA) and abscisic acid (ABA). In addition, we identified an interaction between 60 S ribosomal protein GhRPL12-3 and GhBCD11 by yeast double hybridization. Overall, this is the first study, where we identified Cupin domain family in cotton, clarified the role of GhBCD11 in cotton for resistance to V. dahliae and found an interaction between GhRPL12-3 and GhBCD11.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Nadeem Hasan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
6
|
Fernandez RL, Juntunen ND, Brunold TC. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases. Acc Chem Res 2022; 55:2480-2490. [PMID: 35994511 PMCID: PMC9583696 DOI: 10.1021/acs.accounts.2c00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent years, considerable progress has been made toward elucidating the geometric and electronic structures of thiol dioxygenases (TDOs). TDOs catalyze the conversion of substrates with a sulfhydryl group to their sulfinic acid derivatives via the addition of both oxygen atoms from molecular oxygen. All TDOs discovered to date belong to the family of cupin-type mononuclear nonheme Fe(II)-dependent metalloenzymes. While most members of this enzyme family bind the Fe cofactor by two histidines and one carboxylate side chain (2-His-1-carboxylate) to provide a monoanionic binding motif, TDOs feature a neutral three histidine (3-His) facial triad. In this Account, we present a bioinformatics analysis and multiple sequence alignment that highlight the significance of the secondary coordination sphere in tailoring the substrate specificity and reactivity among the different TDOs. These insights provide the framework within which important structural and functional features of the distinct TDOs are discussed.The best studied TDO is cysteine dioxygenase (CDO), which catalyzes the conversion of cysteine to cysteine sulfinic acid in both eukaryotes and prokaryotes. Crystal structures of resting and substrate-bound mammalian CDOs revealed two surprising structural motifs in the first- and second coordination spheres of the Fe center. The first is the presence of the abovementioned neutral 3-His facial triad that coordinates the Fe ion. The second is the existence of a covalent cross-link between the sulfur of Cys93 and an ortho carbon of Tyr157 (mouse CDO numbering scheme). While the exact role of this cross-link remains incompletely understood, various studies established that it is needed for proper substrate Cys positioning and gating solvent access to the active site. Intriguingly, bacterial CDOs lack the Cys-Tyr cross-link; yet, they are as active as cross-linked eukaryotic CDOs.The other known mammalian TDO is cysteamine dioxygenase (ADO). Initially, it was believed that ADO solely catalyzes the oxidation of cysteamine to hypotaurine. However, it has recently been shown that ADO additionally oxidizes N-terminal cysteine (Nt-Cys) peptides, which indicates that ADO may play a much more significant role in mammalian physiology than was originally anticipated. Though predicted on the basis of sequence alignment, site-directed mutagenesis, and spectroscopic studies, it was not until last year that two crystal structures, one of wild-type mouse ADO (solved by us) and the other of a variant of nickel-substituted human ADO, finally provided direct evidence that this enzyme also features a 3-His facial triad. These structures additionally revealed several features that are unique to ADO, including a putative cosubstrate O2 access tunnel that is lined by two Cys residues. Disulfide formation under conditions of high O2 levels may serve as a gating mechanism to prevent ADO from depleting organisms of Nt-Cys-containing molecules.The combination of kinetic and spectroscopic studies in conjunction with structural characterizations of TDOs has furthered our understanding of enzymatic sulfhydryl substrate regulation. In this article, we take advantage of the fact that the ADO X-ray crystal structures provided the final piece needed to compare and contrast key features of TDOs, an essential family of metalloenzymes found across all kingdoms of life.
Collapse
Affiliation(s)
- Rebeca L. Fernandez
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas D. Juntunen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas C. Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Yan T, Zhou X, Li J, Li G, Zhao Y, Wang H, Li H, Nie Y, Li Y. FoCupin1, a Cupin_1 domain-containing protein, is necessary for the virulence of Fusarium oxysporum f. sp. cubense tropical race 4. Front Microbiol 2022; 13:1001540. [PMID: 36110302 PMCID: PMC9468701 DOI: 10.3389/fmicb.2022.1001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is an important soilborne fungal pathogen that causes the most devastating banana disease. Effectors secreted by microbes contribute to pathogen virulence on host plants in plant-microbe interactions. However, functions of Foc TR4 effectors remain largely unexplored. In this study, we characterized a novel cupin_1 domain-containing protein (FoCupin1) from Foc TR4. Sequence analysis indicated that the homologous proteins of FoCupin1 in phytopathogenic fungi were evolutionarily conserved. Furthermore, FoCupin1 could suppress BAX-mediated cell death and significantly downregulate the expression of defense-related genes in tobacco by using the Agrobacterium-mediated transient expression system. FoCupin1 was highly induced in the early stage of Foc TR4 infection. The deletion of FoCupin1 gene did not affect Foc TR4 growth and conidiation. However, FoCupin1 deletion significantly reduced Foc TR4 virulence on banana plants, which was further confirmed by biomass assay. The expression of the defense-related genes in banana was significantly induced after inoculation with FoCupin1 mutants. These results collectively indicate FoCupin1 is a putative effector protein that plays an essential role in Foc TR4 pathogenicity. These findings suggest a novel role for cupin_1 domain-containing proteins and deepen our understanding of effector-mediated Foc TR4 pathogenesis.
Collapse
Affiliation(s)
- Tiantian Yan
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jieling Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guanjun Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yali Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Haojie Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- *Correspondence: Huaping Li,
| | - Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Yanfang Nie,
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Yunfeng Li,
| |
Collapse
|
8
|
Fan H, Yang W, Nie J, Lin C, Wu J, Wu D, Wang Y. Characterization of a Secretory YML079-like Cupin Protein That Contributes to Sclerotinia sclerotiorum Pathogenicity. Microorganisms 2021; 9:2519. [PMID: 34946121 PMCID: PMC8704077 DOI: 10.3390/microorganisms9122519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Sclerotinia sclerotiorum causes devastating diseases in many agriculturally important crops, including oilseed rape and sunflower. However, the mechanisms of Sclerotinia sclerotiorum pathogenesis remain poorly understood. In this study, we characterized a YML079-like cupin protein (SsYCP1) from Sclerotinia sclerotiorum. We showed that SsYCP1 is strongly expressed and secreted during Sclerotinia sclerotiorum infection. Sclerotinia sclerotiorum infection was promoted by SsYCP1 overexpression and inhibited by silencing this gene with synthetic double-stranded RNA. These results collectively indicate SsYCP1 as a putative effector protein that contributes to Sclerotinia sclerotiorum pathogenicity. These findings extend our understanding of effector-mediated Sclerotinia sclerotiorum pathogenesis and suggest a novel role for YML079-like cupin proteins in plant-pathogen interactions.
Collapse
Affiliation(s)
- Hongxia Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Wenwen Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Jiayue Nie
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Dewei Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Zhang R. The Cupin Protein Pac13 is Suggested by the Data to Be a Homodimer. Angew Chem Int Ed Engl 2021; 59:12580-12583. [PMID: 32691958 DOI: 10.1002/anie.201811240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/15/2019] [Indexed: 02/05/2023]
Abstract
Cupin proteins share a double-stranded β-helix fold, form one of the largest protein superfamilies, and possess remarkable functional diversity. They usually exist in homooligomeric states. Goss and co-workers recently reported that the cupin protein Pac13, which is a dehydratase that mediates the formation of the 3'-deoxy nucleoside of pacidamycins, is an unusual small monomer. However, a careful analysis of the biophysical and structural data provided by the authors suggests that Pac13 is in fact a homodimer, similar to many other cupin proteins.
Collapse
Affiliation(s)
- Rundong Zhang
- Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| |
Collapse
|
10
|
Bharti S, Maurya RK, Venugopal U, Singh R, Akhtar MS, Krishnan MY. Rv1717 Is a Cell Wall - Associated β-Galactosidase of Mycobacterium tuberculosis That Is Involved in Biofilm Dispersion. Front Microbiol 2021; 11:611122. [PMID: 33584576 PMCID: PMC7873859 DOI: 10.3389/fmicb.2020.611122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
Understanding the function of conserved hypothetical protein (CHP)s expressed by a pathogen in the infected host can lead to better understanding of its pathogenesis. The present work describes the functional characterization of a CHP, Rv1717 of Mycobacterium tuberculosis (Mtb). Rv1717 has been previously reported to be upregulated in TB patient lungs. Rv1717 belongs to the cupin superfamily of functionally diverse proteins, several of them being carbohydrate handling proteins. Bioinformatic analysis of the amino acid sequence revealed similarity to glycosyl hydrolases. Enzymatic studies with recombinant Rv1717 purified from Escherichia coli showed that the protein is a β-D-galactosidase specific for pyranose form rather than the furanose form. We expressed the protein in Mycobacterium smegmatis (Msm), which lacks its ortholog. In MsmRv1717, the protein was found to localize to the cell wall (CW) with a preference to the poles. MsmRv1717 showed significant changes in colony morphology and cell surface properties. Most striking observation was its unusual Congo red colony morphotype, reduced ability to form biofilms, pellicles and autoagglutinate. Exogenous Rv1717 not only prevented biofilm formation in Msm, but also degraded preformed biofilms, suggesting that its substrate likely exists in the exopolysaccharides of the biofilm matrix. Presence of galactose in the extracellular polymeric substance (EPS) has not been reported before and hence we used the galactose-specific Wisteria floribunda lectin (WFL) to test the same. The lectin extensively bound to Msm and Mtb EPS, but not the bacterium per se. Purified Rv1717 also hydrolyzed exopolysaccharides extracted from Msm biofilm. Eventually, to decipher its role in Mtb, we downregulated its expression and demonstrate that the strain is unable to disperse from in vitro biofilms, unlike the wild type. Biofilms exposed to carbon starvation showed a sudden upregulation of Rv1717 transcripts supporting the potential role of Rv1717 in Mtb dispersing from a deteriorating biofilm.
Collapse
Affiliation(s)
- Suman Bharti
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rahul Kumar Maurya
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Radhika Singh
- Toxicology and Health Risk Assessment Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
11
|
Saha B, Karmakar B, Bhattacharya SG. Cloning, expression and immunological characterisation of Coc n 1, the first major allergen from Coconut pollen. Mol Immunol 2021; 131:33-43. [PMID: 33486354 DOI: 10.1016/j.molimm.2020.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Coconut pollen has been documented to be a major contributor to the aeroallergen load in India, causing respiratory allergy in a large cohort of susceptible individuals. Here, we report the identification of the first major allergen from Coconut pollen, Coc n 1. The full-length sequence of the allergen was determined from previously identified peptides and overexpressed in E. coli. Recombinant Coc n 1 folded into a trimer and was found to possess allergenicity equivalent to its natural counterpart. Proteolytic processing of Coc n 1 led to the formation of an immunodominant ∼20 kDa C-terminal subunit and the site of cleavage was determined by amino acid microsequencing. Five linear IgE binding epitopes were predicted and mapped on the homology modelled structure of Coc n 1. Amongst three immunodominant epitopes, two were present towards the C-terminal end. Coc n 1 was found to belong to the highly diverse cupin superfamily and mimics its structure with known 7S globulin or vicilin allergens but lacks sequence similarity. Using sequence similarity networks, Coc n 1 clustered as a separate group containing unannotated cupin domain proteins and did not include known vicilin allergens except Gly m Bd 28 kDa, a Soybean major allergen. 7S globulins are major storage proteins and food allergens, but presence of such protein in pollen grains is reported for the first time. Further study on Coc n 1 may provide insights into its function in pollen grains and also in the development of immunotherapy to Coconut pollen allergy.
Collapse
Affiliation(s)
- Bodhisattwa Saha
- Division of Plant Biology, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009, India; Chemistry Research Laboratory, 12 Mansfield Road, OX4 4TG, Oxford, United Kingdom.
| | - Bijoya Karmakar
- Division of Plant Biology, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Swati Gupta Bhattacharya
- Division of Plant Biology, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009, India.
| |
Collapse
|
12
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
13
|
Roberts KM, Connor GC, Cave CH, Rowe GT, Page CA. The metal- and substrate-dependences of 2,4'-dihydroxyacetophenone dioxygenase. Arch Biochem Biophys 2020; 691:108441. [PMID: 32531315 DOI: 10.1016/j.abb.2020.108441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
While the enzyme, 2,4'-dihydroxyacetophenone dioxygenase (DAD), has been known for decades, very little has been characterized of the mechanism of the DAD-catalyzed oxidative cleavage of its reported substrate, 2,4'-dihydroxyacetophenone (DHA). The purpose of this study was to identify the active metal center and to characterize the substrate-dependence of the kinetics of the reaction to lay the foundation for deeper mechanistic investigation. To this, the DAD V1M mutant (bDAD) was overexpressed, purified, and reconstituted with various metal ions. Kinetic assays evaluating the activity of the reconstituted enzyme as well as the substrate- and product-dependences of the reaction kinetics were performed. The results from reconstitution of the apoprotein with a variety of metal ions support the requirement for an Fe3+ center for enzyme activity. Reaction rates showed simple saturation kinetics for DHA with values for kcat and KDHA of 2.4 s-1 and 0.7 μM, respectively, but no significant dependence on the concentration of O2. A low-level inhibition (KI = 1100 μM) by the 4HB product was observed. The results support a minimal kinetic model wherein DHA binds to resting ferric enzyme followed by rapid addition of O2 to yield an intermediate complex that irreversibly collapses to products.
Collapse
Affiliation(s)
- Kenneth M Roberts
- Department of Chemistry and Physics, University of South Carolina Aiken, Aiken, SC, 29801, USA.
| | - Gabrielle C Connor
- Department of Chemistry and Physics, University of South Carolina Aiken, Aiken, SC, 29801, USA.
| | - C Haley Cave
- Department of Chemistry and Physics, University of South Carolina Aiken, Aiken, SC, 29801, USA.
| | - Gerard T Rowe
- Department of Chemistry and Physics, University of South Carolina Aiken, Aiken, SC, 29801, USA.
| | - Clinton A Page
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, 29801, USA.
| |
Collapse
|
14
|
Cruz WT, Bezerra EHS, Ramos MV, Rocha BAM, Medina MC, Demarco D, Carvalho CPS, Oliveira JS, Sousa JS, Souza PFN, Freire VN, da Silva FMS, Freitas CDT. Crystal structure and specific location of a germin-like protein with proteolytic activity from Thevetia peruviana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110590. [PMID: 32771148 DOI: 10.1016/j.plantsci.2020.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Peruvianin-I is a cysteine peptidase (EC 3.4.22) purified from Thevetia peruviana. Previous studies have shown that it is the only germin-like protein (GLP) with proteolytic activity described so far. In this work, the X-ray crystal structure of peruvianin-I was determined to a resolution of 2.15 Å (PDB accession number: 6ORM) and its specific location was evaluated by different assays. Its overall structure shows an arrangement composed of a homohexamer (a trimer of dimers) where each monomer exhibits a typical β-barrel fold and two glycosylation sites (Asn55 and Asn144). Analysis of its active site confirmed the absence of essential amino acids for typical oxalate oxidase activity of GLPs. Details of the active site and molecular docking results, using a specific cysteine peptidase inhibitor (iodoacetamide), were used to discuss a plausible mechanism for proteolytic activity of peruvianin-I. Histological analyses showed that T. peruviana has articulated anastomosing laticifers, i.e., rows of cells which merge to form continuous tubes throughout its green organs. Moreover, peruvianin-I was detected exclusively in the latex. Because latex peptidases have been described as defensive molecules against insects, we hypothesize that peruvianin-I contributes to protect T. peruviana plants against herbivory.
Collapse
Affiliation(s)
- Wallace T Cruz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, CEP 60.440-554, Fortaleza, Ceará, Brazil
| | - Eduardo H S Bezerra
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, CEP 60.440-554, Fortaleza, Ceará, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, CEP 60.440-554, Fortaleza, Ceará, Brazil
| | - Bruno A M Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, CEP 60.440-554, Fortaleza, Ceará, Brazil
| | - Maria C Medina
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP 05.508-090, São Paulo, São Paulo, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP 05.508-090, São Paulo, São Paulo, Brazil
| | - Cristina Paiva S Carvalho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, CEP 60.440-554, Fortaleza, Ceará, Brazil
| | - Jefferson S Oliveira
- Departamento de Biomedicina, Universidade Federal do Delta do Parnaíba, Campus Ministro Reis Velloso, Parnaíba, Piauí, Brazil
| | - Jeanlex S Sousa
- Departamento de Física, Universidade Federal de Ceará, Fortaleza, Brazil
| | - Pedro F N Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, CEP 60.440-554, Fortaleza, Ceará, Brazil
| | - Valder N Freire
- Departamento de Física, Universidade Federal de Ceará, Fortaleza, Brazil
| | | | - Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, CEP 60.440-554, Fortaleza, Ceará, Brazil.
| |
Collapse
|
15
|
Zhang R. The Cupin Protein Pac13 is Suggested by the Data to Be a Homodimer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201811240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rundong Zhang
- Department of Ophthalmology State Key Laboratory of Biotherapy West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| |
Collapse
|
16
|
Forbes DL, Meneely KM, Chilton AS, Lamb AL, Ellis HR. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase. Biochemistry 2020; 59:2022-2031. [PMID: 32368901 DOI: 10.1021/acs.biochem.9b01085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteine dioxygenase (CDO) structurally resembles cupin enzymes that use a 3-His/1-Glu coordination scheme. However, the glutamate ligand is substituted with a cysteine (Cys93) residue, which forms a thioether bond with tyrosine (Tyr157) under physiological conditions. The reversion variant, C93E CDO, was generated in order to reestablish the more common 3-His/1-Glu metal ligands of the cupin superfamily. This variant provides a framework for testing the structural and functional significance of Cys93 and the cross-link in CDO. Although dioxygen consumption was observed with C93E CDO, it was not coupled with l-cysteine oxidation. Substrate analogues (d-cysteine, cysteamine, and 3-mercaptopropionate) were not viable substrates for the C93E CDO variant, although they showed variable coordinations to the iron center. The structures of C93E and cross-linked and non-cross-linked wild-type CDO were solved by X-ray crystallography to 1.91, 2.49, and 2.30 Å, respectively. The C93E CDO variant had similar overall structural properties compared to cross-linked CDO; however, the iron was coordinated by a 3-His/1-Glu geometry, leaving only two coordination sites available for dioxygen and bidentate l-cysteine binding. The hydroxyl group of Tyr157 shifted in both non-cross-linked and C93E CDO, and this displacement prevented the residue from participating in substrate stabilization. Based on these results, the divergence of the metal center of cysteine dioxygenase from the 3-His/1-Glu geometry seen with many cupin enzymes was essential for effective substrate binding. The substitution of Glu with Cys in CDO allows for a third coordination site on the iron for bidentate cysteine and monodentate oxygen binding.
Collapse
Affiliation(s)
- Dianna L Forbes
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Kathleen M Meneely
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Annemarie S Chilton
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Audrey L Lamb
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Holly R Ellis
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
17
|
Investigation of the thermodynamic drivers of the interaction between the high mobility group box domain of Sox2 and bacterial lipopolysaccharide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183106. [DOI: 10.1016/j.bbamem.2019.183106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023]
|
18
|
Illuminating the catalytic core of ectoine synthase through structural and biochemical analysis. Sci Rep 2019; 9:364. [PMID: 30674920 PMCID: PMC6344544 DOI: 10.1038/s41598-018-36247-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022] Open
Abstract
Ectoine synthase (EctC) is the signature enzyme for the production of ectoine, a compatible solute and chemical chaperone widely synthesized by bacteria as a cellular defense against the detrimental effects of osmotic stress. EctC catalyzes the last step in ectoine synthesis through cyclo-condensation of the EctA-formed substrate N-gamma-acetyl-L-2,4-diaminobutyric acid via a water elimination reaction. We have biochemically and structurally characterized the EctC enzyme from the thermo-tolerant bacterium Paenibacillus lautus (Pl). EctC is a member of the cupin superfamily and forms dimers, both in solution and in crystals. We obtained high-resolution crystal structures of the (Pl)EctC protein in forms that contain (i) the catalytically important iron, (ii) iron and the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid, and (iii) iron and the enzyme reaction product ectoine. These crystal structures lay the framework for a proposal for the EctC-mediated water-elimination reaction mechanism. Residues involved in coordinating the metal, the substrate, or the product within the active site of ectoine synthase are highly conserved among a large group of EctC-type proteins. Collectively, the biochemical, mutational, and structural data reported here yielded detailed insight into the structure-function relationship of the (Pl)EctC enzyme and are relevant for a deeper understanding of the ectoine synthase family as a whole.
Collapse
|
19
|
Sekowska A, Ashida H, Danchin A. Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 2019; 12:77-97. [PMID: 30306718 PMCID: PMC6302742 DOI: 10.1111/1751-7915.13324] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine is essential for life. Its chemistry makes it fragile in the presence of oxygen. Aerobic living organisms have selected a salvage pathway (the MSP) that uses dioxygen to regenerate methionine, associated to a ratchet-like step that prevents methionine back degradation. Here, we describe the variation on this theme, developed across the tree of life. Oxygen appeared long after life had developed on Earth. The canonical MSP evolved from ancestors that used both predecessors of ribulose bisphosphate carboxylase oxygenase (RuBisCO) and methanethiol in intermediate steps. We document how these likely promiscuous pathways were also used to metabolize the omnipresent by-products of S-adenosylmethionine radical enzymes as well as the aromatic and isoprene skeleton of quinone electron acceptors.
Collapse
Affiliation(s)
- Agnieszka Sekowska
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Hiroki Ashida
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
- Institute of Synthetic BiologyShenzhen Institutes of Advanced StudiesShenzhenChina
| |
Collapse
|
20
|
Kesawat MS, Kim DK, Zeba N, Suh MC, Xia X, Hong CB. Ectopic RING zinc finger gene from hot pepper induces totally different genes in lettuce and tobacco. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:70. [PMID: 29780273 PMCID: PMC5956013 DOI: 10.1007/s11032-018-0812-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 03/27/2018] [Indexed: 05/28/2023]
Abstract
Advances in molecular biology have improved crops through transferring genes from one organism to new hosts, and these efforts have raised concerns about potential unexpected outcomes. Here, we provide evidence that a gene with a specific function in one organism can yield completely different effects in a new host. CaRZFP1 is a C3HC4-type RING zinc finger protein gene previously isolated from a cDNA library for heat-stressed hot pepper. In our previous work investigating in vivo CaRZFP1 function, we transferred CaRZFP1 into tobacco; transgenic tobacco exhibited enhanced growth and tolerance to abiotic stresses. As further analysis of CaRZFP1 ectopic expression in a heterologous host plant, here we mobilized and constitutively overexpressed CaRZFP1 in lettuce. In contrast to tobacco, transgenic lettuce exhibited poorer growth and delayed flowering compared with vector-only controls. To identify genes that might be involved in this phenotypic effect, transcriptome analyses on transgenic plants of both species were performed, uncovering dozens of genes that reflect the different outcomes between tobacco and lettuce. These included protein kinase, transcriptional factor, transporter protein, hormone and metabolism-related genes, and some unannotated genes. The opposite effects of CaRZFP1 ectopic expression in lettuce and tobacco address concerns of unexpectedly different outcomes in different host species.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 151-742 South Korea
| | - Dong Kyun Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 151-742 South Korea
| | - Naheed Zeba
- Present Address: Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Mi Chung Suh
- Present Address: Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757 South Korea
| | - Xinli Xia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Choo Bong Hong
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 151-742 South Korea
| |
Collapse
|
21
|
Davidson R, Baas BJ, Akiva E, Holliday GL, Polacco BJ, LeVieux JA, Pullara CR, Zhang YJ, Whitman CP, Babbitt PC. A global view of structure-function relationships in the tautomerase superfamily. J Biol Chem 2018; 293:2342-2357. [PMID: 29184004 PMCID: PMC5818174 DOI: 10.1074/jbc.m117.815340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
The tautomerase superfamily (TSF) consists of more than 11,000 nonredundant sequences present throughout the biosphere. Characterized members have attracted much attention because of the unusual and key catalytic role of an N-terminal proline. These few characterized members catalyze a diverse range of chemical reactions, but the full scale of their chemical capabilities and biological functions remains unknown. To gain new insight into TSF structure-function relationships, we performed a global analysis of similarities across the entire superfamily and computed a sequence similarity network to guide classification into distinct subgroups. Our results indicate that TSF members are found in all domains of life, with most being present in bacteria. The eukaryotic members of the cis-3-chloroacrylic acid dehalogenase subgroup are limited to fungal species, whereas the macrophage migration inhibitory factor subgroup has wide eukaryotic representation (including mammals). Unexpectedly, we found that 346 TSF sequences lack Pro-1, of which 85% are present in the malonate semialdehyde decarboxylase subgroup. The computed network also enabled the identification of similarity paths, namely sequences that link functionally diverse subgroups and exhibit transitional structural features that may help explain reaction divergence. A structure-guided comparison of these linker proteins identified conserved transitions between them, and kinetic analysis paralleled these observations. Phylogenetic reconstruction of the linker set was consistent with these findings. Our results also suggest that contemporary TSF members may have evolved from a short 4-oxalocrotonate tautomerase-like ancestor followed by gene duplication and fusion. Our new linker-guided strategy can be used to enrich the discovery of sequence/structure/function transitions in other enzyme superfamilies.
Collapse
Affiliation(s)
| | - Bert-Jan Baas
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy
| | - Eyal Akiva
- From the Department of Bioengineering and Therapeutic Sciences
| | | | | | | | - Collin R Pullara
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy
| | - Yan Jessie Zhang
- the Department of Molecular Biosciences, and
- the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Christian P Whitman
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy,
| | - Patricia C Babbitt
- From the Department of Bioengineering and Therapeutic Sciences,
- the Department of Pharmaceutical Chemistry, and
- the Quantitative Biosciences Institute, University of California, San Francisco, California 94143 and
| |
Collapse
|
22
|
Yu L, Su W, Fey PD, Liu F, Du L. Yield Improvement of the Anti-MRSA Antibiotics WAP-8294A by CRISPR/dCas9 Combined with Refactoring Self-Protection Genes in Lysobacter enzymogenes OH11. ACS Synth Biol 2018; 7:258-266. [PMID: 29125739 DOI: 10.1021/acssynbio.7b00293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyclic lipodepsipeptides WAP-8294A are antibiotics with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). One member of this family, WAP-8294A2 (Lotilibcin), was in clinical trials due to its high activity and distinct chemistry. However, WAP-8294A compounds are produced in a very low yield by Lysobacter and only under very stringent conditions. Improving WAP-8294A yield has become very critical for research and application of these anti-MRSA compounds. Here, we report a strategy to increase WAP-8294A production. We first used the CRISPR/dCas9 system to increase the expression of five cotranscribed genes (orf1-5) in the WAP gene cluster, by fusing the omega subunit of RNA polymerase with dCas9 that targets the operon's promoter region. This led to the transcription of the genes increased by 5-48 folds in strain dCas9-ω3. We then refactored four putative self-protection genes (orf6, orf7, orf9 and orf10) by reorganizing them into an operon under the control of a strong Lysobacter promoter, PHSAF. The refactored operon was introduced into strain dCas9-ω3, and the transcription of the self-protection genes increased by 20-60 folds in the resultant engineered strains. The yield of the three main WAP-8294A compounds, WAP-8294A1, WAP-8294A2, and WAP-8294A4, increased by 6, 4, and 9 folds, respectively, in the engineered strains. The data also showed that the yield increase of WAP-8294A compounds was mainly due to the increase of the extracellular distribution. WAP-8294A2 exhibited potent (MIC 0.2-0.8 μg/mL) and specific activity against S. aureus among a battery of clinically relevant Gram-positive pathogens (54 isolates).
Collapse
Affiliation(s)
- Lingjun Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Su
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
23
|
Michailidou F, Chung C, Brown MJB, Bent AF, Naismith JH, Leavens WJ, Lynn SM, Sharma SV, Goss RJM. Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3'-Deoxy Nucleoside of Pacidamycins. Angew Chem Int Ed Engl 2017; 56:12492-12497. [PMID: 28786545 PMCID: PMC5656905 DOI: 10.1002/anie.201705639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Indexed: 01/27/2023]
Abstract
The uridyl peptide antibiotics (UPAs), of which pacidamycin is a member, have a clinically unexploited mode of action and an unusual assembly. Perhaps the most striking feature of these molecules is the biosynthetically unique 3'-deoxyuridine that they share. This moiety is generated by an unusual, small and monomeric dehydratase, Pac13, which catalyses the dehydration of uridine-5'-aldehyde. Here we report the structural characterisation of Pac13 with a series of ligands, and gain insight into the enzyme's mechanism demonstrating that H42 is critical to the enzyme's activity and that the reaction is likely to proceed via an E1cB mechanism. The resemblance of the 3'-deoxy pacidamycin moiety with the synthetic anti-retrovirals, presents a potential opportunity for the utilisation of Pac13 in the biocatalytic generation of antiviral compounds.
Collapse
Affiliation(s)
- Freideriki Michailidou
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
- GSKStevenageSG1 2NYUK
| | | | | | - Andrew F. Bent
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - James H. Naismith
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | | | | | - Sunil V. Sharma
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Rebecca J. M. Goss
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
24
|
Michailidou F, Chung C, Brown MJB, Bent AF, Naismith JH, Leavens WJ, Lynn SM, Sharma SV, Goss RJM. Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3′‐Deoxy Nucleoside of Pacidamycins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Freideriki Michailidou
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
- GSK Stevenage SG1 2NY UK
| | | | | | - Andrew F. Bent
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - James H. Naismith
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | | | | | - Sunil V. Sharma
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Rebecca J. M. Goss
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
25
|
Sarkar B, Kulharia M, Mantha AK. Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology. Int J Exp Pathol 2017; 98:52-66. [PMID: 28439920 DOI: 10.1111/iep.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022] Open
Abstract
Amino acid metabolism is a significant metabolic activity in humans, especially of sulphur-containing amino acids, methionine and cysteine (Cys). Cys is cytotoxic and neurotoxic in nature; hence, mammalian cells maintain a constant intracellular level of Cys. Metabolism of Cys is mainly regulated by two thiol dioxygenases: cysteine dioxygenase (CDO) and 2-aminoethanethiol dioxygenase (ADO). CDO and ADO are the only human thiol dioxygenases reported with a role in Cys metabolism and localized to mitochondria. This metabolic pathway is important in various human disorders, as it is responsible for the synthesis of antioxidant glutathione and is also for the synthesis of hypotaurine and taurine. CDO is the most extensively studied protein, whose high-resolution crystallographic structures have been solved. As compared to CDO, ADO is less studied, even though it has a key role in cysteamine metabolism. To further understand ADO's structure and function, the three-dimensional structures have been predicted from I-TASSER and SWISS-MODEL servers and validated with PROCHECK software. Structural superimposition approach using iPBA web server further confirmed near-identical structures (including active sites) for the predicted protein models of ADO as compared to CDO. In addition, protein-protein interaction and their association in patho-physiology are crucial in understanding protein functions. Both ADO and CDO interacting partner profiles have been presented using STRING database. In this study, we have predicted a 3D model structure for ADO and summarized the biological roles and the pathological consequences which are associated with the altered expression and functioning of ADO and CDO in case of cancer, neurodegenerative disorders and other human diseases.
Collapse
Affiliation(s)
- Bibekananda Sarkar
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahesh Kulharia
- Center for Computational Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
26
|
Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria. Biochim Biophys Acta Gen Subj 2017; 1861:323-334. [DOI: 10.1016/j.bbagen.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/09/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
27
|
Cheeseman M, Chessum NEA, Rye CS, Pasqua AE, Tucker M, Wilding B, Evans LE, Lepri S, Richards M, Sharp SY, Ali S, Rowlands M, O’Fee L, Miah A, Hayes A, Henley AT, Powers M, te Poele R, De Billy E, Pellegrino L, Raynaud F, Burke R, van Montfort RLM, Eccles SA, Workman P, Jones K. Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. J Med Chem 2017; 60:180-201. [PMID: 28004573 PMCID: PMC6014687 DOI: 10.1021/acs.jmedchem.6b01055] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/20/2022]
Abstract
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.
Collapse
Affiliation(s)
- Matthew
D. Cheeseman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - A. Elisa Pasqua
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael
J. Tucker
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Susan Lepri
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Meirion Richards
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Swee Y. Sharp
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Salyha Ali
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Martin Rowlands
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lisa O’Fee
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Asadh Miah
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Marissa Powers
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Robert te Poele
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Emmanuel De Billy
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Loredana Pellegrino
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Florence Raynaud
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A. Eccles
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
28
|
Sim DW, Kim JH, Kim HY, Jang JH, Lee WC, Kim EH, Park PJ, Lee KH, Won HS. Structural identification of the lipopolysaccharide-binding capability of a cupin-family protein from Helicobacter pylori. FEBS Lett 2016; 590:2997-3004. [PMID: 27466800 DOI: 10.1002/1873-3468.12332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 01/26/2023]
Abstract
We solved the crystal structure of a functionally uncharacterized protein, HP0902, from Helicobacter pylori. Its structure demonstrated an all-β cupin fold that cannot bind metal ions due to the absence of a metal-binding histidine that is conserved in many metallo-cupins. In contrast, isothermal titration calorimetry and NMR titration demonstrated that HP0902 is able to bind bacterial endotoxin lipopolysaccharides (LPS) through its surface-exposed loops, where metal-binding sites are usually found in other metallo-cupins. This report constitutes the first identification of an LPS-interacting protein, both in the cupin family and in H. pylori. Furthermore, identification of the ability of HP0902 to bind LPS uncovers a putative role for this protein in H. pylori pathogenicity.
Collapse
Affiliation(s)
- Dae-Won Sim
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungbuk, Korea
| | - Ji-Hun Kim
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungbuk, Korea
| | - Hye-Yeon Kim
- Protein Structure Group, Korea Basic Science Institute, Chungbuk, Korea
| | - Jung-Hwa Jang
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungbuk, Korea
| | - Woo Cheol Lee
- Protein Structure Group, Korea Basic Science Institute, Chungbuk, Korea.,Division of Biotechnology, Korea University, Seoul, Korea
| | - Eun-Hee Kim
- Protein Structure Group, Korea Basic Science Institute, Chungbuk, Korea
| | - Pyo-Jam Park
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungbuk, Korea
| | - Kwang-Ho Lee
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungbuk, Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungbuk, Korea
| |
Collapse
|
29
|
Vertregt F, Torrelo G, Trunk S, Wiltsche H, Hagen WR, Hanefeld U, Steiner K. EPR Study of Substrate Binding to Mn(II) in Hydroxynitrile Lyase from Granulicella tundricola. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Femke Vertregt
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Guzman Torrelo
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Sarah Trunk
- Austrian Centre
of Industrial Biotechnology GmbH, Petersgasse
14/4, 8010 Graz, Austria
| | - Helmar Wiltsche
- Institute
of Analytical Chemistry and Food Chemistry, TU Graz, Stremayrgasse
9/III, 8010 Graz, Austria
| | - Wilfred R. Hagen
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Ulf Hanefeld
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Kerstin Steiner
- Austrian Centre
of Industrial Biotechnology GmbH, Petersgasse
14/4, 8010 Graz, Austria
| |
Collapse
|
30
|
Mai TL, Hu GM, Chen CM. Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions. J Proteome Res 2016; 15:2123-31. [PMID: 27267620 DOI: 10.1021/acs.jproteome.5b01031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.
Collapse
Affiliation(s)
- Te-Lun Mai
- Department of Physics, National Taiwan Normal University , Taipei, Taiwan
| | - Geng-Ming Hu
- Department of Physics, National Taiwan Normal University , Taipei, Taiwan
| | - Chi-Ming Chen
- Department of Physics, National Taiwan Normal University , Taipei, Taiwan
| |
Collapse
|
31
|
Dadinova LA, Shtykova EV, Konarev PV, Rodina EV, Snalina NE, Vorobyeva NN, Kurilova SA, Nazarova TI, Jeffries CM, Svergun DI. X-Ray Solution Scattering Study of Four Escherichia coli Enzymes Involved in Stationary-Phase Metabolism. PLoS One 2016; 11:e0156105. [PMID: 27227414 PMCID: PMC4881948 DOI: 10.1371/journal.pone.0156105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/08/2016] [Indexed: 11/21/2022] Open
Abstract
The structural analyses of four metabolic enzymes that maintain and regulate the stationary growth phase of Escherichia coli have been performed primarily drawing on the results obtained from solution small angle X-ray scattering (SAXS) and other structural techniques. The proteins are (i) class I fructose-1,6-bisphosphate aldolase (FbaB); (ii) inorganic pyrophosphatase (PPase); (iii) 5-keto-4-deoxyuronate isomerase (KduI); and (iv) glutamate decarboxylase (GadA). The enzyme FbaB, that until now had an unknown structure, is predicted to fold into a TIM-barrel motif that form globular protomers which SAXS experiments show associate into decameric assemblies. In agreement with previously reported crystal structures, PPase forms hexamers in solution that are similar to the previously reported X-ray crystal structure. Both KduI and GadA that are responsible for carbohydrate (pectin) metabolism and acid stress responses, respectively, form polydisperse mixtures consisting of different oligomeric states. Overall the SAXS experiments yield additional insights into shape and organization of these metabolic enzymes and further demonstrate the utility of hybrid methods, i.e., solution SAXS combined with X-ray crystallography, bioinformatics and predictive 3D-structural modeling, as tools to enrich structural studies. The results highlight the structural complexity that the protein components of metabolic networks may adopt which cannot be fully captured using individual structural biology techniques.
Collapse
Affiliation(s)
- Liubov A. Dadinova
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Physics Department, Moscow, Russia
| | - Eleonora V. Shtykova
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Petr V. Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Rodina
- M.V. Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
| | - Natalia E. Snalina
- M.V. Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
| | - Natalia N. Vorobyeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- M.V. Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
| | - Svetlana A. Kurilova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Tatyana I. Nazarova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
32
|
Chen M, Wang C, Bao H, Chen H, Wang Y. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Mol Genet Genomics 2016; 291:1663-80. [PMID: 27138920 DOI: 10.1007/s00438-016-1210-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as important regulatory factors of gene expression in eukaryotic species, such as Homo sapiens, Arabidopsis thaliana, and Oryza sativa. However, the systematic identification of potential lncRNAs in trees is comparatively rare. In particular, the characteristics, expression, and regulatory roles of lncRNAs in trees under nutrient stress remain largely unknown. A genome-wide strategy was used in this investigation to identify and characterize novel and low-nitrogen (N)-responsive lncRNAs in Populus tomentosa; 388 unique lncRNA candidates belonging to 380 gene loci were detected and only seven lncRNAs were found to belong to seven conserved non-coding RNA families indicating the majority of P. tomentosa lncRNAs are species-specific. In total, 126 lncRNAs were significantly altered under low-N stress; 8 were repressed, and 118 were induced. Furthermore, 9 and 5 lncRNAs were detected as precursors of 11 known and 14 novel Populus miRNAs, respectively, whereas 4 lncRNAs were targeted by 29 miRNAs belonging to 5 families, including 22 conserved and 7 non-conserved miRNAs. In addition, 15 antisense lncRNAs were identified to be generated from opposite strands of 14 corresponding protein-coding genes. In total, 111 protein-coding genes with regions complementary to 38 lncRNAs were also predicted with some lncRNAs corresponding to multiple genes and vice versa, and their functions were annotated, which further demonstrated the complex regulatory relationship between lncRNAs and protein-coding genes in plants. Moreover, an interaction network among lncRNAs, miRNAs, and mRNAs was investigated. These findings enrich our understanding of lncRNAs in Populus, expand the methods of miRNA identification. Our results present the first global characterization of lncRNAs and their potential target genes in response to nitrogen stress in trees, which provides more information on low-nutrition adaptation mechanisms in woody plants.
Collapse
Affiliation(s)
- Min Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chenlu Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hai Bao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
33
|
Zhu W, Easthon LM, Reinhardt LA, Tu C, Cohen SE, Silverman DN, Allen KN, Richards NGJ. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase. Biochemistry 2016; 55:2163-73. [PMID: 27014926 PMCID: PMC4854488 DOI: 10.1021/acs.biochem.6b00043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Oxalate
decarboxylase (OxDC) catalyzes the conversion of oxalate
into formate and carbon dioxide in a remarkable reaction that requires
manganese and dioxygen. Previous studies have shown that replacing
an active-site loop segment Ser161-Glu162-Asn163-Ser164 in the N-terminal domain of OxDC with
the cognate residues Asp161-Ala162-Ser-163-Asn164 of an evolutionarily related, Mn-dependent
oxalate oxidase gives a chimeric variant (DASN) that exhibits significantly
increased oxidase activity. The mechanistic basis for this change
in activity has now been investigated using membrane inlet mass spectrometry
(MIMS) and isotope effect (IE) measurements. Quantitative analysis
of the reaction stoichiometry as a function of oxalate concentration,
as determined by MIMS, suggests that the increased oxidase activity
of the DASN OxDC variant is associated with only a small fraction
of the enzyme molecules in solution. In addition, IE measurements
show that C–C bond cleavage in the DASN OxDC variant proceeds
via the same mechanism as in the wild-type enzyme, even though the
Glu162 side chain is absent. Thus, replacement of the loop
residues does not modulate the chemistry of the enzyme-bound Mn(II)
ion. Taken together, these results raise the possibility that the
observed oxidase activity of the DASN OxDC variant arises from an
increased level of access of the solvent to the active site during
catalysis, implying that the functional role of Glu162 is
to control loop conformation. A 2.6 Å resolution X-ray crystal
structure of a complex between oxalate and the Co(II)-substituted
ΔE162 OxDC variant, in which Glu162 has been deleted
from the active site loop, reveals the likely mode by which the substrate
coordinates the catalytically active Mn ion prior to C–C bond
cleavage. The “end-on” conformation of oxalate observed
in the structure is consistent with the previously published V/K IE data and provides an empty coordination
site for the dioxygen ligand that is thought to mediate the formation
of Mn(III) for catalysis upon substrate binding.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| | - Lindsey M Easthon
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - Laurie A Reinhardt
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53726, United States
| | - Chingkuang Tu
- Department of Pharmacology & Therapeutics, University of Florida , Gainesville, Florida 32610, United States
| | - Steven E Cohen
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - David N Silverman
- Department of Pharmacology & Therapeutics, University of Florida , Gainesville, Florida 32610, United States
| | - Karen N Allen
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - Nigel G J Richards
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| |
Collapse
|
34
|
Widderich N, Kobus S, Höppner A, Riclea R, Seubert A, Dickschat JS, Heider J, Smits SHJ, Bremer E. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily. PLoS One 2016; 11:e0151285. [PMID: 26986827 PMCID: PMC4795551 DOI: 10.1371/journal.pone.0151285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/25/2016] [Indexed: 01/24/2023] Open
Abstract
Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC) catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa), we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (Sa)EctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of enzyme activity and iron content of these mutants give important clues for understanding the architecture of the active site positioned within the core of the EctC cupin barrel.
Collapse
Affiliation(s)
- Nils Widderich
- Department of Biology, Laboratory for Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefanie Kobus
- X-ray Facility and Crystal Farm, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Astrid Höppner
- X-ray Facility and Crystal Farm, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ramona Riclea
- Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute of Organic Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Andreas Seubert
- Department of Chemistry, Analytical Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute of Organic Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Johann Heider
- Department of Biology, Laboratory for Microbiology, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: (SS); (EB)
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps-University Marburg, D-35043 Marburg, Germany
- * E-mail: (SS); (EB)
| |
Collapse
|
35
|
Han M, Yin H, Zou Y, Brock NL, Huang T, Deng Z, Chu Y, Lin S. An Acyl Transfer Reaction Catalyzed by an Epimerase MarH. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mo Han
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haixing Yin
- Sichuan
Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan
Road, Chengdu 610052, China
| | - Yi Zou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nelson L. Brock
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiwen Chu
- Sichuan
Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan
Road, Chengdu 610052, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
36
|
Hajnal I, Faber K, Schwab H, Hall M, Steiner K. Oxidative Alkene Cleavage Catalysed by Manganese-Dependent Cupin TM1459 fromThermotoga maritima. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Ahmed FH, Carr PD, Lee BM, Afriat-Jurnou L, Mohamed AE, Hong NS, Flanagan J, Taylor MC, Greening C, Jackson CJ. Sequence-Structure-Function Classification of a Catalytically Diverse Oxidoreductase Superfamily in Mycobacteria. J Mol Biol 2015; 427:3554-3571. [PMID: 26434506 DOI: 10.1016/j.jmb.2015.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022]
Abstract
The deazaflavin cofactor F420 enhances the persistence of mycobacteria during hypoxia, oxidative stress, and antibiotic treatment. However, the identities and functions of the mycobacterial enzymes that utilize F420 under these conditions have yet to be resolved. In this work, we used sequence similarity networks to analyze the distribution of the largest F420-dependent protein family in mycobacteria. We show that these enzymes are part of a larger split β-barrel enzyme superfamily (flavin/deazaflavin oxidoreductases, FDORs) that include previously characterized pyridoxamine/pyridoxine-5'-phosphate oxidases and heme oxygenases. We show that these proteins variously utilize F420, flavin mononucleotide, flavin adenine dinucleotide, and heme cofactors. Functional annotation using phylogenetic, structural, and spectroscopic methods revealed their involvement in heme degradation, biliverdin reduction, fatty acid modification, and quinone reduction. Four novel crystal structures show that plasticity in substrate binding pockets and modifications to cofactor binding motifs enabled FDORs to carry out a variety of functions. This systematic classification and analysis provides a framework for further functional analysis of the roles of FDORs in mycobacterial pathogenesis and persistence.
Collapse
Affiliation(s)
- F Hafna Ahmed
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Paul D Carr
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Brendon M Lee
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Livnat Afriat-Jurnou
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - A Elaaf Mohamed
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Nan-Sook Hong
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia
| | - Jack Flanagan
- University of Auckland Faculty of Medical and Health Sciences, 85 Park Road, Grafton, Auckland 2013, New Zealand
| | - Matthew C Taylor
- Commonwealth Scientific and Industrial Research Organisation Land and Water Flagship, Clunies Ross Street, Acton, ACT 2060, Australia
| | - Chris Greening
- Commonwealth Scientific and Industrial Research Organisation Land and Water Flagship, Clunies Ross Street, Acton, ACT 2060, Australia
| | - Colin J Jackson
- Australian National University Research School of Chemistry, Sullivans Creek Road, Acton, ACT 2601, Australia.
| |
Collapse
|
38
|
Leuthaeuser JB, Knutson ST, Kumar K, Babbitt PC, Fetrow JS. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity. Protein Sci 2015; 24:1423-39. [PMID: 26073648 PMCID: PMC4570537 DOI: 10.1002/pro.2724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/10/2015] [Indexed: 01/27/2023]
Abstract
The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods.
Collapse
Affiliation(s)
- Janelle B Leuthaeuser
- Department of Molecular Genetics and Genomics, Wake Forest University, Winston-Salem, North Carolina, 27106
| | - Stacy T Knutson
- Departments of Computer Science and Physics, Wake Forest University, Winston-Salem, North Carolina, 27106
| | - Kiran Kumar
- Departments of Computer Science and Physics, Wake Forest University, Winston-Salem, North Carolina, 27106
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, Institute for Quantitative Biosciences University of California San Francisco, San Francisco, California, 94158.,Department of Pharmaceutical Chemistry, Institute for Quantitative Biosciences University of California San Francisco, San Francisco, California, 94158
| | - Jacquelyn S Fetrow
- Department of Molecular Genetics and Genomics, Wake Forest University, Winston-Salem, North Carolina, 27106.,Departments of Computer Science and Physics, Wake Forest University, Winston-Salem, North Carolina, 27106.,Office of the Provost, Maryland Hall 202, University of Richmond, VA, 23173
| |
Collapse
|
39
|
Chen J, Wang F, Zheng S, Xu T, Yang Z. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4957-70. [PMID: 26047974 PMCID: PMC4598803 DOI: 10.1093/jxb/erv266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals.
Collapse
Affiliation(s)
- Jisheng Chen
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shiqin Zheng
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tongda Xu
- Center for Plant Stress Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
40
|
Kobus S, Widderich N, Hoeppner A, Bremer E, Smits SHJ. Overproduction, crystallization and X-ray diffraction data analysis of ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:1027-32. [PMID: 26249694 DOI: 10.1107/s2053230x15011115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/08/2015] [Indexed: 11/10/2022]
Abstract
Ectoine biosynthetic genes (ectABC) are widely distributed in bacteria. Microorganisms that carry them make copious amounts of ectoine as a cell protectant in response to high-osmolarity challenges. Ectoine synthase (EctC; EC 4.2.1.108) is the key enzyme for the production of this compatible solute and mediates the last step of ectoine biosynthesis. It catalyzes the ring closure of the cyclic ectoine molecule. A codon-optimized version of ectC from Sphingopyxis alaskensis (Sa) was used for overproduction of SaEctC protein carrying a Strep-tag II peptide at its carboxy-terminus. The recombinant SaEctC-Strep-tag II protein was purified to near-homogeneity from Escherichia coli cell extracts by affinity chromatography. Size-exclusion chromatography revealed that it is a dimer in solution. The SaEctC-Strep-tag II protein was crystallized using the sitting-drop vapour-diffusion method and crystals that diffracted to 1.0 Å resolution were obtained.
Collapse
Affiliation(s)
- Stefanie Kobus
- Crystal Farm and X-ray Facility, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| | - Nils Widderich
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Astrid Hoeppner
- Crystal Farm and X-ray Facility, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
41
|
Hu GM, Mai TL, Chen CM. Clustering and visualizing similarity networks of membrane proteins. Proteins 2015; 83:1450-61. [PMID: 26011797 DOI: 10.1002/prot.24832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/23/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
We proposed a fast and unsupervised clustering method, minimum span clustering (MSC), for analyzing the sequence-structure-function relationship of biological networks, and demonstrated its validity in clustering the sequence/structure similarity networks (SSN) of 682 membrane protein (MP) chains. The MSC clustering of MPs based on their sequence information was found to be consistent with their tertiary structures and functions. For the largest seven clusters predicted by MSC, the consistency in chain function within the same cluster is found to be 100%. From analyzing the edge distribution of SSN for MPs, we found a characteristic threshold distance for the boundary between clusters, over which SSN of MPs could be properly clustered by an unsupervised sparsification of the network distance matrix. The clustering results of MPs from both MSC and the unsupervised sparsification methods are consistent with each other, and have high intracluster similarity and low intercluster similarity in sequence, structure, and function. Our study showed a strong sequence-structure-function relationship of MPs. We discussed evidence of convergent evolution of MPs and suggested applications in finding structural similarities and predicting biological functions of MP chains based on their sequence information.
Collapse
Affiliation(s)
- Geng-Ming Hu
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Lun Mai
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Chi-Ming Chen
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
42
|
Lundin D, Berggren G, Logan DT, Sjöberg BM. The origin and evolution of ribonucleotide reduction. Life (Basel) 2015; 5:604-36. [PMID: 25734234 PMCID: PMC4390871 DOI: 10.3390/life5010604] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022] Open
Abstract
Ribonucleotide reduction is the only pathway for de novo synthesis of deoxyribonucleotides in extant organisms. This chemically demanding reaction, which proceeds via a carbon-centered free radical, is catalyzed by ribonucleotide reductase (RNR). The mechanism has been deemed unlikely to be catalyzed by a ribozyme, creating an enigma regarding how the building blocks for DNA were synthesized at the transition from RNA- to DNA-encoded genomes. While it is entirely possible that a different pathway was later replaced with the modern mechanism, here we explore the evolutionary and biochemical limits for an origin of the mechanism in the RNA + protein world and suggest a model for a prototypical ribonucleotide reductase (protoRNR). From the protoRNR evolved the ancestor to modern RNRs, the urRNR, which diversified into the modern three classes. Since the initial radical generation differs between the three modern classes, it is difficult to establish how it was generated in the urRNR. Here we suggest a model that is similar to the B12-dependent mechanism in modern class II RNRs.
Collapse
Affiliation(s)
- Daniel Lundin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Gustav Berggren
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Derek T Logan
- Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
43
|
Evolutionary expansion of the amidohydrolase superfamily in bacteria in response to the synthetic compounds molinate and diuron. Appl Environ Microbiol 2015; 81:2612-24. [PMID: 25636851 DOI: 10.1128/aem.04016-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible.
Collapse
|
44
|
Brown SD, Babbitt PC. New insights about enzyme evolution from large scale studies of sequence and structure relationships. J Biol Chem 2014; 289:30221-30228. [PMID: 25210038 PMCID: PMC4215206 DOI: 10.1074/jbc.r114.569350] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes.
Collapse
Affiliation(s)
- Shoshana D Brown
- Departments of Bioengineering and Therapeutic Sciences and University of California, San Francisco, California 94158-2330
| | - Patricia C Babbitt
- Departments of Bioengineering and Therapeutic Sciences and University of California, San Francisco, California 94158-2330; Departments of Pharmaceutical Chemistry, School of Pharmacy, and University of California, San Francisco, California 94158-2330; California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330.
| |
Collapse
|
45
|
Zeng C, Chen Z, Xia J, Zhang K, Chen X, Zhou Y, Bo W, Song S, Deng D, Guo X, Wang B, Zhou J, Peng H, Wang W, Peng M, Zhang W. Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in cassava. BMC PLANT BIOLOGY 2014; 14:207. [PMID: 25090992 PMCID: PMC4236759 DOI: 10.1186/s12870-014-0207-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/22/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Stress acclimation is an effective mechanism that plants acquired for adaption to dynamic environment. Even though generally considered to be sensitive to low temperature, Cassava, a major tropical crop, can be tolerant to much lower temperature after chilling acclimation. Improvement to chilling resistance could be beneficial to breeding. However, the underlying mechanism and the effects of chilling acclimation on chilling tolerance remain largely unexplored. RESULTS In order to understand the mechanism of chilling acclimation, we profiled and analyzed the transcriptome and microRNAome of Cassava, using high-throughput deep sequencing, across the normal condition, a moderate chilling stress (14°C), a harsh stress (4°C) after chilling acclimation (14°C), and a chilling shock from 24°C to 4°C. The results revealed that moderate stress and chilling shock triggered comparable degrees of transcriptional perturbation, and more importantly, about two thirds of differentially expressed genes reversed their expression from up-regulation to down-regulation or vice versa in response to hash stress after experiencing moderate stress. In addition, microRNAs played important roles in the process of this massive genetic circuitry rewiring. Furthermore, function analysis revealed that chilling acclimation helped the plant develop immunity to further harsh stress by exclusively inducing genes with function for nutrient reservation therefore providing protection, whereas chilling shock induced genes with function for viral reproduction therefore causing damage. CONCLUSIONS Our study revealed, for the first time, the molecular basis of chilling acclimation, and showed potential regulation role of microRNA in chilling response and acclimation in Euphorbia.
Collapse
Affiliation(s)
- Changying Zeng
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zheng Chen
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Jing Xia
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Kevin Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Xin Chen
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yufei Zhou
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiping Bo
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shun Song
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Deli Deng
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xin Guo
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bin Wang
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Junfei Zhou
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
| | - Wenquan Wang
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ming Peng
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, MO, USA
| |
Collapse
|
46
|
Moomaw EW, Uberto R, Tu C. Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide. Biochem Biophys Res Commun 2014; 450:750-4. [PMID: 24953692 DOI: 10.1016/j.bbrc.2014.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Membrane inlet mass spectrometry (MIMS) uses a semipermeable membrane as an inlet to a mass spectrometer for the measurement of the concentration of small uncharged molecules in solution. We report the use of MIMS to characterize the catalytic properties of oxalate oxidase (E.C. 1.2.3.4) from Ceriporiopsis subvermispora (CsOxOx). Oxalate oxidase is a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The MIMS method of measuring OxOx activity involves continuous, real-time direct detection of oxygen consumption and carbon dioxide production from the ion currents of their respective mass peaks. (13)C2-oxalate was used to allow for accurate detection of (13)CO2 (m/z 45) despite the presence of adventitious (12)CO2. Steady-state kinetic constants determined by MIMS are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid). Furthermore, we used MIMS to determine that NO inhibits the activity of the CsOxOx with a KI of 0.58±0.06 μM.
Collapse
Affiliation(s)
- Ellen W Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA.
| | - Richard Uberto
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Chingkuang Tu
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
47
|
Martinez Cuesta S, Furnham N, Rahman SA, Sillitoe I, Thornton JM. The evolution of enzyme function in the isomerases. Curr Opin Struct Biol 2014; 26:121-30. [PMID: 25000289 PMCID: PMC4139412 DOI: 10.1016/j.sbi.2014.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/02/2014] [Accepted: 06/10/2014] [Indexed: 01/14/2023]
Abstract
The advent of computational approaches to measure functional similarity between enzymes adds a new dimension to existing evolutionary studies based on sequence and structure. This paper reviews research efforts aiming to understand the evolution of enzyme function in superfamilies, presenting a novel strategy to provide an overview of the evolution of enzymes belonging to an individual EC class, using the isomerases as an exemplar.
Collapse
Affiliation(s)
- Sergio Martinez Cuesta
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Syed Asad Rahman
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.
| |
Collapse
|
48
|
Secco D, Whelan J. Toward deciphering the genome-wide transcriptional responses of rice to phosphate starvation and recovery. PLANT SIGNALING & BEHAVIOR 2014; 9:e28319. [PMID: 24614023 PMCID: PMC4091314 DOI: 10.4161/psb.28319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phosphate (Pi) limitation is one of the major factors negatively impacting crop yield worldwide. Next generation sequencing (NGS) was used to profile the transcriptomes of rice (Oryza sativa) roots and shoots after phosphate starvation and recovery, shedding further light on the complex and dynamic mechanisms involved in Pi homeostasis. The use of NGS also enabled the identification of previously not annotated loci and novel isoforms of genes that are specifically induced by Pi starvation. Furthermore, phosphate re-feeding was observed to have a unique response with a variety of transcription factors and kinases induced in a transient manner. Expression profiles of miRNAs were also assessed upon long-term Pi starvation in roots and shoots revealing several novel miRNAs associated with Pi starvation. Altogether, this study provides key findings regarding Pi homeostasis in plants that will provide a valuable resource for research aimed at generating crops with increased Pi acquisition/use efficiency.
Collapse
Affiliation(s)
- David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology; The University of Western Australia; Perth, WA Australia
- Correspondence to: David Secco,
| | - James Whelan
- Department of Botany; School of Life Sciences; Australian Research Council Centre of Excellence in Plant Energy Biology; La Trobe University; Bundoora, VIC Australia
| |
Collapse
|
49
|
Abstract
The genomic revolution promises great advances in the search for useful biocatalysts. Function-based metagenomic approaches have identified several enzymes with properties that make them useful candidates for a variety of bioprocesses. As DNA sequencing costs continue to decline, the volume of genomic data, along with their corresponding predicted protein sequences, will continue to increase dramatically, necessitating new approaches to leverage this information for gene-based bioprospecting efforts. Additionally, as new functions are discovered and correlated with this sequence information, the knowledge of the often complex relationship between a protein's sequence and function will improve. This in turn will lead to better gene-based bioprospecting approaches and facilitate the tailoring of desired properties through protein engineering projects. In this chapter, we discuss a number of recent advances in bioprospecting within the context of the genomic age.
Collapse
Affiliation(s)
- Michael A Hicks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Synthetic Biology Engineering Research Center (SynBERC), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|