1
|
Jakubauskiene L, Jakubauskas M, Razanskiene G, Leber B, Ramasauskaite D, Strupas K, Stiegler P, Schemmer P. Experimental Static Cold Storage of the Rat Uterus: Protective Effects of Relaxin- or Erythropoietin-Supplemented HTK-N Solutions. Biomedicines 2022; 10:2730. [PMID: 36359252 PMCID: PMC9687853 DOI: 10.3390/biomedicines10112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2025] Open
Abstract
Uterus transplantation (UTx) is the only treatment method for women with absolute uterine infertility. Currently, the number of grafts retrieved from deceased donors is increasing; hence, prolonged cold ischemia time is inevitable. Thus, this study was designed to assess the effect of the novel relaxin (RLN)- or erythropoietin (EPO)-supplemented Custodiol-N (HTK-N) solutions in an experimental uterus static cold storage (SCS) model. A total of 15 Sprague Dawley rats were used. Uterus horns were randomly assigned into three groups (n = 10/group). SCS was performed by keeping samples at 4 °C in HTK-N solution without or with different additives: 10 IU/mL EPO or 20 nM RLN. Tissue samples were taken after 8 and 24 h of preservation. Uterine tissue histology, and biochemical and immunohistochemical markers were analyzed. No significant differences in SCS-induced tissue damage were observed between groups after 8 h of preservation. Uterine tissue histology, MDA, SOD levels and the TUNEL-positive cell number showed severe damage in HTK-N without additives after 24 h of preservation. This damage was significantly attenuated by adding RLN to the preservation solution. EPO showed no favorable effect. Our study shows that RLN as an additive to an HTK-N solution can serve as an effective uterine tissue preservative in the uterus SCS setting.
Collapse
Affiliation(s)
- Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
| | - Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
| | - Gintare Razanskiene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
- National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, P. Baublio Street 5, 08406 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Diana Ramasauskaite
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| |
Collapse
|
2
|
Relaxin does not prevent development of hypoxia-induced pulmonary edema in rats. Pflugers Arch 2022; 474:1053-1067. [PMID: 35778581 PMCID: PMC9492557 DOI: 10.1007/s00424-022-02720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Acute hypoxia impairs left ventricular (LV) inotropic function and induces development of pulmonary edema (PE). Enhanced and uneven hypoxic pulmonary vasoconstriction is an important pathogenic factor of hypoxic PE. We hypothesized that the potent vasodilator relaxin might reduce hypoxic pulmonary vasoconstriction and prevent PE formation. Furthermore, as relaxin has shown beneficial effects in acute heart failure, we expected that relaxin might also improve LV inotropic function in hypoxia. Forty-two rats were exposed over 24 h to normoxia or hypoxia (10% N2 in O2). They were infused with either 0.9% NaCl solution (normoxic/hypoxic controls) or relaxin at two doses (15 and 75 μg kg−1 day−1). After 24 h, hemodynamic measurements and bronchoalveolar lavage were performed. Lung tissue was obtained for histological and immunohistochemical analyses. Hypoxic control rats presented significant depression of LV systolic pressure by 19% and of left and right ventricular contractility by about 40%. Relaxin did not prevent the hypoxic decrease in LV inotropic function, but re-increased right ventricular contractility. Moreover, hypoxia induced moderate interstitial PE and inflammation in the lung. Contrasting to our hypothesis, relaxin did not prevent hypoxia-induced pulmonary edema and inflammation. In hypoxic control rats, PE was similarly distributed in the apical and basal lung lobes. In relaxin-treated rats, PE index was 35–40% higher in the apical than in the basal lobe, which is probably due to gravity effects. We suggest that relaxin induced exaggerated vasodilation, and hence pulmonary overperfusion. In conclusion, the results show that relaxin does not prevent but rather may aggravate PE formation.
Collapse
|
3
|
Jakubauskiene L, Jakubauskas M, Razanskiene G, Leber B, Weber J, Rohrhofer L, Ramasauskaite D, Strupas K, Stiegler P, Schemmer P. Relaxin and Erythropoietin Significantly Reduce Uterine Tissue Damage during Experimental Ischemia-Reperfusion Injury. Int J Mol Sci 2022; 23:7120. [PMID: 35806125 PMCID: PMC9266669 DOI: 10.3390/ijms23137120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/07/2022] Open
Abstract
Successful uterus transplantation, a potential treatment method for women suffering from absolute uterine infertility, is negatively affected by ischemia-reperfusion injury (IRI). The aim of this study is to investigate the protective effect of relaxin (RLX) or/and erythropoietin (EPO) on experimental uterus IRI. Eighty rats, randomly assigned into eight groups (n = 10/group), were pretreated with either saline, 5 μg/kg human relaxin-2, 4000 IU/kg recombinant human erythropoietin or their combination. Ischemia was achieved by clamping the aorta and ovarian arteries for 60 min, following 120 min of reperfusion and tissue sampling. For sham animals, clamping was omitted during surgery. There were no differences in tissue histological score, malondialdehyde (MDA) and superoxide dismutase (SOD) levels, myeloperoxidase (MPO) and TUNEL-positive cell count between all sham-operated rats. Pretreatment with RLX preserved normal tissue morphology, reduced MDA levels, MPO and TUNEL-positive cell count, preserved SOD activity and upregulated NICD and HES1 gene expression when compared to the control group. Pretreatment with EPO reduced MDA levels. In conclusion, pretreatment with RLX, EPO or a combination of both EPO and RLX significantly alleviates uterine tissue damage caused by IRI.
Collapse
Affiliation(s)
- Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (J.W.); (L.R.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21, 03101 Vilnius, Lithuania; (G.R.); (D.R.); (K.S.)
| | - Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (J.W.); (L.R.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21, 03101 Vilnius, Lithuania; (G.R.); (D.R.); (K.S.)
| | - Gintare Razanskiene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21, 03101 Vilnius, Lithuania; (G.R.); (D.R.); (K.S.)
- National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, P. Baublio Str. 5, 08406 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (J.W.); (L.R.); (P.S.)
| | - Jennifer Weber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (J.W.); (L.R.); (P.S.)
| | - Lisa Rohrhofer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (J.W.); (L.R.); (P.S.)
| | - Diana Ramasauskaite
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21, 03101 Vilnius, Lithuania; (G.R.); (D.R.); (K.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21, 03101 Vilnius, Lithuania; (G.R.); (D.R.); (K.S.)
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (J.W.); (L.R.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (J.W.); (L.R.); (P.S.)
| |
Collapse
|
4
|
Salvadori M, Tsalouchos A. Innovative immunosuppression in kidney transplantation: A challenge for unmet needs. World J Transplant 2022; 12:27-41. [PMID: 35433332 PMCID: PMC8968476 DOI: 10.5500/wjt.v12.i3.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the optimal results obtained in kidney transplantation and to the lack of interest of the industries, new innovative drugs in kidney transplantation are difficult to be encountered. The best strategy to find the new drugs recently developed or under development is to search in the sections of kidney transplantation still not completely covered by the drugs on the market. These unmet needs are the prevention of delayed graft function (DGF), the protection of the graft over the long time and the desensitization of preformed anti human leukocyte antigen antibodies and the treatment of the acute antibody-mediated rejection. These needs are particularly relevant due to the expansion of some kind of kidney transplantation as transplantation from non-heart beating donor and in the case of antibody-incompatible grafts. The first are particularly exposed to DGF, the latter need a safe desensitization and a safe treatments of the antibody mediated rejections that often occur. Particular caution is needed in treating these drugs. First, they are described in very recent studies and the follow-up of their effect is of course rather short. Second, some of these drugs are still in an early phase of study, even if in well-conducted randomized controlled trials. Particular caution and a careful check need to be used in trials launched 2 or 3 years ago. Indeed, is always necessary to verify whether the study is still going on or whether and why the study itself was abandoned.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Division of Nephrology, Santa Maria Annunziata Hospital, Florence 50012, Italy
| |
Collapse
|
5
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|
6
|
Sassoli C, Nistri S, Chellini F, Bani D. Human Recombinant Relaxin (Serelaxin) as Anti-fibrotic Agent: Pharmacology, Limitations and Actual Perspectives. Curr Mol Med 2021; 22:196-208. [PMID: 33687895 DOI: 10.2174/1566524021666210309113650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Relaxin (recombinant human relaxin-2 hormone; RLX-2; serelaxin) had raised expectations as a new medication for fibrotic diseases. A plethora of in vitro and in vivo studies have offered convincing demonstrations that relaxin promotes remodelling of connective tissue extracellular matrix mediated by inhibition of multiple fibrogenic pathways, especially the downstream signalling of transforming growth factor (TGF)-β1, a major pro-fibrotic cytokine, and the recruitment and activation of myofibroblast, the main fibrosis-generating cells. However, all clinical trials with relaxin in patients with fibrotic diseases gave inconclusive results. In this review, we have summarized the molecular mechanisms of fibrosis, highlighting those which can be effectively targeted by relaxin. Then, we have performed a critical reappraisal of the clinical trials performed to-date with relaxin as anti-fibrotic drug, in order to highlight their key points of strength and weakness and to identify some future opportunities for the therapeutic use of relaxin, or its analogues, in fibrotic diseases and pathologic scarring which, in our opinion, deserve to be investigated.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Human Anatomy. Italy
| | - Silvia Nistri
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Histology & Embryology, University of Florence, Florence. Italy
| | - Flaminia Chellini
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Human Anatomy. Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Histology & Embryology, University of Florence, Florence. Italy
| |
Collapse
|
7
|
Khan MAAK, Islam ABMMK. SARS-CoV-2 Proteins Exploit Host's Genetic and Epigenetic Mediators for the Annexation of Key Host Signaling Pathways. Front Mol Biosci 2021; 7:598583. [PMID: 33585554 PMCID: PMC7872968 DOI: 10.3389/fmolb.2020.598583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The constant rise of the death toll and cases of COVID-19 has made this pandemic a serious threat to human civilization. Understanding of host-SARS-CoV-2 interaction in viral pathogenesis is still in its infancy. In this study, we utilized a blend of computational and knowledgebase approaches to model the putative virus-host interplay in host signaling pathways by integrating the experimentally validated host interactome proteins and differentially expressed host genes in SARS-CoV-2 infection. While searching for the pathways in which viral proteins interact with host proteins, we discovered various antiviral immune response pathways such as hypoxia-inducible factor 1 (HIF-1) signaling, autophagy, retinoic acid-inducible gene I (RIG-I) signaling, Toll-like receptor signaling, fatty acid oxidation/degradation, and IL-17 signaling. All these pathways can be either hijacked or suppressed by the viral proteins, leading to improved viral survival and life cycle. Aberration in pathways such as HIF-1 signaling and relaxin signaling in the lungs suggests the pathogenic lung pathophysiology in COVID-19. From enrichment analysis, it was evident that the deregulated genes in SARS-CoV-2 infection might also be involved in heart development, kidney development, and AGE-RAGE signaling pathway in diabetic complications. Anomalies in these pathways might suggest the increased vulnerability of COVID-19 patients with comorbidities. Moreover, we noticed several presumed infection-induced differentially expressed transcription factors and epigenetic factors, such as miRNAs and several histone modifiers, which can modulate different immune signaling pathways, helping both host and virus. Our modeling suggests that SARS-CoV-2 integrates its proteins in different immune signaling pathways and other cellular signaling pathways for developing efficient immune evasion mechanisms while leading the host to a more complicated disease condition. Our findings would help in designing more targeted therapeutic interventions against SARS-CoV-2.
Collapse
|
8
|
Islam ABMMK, Khan MAAK, Ahmed R, Hossain MS, Kabir SMT, Islam MS, Siddiki AMAMZ. Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2. J Transl Med 2021; 19:32. [PMID: 33413422 PMCID: PMC7790360 DOI: 10.1186/s12967-020-02695-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although it is becoming evident that individual's immune system has a decisive influence on SARS-CoV-2 disease progression, pathogenesis is largely unknown. In this study, we aimed to profile the host transcriptome of COVID-19 patients from nasopharyngeal samples along with virus genomic features isolated from respective host, and a comparative analyses of differential host responses in various SARS-CoV-2 infection systems. RESULTS Unique and rare missense mutations in 3C-like protease observed in all of our reported isolates. Functional enrichment analyses exhibited that the host induced responses are mediated by innate immunity, interferon, and cytokine stimulation. Surprisingly, induction of apoptosis, phagosome, antigen presentation, hypoxia response was lacking within these patients. Upregulation of immune and cytokine signaling genes such as CCL4, TNFA, IL6, IL1A, CCL2, CXCL2, IFN, and CCR1 were observed in lungs. Lungs lacked the overexpression of ACE2 as suspected, however, high ACE2 but low DPP4 expression was observed in nasopharyngeal cells. Interestingly, directly or indirectly, viral proteins specially non-structural protein mediated overexpression of integrins such as ITGAV, ITGA6, ITGB7, ITGB3, ITGA2B, ITGA5, ITGA6, ITGA9, ITGA4, ITGAE, and ITGA8 in lungs compared to nasopharyngeal samples suggesting the possible way of enhanced invasion. Furthermore, we found comparatively highly expressed transcription factors such as CBP, CEBP, NFAT, ATF3, GATA6, HDAC2, TCF12 which have pivotal roles in lung injury. CONCLUSIONS Even though this study incorporates a limited number of cases, our data will provide valuable insights in developing potential studies to elucidate the differential host responses on the viral pathogenesis in COVID-19, and incorporation of further data will enrich the search of an effective therapeutics.
Collapse
Affiliation(s)
| | | | - Rasel Ahmed
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Md Sabbir Hossain
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Shah Md Tamim Kabir
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Md Shahidul Islam
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - A M A M Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Khulshi, Chittagong, Bangladesh
| |
Collapse
|
9
|
DeAdder NP, Gillam HJ, Wilson BC. Relaxin peptides reduce cellular damage in cultured brain slices exposed to transient oxygen–glucose deprivation: an effect mediated by nitric oxide. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of treatment with human relaxins on cell death was studied in oxygen- and glucose-deprived brain slices. In addition, involvement of nitric oxide and the relaxin receptor, RXFP3, was studied. Brain slices ( n = 12–18/group) were cultured under standard conditions for two weeks and then exposed to: ( i) an oxygenated balanced salt solution, ( ii) a deoxygenated, glucose-free balanced salt solution (OGD media), or ( iii) OGD media containing 10−7 mol/L H2 relaxin, 10−7 mol/L H2 relaxin with 50 μmol/L L-NIL, 10−7 mol/L H3 relaxin, or 10−7 mol/L H3 relaxin with 50 μmol/L L-NIL. Cell death was assessed using propidium iodide fluorescence. In a separate experiment, 10−5 mol/L R3 B1-22R (an antagonist of RXFP3) was added to both H2 and H3 relaxin treatments. H2 and H3 relaxin treatment reduced cell damage or death in OGD slices and L-NIL partially attenuated the effect of H3 relaxin. Antagonism of RXFP3 blocked the effect of H3 but not H2 relaxin. These data increase our understanding of the role of relaxin ligands and their receptors in protecting tissues throughout the body from ischemia and reperfusion injury.
Collapse
Affiliation(s)
| | - Hannah J. Gillam
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Brian C. Wilson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
10
|
Jakubauskiene L, Jakubauskas M, Leber B, Strupas K, Stiegler P, Schemmer P. Relaxin Positively Influences Ischemia-Reperfusion Injury in Solid Organ Transplantation: A Comprehensive Review. Int J Mol Sci 2020; 21:631. [PMID: 31963613 PMCID: PMC7013572 DOI: 10.3390/ijms21020631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, solid organ transplantation (SOT) has increased the survival and quality of life for patients with end-stage organ failure by providing a potentially long-term treatment option. Although the availability of organs for transplantation has increased throughout the years, the demand greatly outweighs the supply. One possible solution for this problem is to extend the potential donor pool by using extended criteria donors. However, organs from such donors are more prone to ischemia reperfusion injury (IRI) resulting in higher rates of delayed graft function, acute and chronic graft rejection and worse overall SOT outcomes. This can be overcome by further investigating donor preconditioning strategies, graft perfusion and storage and by finding novel therapeutic agents that could reduce IRI. relaxin (RLX) is a peptide hormone with antifibrotic, antioxidant, anti-inflammatory and cytoprotective properties. The main research until now focused on heart failure; however, several preclinical studies showed its potentials for reducing IRI in SOT. The aim of this comprehensive review is to overview currently available literature on the possible role of RLX in reducing IRI and its positive impact on SOT.
Collapse
Affiliation(s)
- Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (L.J.); (M.J.); (B.L.); (P.S.)
| |
Collapse
|
11
|
Valkovic AL, Bathgate RA, Samuel CS, Kocan M. Understanding relaxin signalling at the cellular level. Mol Cell Endocrinol 2019; 487:24-33. [PMID: 30592984 DOI: 10.1016/j.mce.2018.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
Abstract
The peptide hormone relaxin mediates many biological actions including anti-fibrotic, vasodilatory, angiogenic, anti-inflammatory, anti-apoptotic, and organ protective effects across a range of tissues. At the cellular level, relaxin binds to the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1) to activate a variety of downstream signal transduction pathways. This signalling cascade is complex and also varies in diverse cellular backgrounds. Moreover, RXFP1 signalling shows crosstalk with other receptors to mediate some of its physiological functions. This review summarises known signalling pathways induced by acute versus chronic treatment with relaxin across a range of cell types, it describes RXFP1 crosstalk with other receptors, signalling pathways activated by other ligands targeting RXFP1, and it also outlines physiological relevance of RXFP1 signalling outputs. Comprehensive understanding of the mechanism of relaxin actions in fibrosis, vasodilation, as well as organ protection, will further support relaxin's clinical potential.
Collapse
Affiliation(s)
- Adam L Valkovic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ross Ad Bathgate
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
12
|
Dschietzig TB. Relaxin-2 for heart failure with preserved ejection fraction (HFpEF): Rationale for future clinical trials. Mol Cell Endocrinol 2019; 487:54-58. [PMID: 30659842 DOI: 10.1016/j.mce.2019.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
Abstract
Heart Failure with preserved Ejection Fraction (HFpEF), a distinct sub-entity of chronic heart failure characterized by generalized inflammatory non-compliance of the cardio-vascular system, is associated with high mortality and still an unmet medical need. Many novel and promising therapeutic approaches have failed in large studies. This review focuses on basic research, pre-clinical and clinical findings that may account for the potential benefit of relaxin-2 in HFpEF. The peptide combines short-term hemodynamic advantages, such as moderate blood pressure decline and functional endothelin-1 antagonism, with a wealth of protective effects harboring long-term benefits, such as anti-inflammatory, anti-fibrotic, and anti-oxidative actions. These pleiotropic effects are exerted through a complex and intricate signaling cascade involving the relaxin-family peptide receptor-1, the glucocorticoid receptor, the nitric oxide system, and a cell type-dependent variety of down-stream mediators.
Collapse
Affiliation(s)
- Thomas Bernd Dschietzig
- Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Stubenwald-Allee 8a, 64625, Bensheim, Germany.
| |
Collapse
|
13
|
Martin B, Romero G, Salama G. Cardioprotective actions of relaxin. Mol Cell Endocrinol 2019; 487:45-53. [PMID: 30625345 DOI: 10.1016/j.mce.2018.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/19/2023]
Abstract
Relaxin is a hormone of pregnancy first discovered for its ability to induce ligament relaxation in nonpregnant guinea pig and is important for softening of the birth canal during parturition, decidualization, implantation, nipple development and increased maternal renal perfusion, glomerular filtration, and cardiac output. Subsequently, relaxin has been shown to exert multiple beneficial cardiovascular effects during pathological events such as hypertension, atrial fibrillation, heart failure and myocardial infarction, including suppression of arrhythmia and inflammation, and reversal of fibrosis. Despite extensive studies, the mechanisms underlying relaxin's effects are not well understood. Relaxin signals primarily through its G protein coupled receptor, the relaxin family peptide receptor-1, to activate multiple signaling pathways and this review summarizes our understanding of these pathways as they relate to the cardioprotective actions of relaxin, focusing on relaxin's anti-fibrotic, anti-arrhythmic and anti-inflammatory properties. Further, this review includes a brief overview of relaxin in clinical trials for heart failure and progress in the development of relaxin mimetics.
Collapse
Affiliation(s)
- Brian Martin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Guy Salama
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
14
|
Boccalini G, Sassoli C, Bani D, Nistri S. Relaxin induces up-regulation of ADAM10 metalloprotease in RXFP1-expressing cells by PI3K/AKT signaling. Mol Cell Endocrinol 2018; 472:80-86. [PMID: 29180109 DOI: 10.1016/j.mce.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/16/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022]
Abstract
ADAM10 metalloprotease is required for activation of Notch-1, a transmembrane receptor regulating cell differentiation, proliferation and apoptosis, whose intracellular proteolytic fragment NICD mediates some key cardiovascular effects of the hormone relaxin (RLX). This study demonstrates the involvement of ADAM10 and PI3K/Akt signaling in mediating RLX-induced Notch-1 activation. H9c2 cardiomyocytes and NIH3T3 fibroblasts were incubated with human RLX-2 (17 nmol/l, 24 h) in presence or absence of the PI3K or Akt inhibitors wortmannin (WT, 100 nmol/l) and triciribine (TCN, 1 μmol/l). Cyclohexanedione-inactivated RLX (iRLX) served as negative control. RLX significantly increased Akt phosphorylation, ADAM10 and NICD expression, which were abolished by WT or TCN and did not occur with iRLX. These findings highlight a new receptor-specific signal transduction pathway of RLX.
Collapse
Affiliation(s)
- Giulia Boccalini
- Research Unit of Histology & Embryology, Dept. Experimental & Clinical Medicine, University of Florence, Viale G.Pieraccini 6, 50139 Florence, Italy
| | - Chiara Sassoli
- Section of Anatomy & Histology, Dept. Experimental & Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Bani
- Research Unit of Histology & Embryology, Dept. Experimental & Clinical Medicine, University of Florence, Viale G.Pieraccini 6, 50139 Florence, Italy
| | - Silvia Nistri
- Research Unit of Histology & Embryology, Dept. Experimental & Clinical Medicine, University of Florence, Viale G.Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
15
|
Jelinic M, Marshall SA, Stewart D, Unemori E, Parry LJ, Leo CH. Peptide hormone relaxin: from bench to bedside. Am J Physiol Regul Integr Comp Physiol 2018; 314:R753-R760. [DOI: 10.1152/ajpregu.00276.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The peptide hormone relaxin has numerous roles both within and independent of pregnancy and is often thought of as a “pleiotropic hormone.” Relaxin targets several tissues throughout the body, and has many functions associated with extracellular matrix remodeling and the vasculature. This review considers the potential therapeutic applications of relaxin in cervical ripening, in vitro fertilization, preeclampsia, acute heart failure, ischemia-reperfusion, and cirrhosis. We first outline the animal models used in preclinical studies to progress relaxin into clinical trials and then discuss the findings from these studies. In many cases, the positive outcomes from preclinical animal studies were not replicated in human clinical trials. Therefore, the focus of this review is to evaluate the various animal models used to develop relaxin as a potential therapeutic and consider the limitations that must be addressed in future studies. These include the use of human relaxin in animals, duration of relaxin treatment, and the appropriateness of the clinical conditions being considered for relaxin therapy.
Collapse
Affiliation(s)
- Maria Jelinic
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah A. Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dennis Stewart
- Molecular Medicine Research Institute, Sunnyvale, California
| | | | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Science and Maths Cluster, Singapore University of Technology and Design, Singapore
| |
Collapse
|
16
|
Meadows KL. Ischemic stroke and select adipose-derived and sex hormones: a review. Hormones (Athens) 2018; 17:167-182. [PMID: 29876798 DOI: 10.1007/s42000-018-0034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA, 01536, USA.
| |
Collapse
|
17
|
Valle Raleigh J, Mauro AG, Devarakonda T, Marchetti C, He J, Kim E, Filippone S, Das A, Toldo S, Abbate A, Salloum FN. Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc Res 2018; 113:609-619. [PMID: 28073832 DOI: 10.1093/cvr/cvw246] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022] Open
Abstract
Aims The preconditioning-like infarct-sparing and anti-inflammatory effects of the peptide hormone relaxin following ischemic injury have been studied in the heart. Whether reperfusion therapy with recombinant human relaxin-2, serelaxin, reduces myocardial infarct size and attenuates the subsequent NLRP3 inflammasome activation leading to further loss of functional myocardium following ischemia/reperfusion (I/R) injury is unknown. Methods and results After baseline echocardiography, adult male wild-type C57BL or eNOS knockout mice underwent myocardial infarction (MI) by coronary artery ligation for 30 min followed by 24 h reperfusion. Mice were treated with either serelaxin (10 µg/kg; sc) or saline 1 h prior to ischemia or 5 min before reperfusion. In both pre-treatment and reperfusion therapy arms, serelaxin improved survival at 24 h post MI in wild-type mice (79% and 82%) as compared with controls (46% and 50%, P = 0.01), whereas there was no difference in survival between serelaxin- and saline-treated eNOS knockout mice. Moreover, serelaxin significantly reduced infarct size (64% and 67% reduction, P < 0.05), measured with TTC staining, and preserved LV fractional shortening (FS) and end-systolic diameter (LVESD) in wild-type mice as compared with controls (P < 0.05). Interestingly, caspase-1 activity in the heart tissue, a measure of inflammasome formation, was markedly reduced in serelaxin-treated wild-type mice compared with controls at 24 h post-MI in both treatment modalities (P < 0.05). Genetic deletion of eNOS abolished the infarct-sparing and anti-inflammatory effects of serelaxin as well as functional preservation. Serelaxin plasma levels assessed at 5 min and 1 h after treatment, using ELISA, approximated physiologic relaxin levels during pregnancy in mice and parallels that in humans. Conclusion Serelaxin attenuates myocardial I/R injury and the subsequent caspase-1 activation via eNOS-dependent mechanism.
Collapse
Affiliation(s)
- Juan Valle Raleigh
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Adolfo G Mauro
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Teja Devarakonda
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Carlo Marchetti
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Jun He
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Erica Kim
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Scott Filippone
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Stefano Toldo
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Antonio Abbate
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-070, Richmond, VA 23298-0204, USA
| |
Collapse
|
18
|
Lam M, Royce SG, Samuel CS, Bourke JE. Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. Pharmacol Ther 2018; 187:61-70. [PMID: 29447958 DOI: 10.1016/j.pharmthera.2018.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common therapies for asthma and other chronic lung diseases are anti-inflammatory agents and bronchodilators. While these drugs oppose disease symptoms, they do not reverse established structural changes in the airways and their therapeutic efficacy is reduced with increasing disease severity. The peptide hormone, relaxin, is a Relaxin Family Peptide Receptor 1 (RXFP1) receptor agonist with unique combined effects in the lung that differentiates it from these existing therapies. Relaxin has previously been reported to have cardioprotective effects in acute heart failure as well anti-fibrotic actions in several organs. This review focuses on recent experimental evidence of the beneficial effects of chronic relaxin treatment in animal models of airways disease demonstrating inhibition of airway hyperresponsiveness and reversal of established fibrosis, consistent with potential therapeutic benefit. Of particular interest, accumulating evidence demonstrates that relaxin can also acutely oppose contraction by reducing the release of mast cell-derived bronchoconstrictors and by directly eliciting bronchodilation. When used in combination, chronic and acute treatment with relaxin has been shown to enhance responsiveness to both glucocorticoids and β2-adrenoceptor agonists respectively. While the mechanisms underlying these beneficial actions remain to be fully elucidated, translation of these promising combined preclinical findings is critical in the development of relaxin as a novel alternative or adjunct therapeutic opposing multiple aspects of airway pathology in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Simon G Royce
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Chrishan S Samuel
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
19
|
Wu D, Wang J, Wang H, Ji A, Li Y. Protective roles of bioactive peptides during ischemia-reperfusion injury: From bench to bedside. Life Sci 2017; 180:83-92. [PMID: 28527782 DOI: 10.1016/j.lfs.2017.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion (I/R) is a well-known pathological condition which may lead to disability and mortality. I/R injury remains an unresolved and complicated situation in a number of clinical conditions, such as cardiac arrest with successful reanimation, as well as ischemic events in brain and heart. Peptides have many attractive advantages which make them suitable candidate drugs in treating I/R injury, such as low toxicity and immunogenicity, good solubility property, distinct tissue distribution pattern, and favorable pharmacokinetic profile. An increasing number of studies indicate that peptides could protect against I/R injury in many different organs and tissues. Peptides also face several therapeutic challenges that limit their clinical application. In this review, we present the mechanisms of action of peptides in reducing I/R injury, as well as further discuss modification strategies to improve the functional properties of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Jun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Honggang Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
20
|
Janssens S. Relaxin: reproductive safeguard turned cardiac? Cardiovasc Res 2017; 113:553-555. [DOI: 10.1093/cvr/cvx059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Bassani GA, Lonati C, Brambilla D, Rapido F, Valenza F, Gatti S. Ex Vivo Lung Perfusion in the Rat: Detailed Procedure and Videos. PLoS One 2016; 11:e0167898. [PMID: 27936178 PMCID: PMC5148015 DOI: 10.1371/journal.pone.0167898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Ex vivo lung perfusion (EVLP) is a promising procedure for evaluation, reconditioning, and treatment of marginal lungs before transplantation. Small animal models can contribute to improve clinical development of this technique and represent a substantial platform for bio-molecular investigations. However, to accomplish this purpose, EVLP models must sustain a prolonged reperfusion without pharmacological interventions. Currently available protocols only partly satisfy this need. The aim of the present research was accomplishment and optimization of a reproducible model for a protracted rat EVLP in the absence of anti-inflammatory treatment. A 180 min, uninjured and untreated perfusion was achieved through a stepwise implementation of the protocol. Flow rate, temperature, and tidal volume were gradually increased during the initial reperfusion phase to reduce hemodynamic and oxidative stress. Low flow rate combined with open atrium and protective ventilation strategy were applied to prevent lung damage. The videos enclosed show management of the most critical technical steps. The stability and reproducibility of the present procedure were confirmed by lung function evaluation and edema assessment. The meticulous description of the protocol provided in this paper can enable other laboratories to reproduce it effortlessly, supporting research in the EVLP field.
Collapse
Affiliation(s)
- Giulia Alessandra Bassani
- Center for Surgical Research, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- * E-mail:
| | - Caterina Lonati
- Center for Surgical Research, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Brambilla
- Center for Surgical Research, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Rapido
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Franco Valenza
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Gatti
- Center for Surgical Research, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
22
|
Chen Y, Ba L, Huang W, Liu Y, Pan H, Mingyao E, Shi P, Wang Y, Li S, Qi H, Sun H, Cao Y. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur J Pharmacol 2016; 796:90-100. [PMID: 27916558 DOI: 10.1016/j.ejphar.2016.11.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Carvacrol (CAR) is a compound isolated from some essential oils, many studies have demonstrated its therapeutic potential on different diseases. This study aims to evaluate the protective effect of CAR against myocardial ischemia/reperfusion (I/R) injury in rats. Male adult rats underwent ligation of the left anterior descending coronary artery (LAD) in I/R models. Rats were treated with CAR after LAD. The levels of I/R- induced infarct size, cardiomyocyte apoptosis and cardiac functional impairment were examined. Levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) were detected by western blotting. Cardiomyocytes induced by hypoxic reperfusion (H/R) injury were tested by Hoechst 33258. Our results revealed that CAR administration significantly protected the heart function, attenuated myocardial infarct size, increased SOD and CAT levels, reduced MDA level and especially decreased cardiomyocytes apoptosis. Western blotting showed that CAR treatment up-regulated phosphorylated ERK (p-ERK), while producing no impact onp38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK). The cardioprotection of CAR was reversed by the ERK inhibitor PD-98059, demonstrating the involvement of the MAPK/ERK pathway in the anti-apoptotic mechanisms of CAR. Besides, the results in vitro also showed the protective efficiency of CAR on cardiomyocytes H/R injury. Furthermore, pretreatment with CAR markedly increased the activation of Akt/eNOS pathway in cardiomyocytes subjected to H/R, and the protective effects of CAR were abolished in the presence of the Akt inhibitor LY294002. Therefore, the cardioprotective effects of CAR may be attributed to its antioxidant and antiapoptotic activities through activations of the MAPK/ERK and Akt/eNOS signaling pathways.
Collapse
Affiliation(s)
- Yunping Chen
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yan Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hao Pan
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - E Mingyao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Ye Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Shuzhi Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|
23
|
Zhang J, Xia J, Zhang Y, Xiao F, Wang J, Gao H, Liu Y, Rong S, Yao Y, Xu G, Li J. HMGB1-TLR4 signaling participates in renal ischemia reperfusion injury and could be attenuated by dexamethasone-mediated inhibition of the ERK/NF-κB pathway. Am J Transl Res 2016; 8:4054-4067. [PMID: 27829992 PMCID: PMC5095301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Studies have shown that the HMGB1-TLR4 (High-mobility group protein B1, toll-like receptor 4) pathway participates in renal ischemic reperfusion injury (IRI) and that dexamethasone (DEX) could protect the kidney against IRI. This study aims to examine the protective effects of DEX on renal IRI and further explore the possible mechanism of action. During mouse renal IRI, HMGB1-TLR4 signals changed markedly including HMGB1 translocation and TLR4 up-regulation, resulting in histological damage and an increase in MPO expression. Treatment with DEX markedly decreased the damage to renal function (serum Cr and BUN; kidney KIM-1 expression) and the histological pathology of the kidney after renal IRI. The activation of GR by DEX did not suppress p38 and JNK activity but inhibited ERK phosphorylation. Treatment with DEX also attenuated IκB-α phosphorylation and further reduced NF-κB expression in the nucleus by decreasing acetylation of the p65 subunit. Furthermore, the HMGB1-TLR4 inflammatory pathway was inhibited via the attenuated translocation of HMGB1 from the nucleus to the cytoplasm and the down-regulation of TLR4 expression through DEX treatment. The inhibition of HMGB1 translocation may interact with acetyltransferase and attenuate HMGB1 acetylation. As a result, the levels of cytokines (TNF-α, IL-6, and IL-1β) were down-regulated and inflammatory cell infiltration after renal IRI was attenuated by treatment with DEX. This study demonstrated that the HMGB1-TLR4 pathway may play a critical role in renal IRI. DEX may attenuate renal IRI by suppressing ERK and NF-κB activation, followed by attenuating the HMGB1-TLR4 pathway through inhibiting acetyltransferases.
Collapse
Affiliation(s)
- Jiong Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
- Department of Nephrology, and University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People’s HospitalChengdu, People’s Republic of China
| | - Jumei Xia
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| | - Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| | - Jin Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| | - Hongyu Gao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| | - Song Rong
- Department of Nephrology, Hannover Medical SchoolHannover, Germany
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyPeople’s Republic of China
| |
Collapse
|
24
|
Park SE, Lim SR, Choi HK, Bae J. Triazine herbicides inhibit relaxin signaling and disrupt nitric oxide homeostasis. Toxicol Appl Pharmacol 2016; 307:10-18. [DOI: 10.1016/j.taap.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/08/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
|
25
|
Sarwar M, Du XJ, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system. Br J Pharmacol 2016; 174:933-949. [PMID: 27239943 DOI: 10.1111/bph.13523] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The insulin-like peptide relaxin, originally identified as a hormone of pregnancy, is now known to exert a range of pleiotropic effects including vasodilatory, anti-fibrotic, angiogenic, anti-apoptotic and anti-inflammatory effects in both males and females. Relaxin produces these effects by binding to a cognate receptor RXFP1 and activating a variety of signalling pathways including cAMP, cGMP and MAPKs as well as by altering gene expression of TGF-β, MMPs, angiogenic growth factors and endothelin receptors. The peptide has been shown to be effective in halting or reversing many of the adverse effects including fibrosis in animal models of cardiovascular disease including ischaemia/reperfusion injury, myocardial infarction, hypertensive heart disease and cardiomyopathy. Relaxin given to humans is safe and produces favourable haemodynamic changes. Serelaxin, the recombinant form of relaxin, is now in extended phase III clinical trials for the treatment of acute heart failure. Previous clinical studies indicated that a 48 h infusion of relaxin improved 180 day mortality, yet the mechanism underlying this effect is not clear. This article provides an overview of the cellular mechanism of effects of relaxin and summarizes its beneficial actions in animal models and in the clinic. We also hypothesize potential mechanisms for the clinical efficacy of relaxin, identify current knowledge gaps and suggest new ways in which relaxin could be useful therapeutically. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Mohsin Sarwar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Thomas B Dschietzig
- Immundiagnostik AG, Bensheim, Germany.,Campus Mitte, Medical Clinic for Cardiology and Angiology, Charité-University Medicine Berlin, Berlin, Germany.,Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Bensheim, Germany
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| |
Collapse
|
26
|
Antifibrotic Actions of Serelaxin – New Roles for an Old Player. Trends Pharmacol Sci 2016; 37:485-497. [DOI: 10.1016/j.tips.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
|
27
|
Pini A, Boccalini G, Baccari MC, Becatti M, Garella R, Fiorillo C, Calosi L, Bani D, Nistri S. Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin). J Cell Mol Med 2016; 20:891-902. [PMID: 26915460 PMCID: PMC4831370 DOI: 10.1111/jcmm.12802] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/02/2016] [Indexed: 12/14/2022] Open
Abstract
Smoking is regarded as a major risk factor for the development of cardiovascular diseases (CVD). This study investigates whether serelaxin (RLX, recombinant human relaxin-2) endowed with promising therapeutic properties in CVD, can be credited of a protective effect against cigarette smoke (CS)-induced vascular damage and dysfunction. Guinea pigs exposed daily to CS for 8 weeks were treated with vehicle or RLX, delivered by osmotic pumps at daily doses of 1 or 10 μg. Controls were non-smoking animals. Other studies were performed on primary guinea pig aortic endothelial (GPAE) cells, challenged with CS extracts (CSE) in the absence and presence of 100 ng/ml (17 nmol/l) RLX. In aortic specimens from CS-exposed guinea pigs, both the contractile and the relaxant responses to phenylephrine and acetylcholine, respectively, were significantly reduced in amplitude and delayed, in keeping with the observed adverse remodelling of the aortic wall, endothelial injury and endothelial nitric oxide synthase (eNOS) down-regulation. RLX at both doses maintained the aortic contractile and relaxant responses to a control-like pattern and counteracted aortic wall remodelling and endothelial derangement. The experiments with GPAE cells showed that CSE significantly decreased cell viability and eNOS expression and promoted apoptosis by sparkling oxygen free radical-related cytotoxicity, while RLX counterbalanced the adverse effects of CSE. These findings demonstrate that RLX is capable of counteracting CS-mediated vascular damage and dysfunction by reducing oxidative stress, thus adding a tile to the growing mosaic of the beneficial effects of RLX in CVD.
Collapse
Affiliation(s)
- Alessandro Pini
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Giulia Boccalini
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | | | - Matteo Becatti
- Department of Experimental & Clinical Biomedical Sciences 'Mario Serio', Section of Biochemistry, University of Florence, Florence, Italy
| | - Rachele Garella
- Section of Physiology, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental & Clinical Biomedical Sciences 'Mario Serio', Section of Biochemistry, University of Florence, Florence, Italy
| | - Laura Calosi
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Serelaxin: A Novel Therapeutic for Vascular Diseases. Trends Pharmacol Sci 2016; 37:498-507. [PMID: 27130518 DOI: 10.1016/j.tips.2016.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
Vascular dysfunction is an important hallmark of cardiovascular disease. It is characterized by increased sensitivity to vasoconstrictors, decreases in the endothelium-derived vasodilators nitric oxide (NO) and prostacyclin (PGI2), and endothelium-derived hyperpolarization (EDH). Serelaxin (recombinant human relaxin) has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in acute heart failure. In this review we first describe the contribution of endogenous relaxin to vascular homeostasis. We then provide a comprehensive overview of the novel mechanisms of serelaxin action in blood vessels that differentiate it from other vasodilator drugs and explain how this peptide could be used more widely as a therapeutic to alleviate vascular dysfunction in several cardiovascular diseases.
Collapse
|
29
|
Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. Enhanced serelaxin signalling in co-cultures of human primary endothelial and smooth muscle cells. Br J Pharmacol 2016; 173:484-96. [PMID: 26493539 DOI: 10.1111/bph.13371] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE In the phase III clinical trial, RELAX-AHF, serelaxin caused rapid and long-lasting haemodynamic changes. However, the cellular mechanisms involved are unclear in humans. EXPERIMENTAL APPROACH This study examined the effects of serelaxin in co-cultures of human primary endothelial cells (ECs) and smooth muscle cells (SMCs) on cAMP and cGMP signalling. KEY RESULTS Stimulation of HUVECs or human coronary artery endothelial cells (HCAECs) with serelaxin, concentration-dependently increased cGMP accumulation in co-cultured SMCs to a greater extent than in monocultures of either cell type. This was not observed in human umbilical artery endothelial cells (HUAECs) that do not express the relaxin receptor, RXFP1. Treatment of ECs with l-N(G) -nitro arginine (NOARG; 30 μM, 30 min) inhibited serelaxin-mediated (30 nM) cGMP accumulation in HUVECs, HCAECs and co-cultured SMCs. In HCAECs, but not HUVECs, pre-incubation with indomethacin (30 μM, 30 min) also inhibited cGMP accumulation in SMCs. Pre-incubation of SMCs with the guanylate cyclase inhibitor ODQ (1 μM, 30 min) had no effect on serelaxin-mediated (30 nM) cGMP accumulation in HUVECs and HCAECs but inhibited cGMP accumulation in SMCs. Serelaxin stimulation of HCAECs, but not HUVECs, increased cAMP accumulation concentration-dependently in SMCs. Pre-incubation of HCAECs with indomethacin, but not l-NOARG, abolished cAMP accumulation in co-cultured SMCs, suggesting involvement of prostanoids. CONCLUSIONS AND IMPLICATIONS In co-cultures, treatment of ECs with serelaxin caused marked cGMP accumulation in SMCs and with HCAEC also cAMP accumulation. Responses involved EC-derived NO and with HCAEC prostanoid production. Thus, serelaxin differentially modulates vascular tone in different vascular beds.
Collapse
Affiliation(s)
- M Sarwar
- Drug Discovery Biology, Monash Institute of Pharmacology, Monash University, Australia
| | - C S Samuel
- Department of Pharmacology, Monash University, Australia
| | - R A Bathgate
- The Florey Institute of Neuroscience and Mental Health and the Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | | | - R J Summers
- Drug Discovery Biology, Monash Institute of Pharmacology, Monash University, Australia
| |
Collapse
|
30
|
Díez J, Ruilope LM. Serelaxin for the treatment of acute heart failure: a review with a focus on end-organ protection. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 2:119-30. [PMID: 27418970 PMCID: PMC4853824 DOI: 10.1093/ehjcvp/pvv046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
Abstract
Acute heart failure (AHF) is a complex clinical syndrome characterized by fluid overload and haemodynamic abnormalities (short-term clinical consequences) and the development of end-organ damage (long-term consequences). Current therapies for the treatment of AHF, such as loop diuretics and vasodilators, help to relieve haemodynamic imbalance and congestion, but have not been shown to prevent (and may even contribute to) end-organ damage, or to provide long-term clinical benefit. Serelaxin is the recombinant form of human relaxin-2, a naturally occurring hormone involved in mediating haemodynamic changes during pregnancy. Preclinical and clinical studies have investigated the effects mediated by serelaxin and the suitability of this agent for the treatment of patients with AHF. Data suggest that serelaxin acts via multiple pathways to improve haemodynamics at the vascular, cardiac, and renal level and provide effective congestion relief. In addition, this novel agent may protect the heart, kidneys, and liver from damage by inhibiting inflammation, oxidative stress, cell death, and tissue fibrosis, and stimulating angiogenesis. Serelaxin may therefore improve both short- and long-term outcomes in patients with AHF. In this review, we examine the unique mechanisms underlying the potential benefits of serelaxin for the treatment of AHF, in particular, those involved in mediating end-organ protection.
Collapse
Affiliation(s)
- Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research and Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, University of Navarra, Av. Pío XII 55, Pamplona 31008, Spain
| | - Luis M Ruilope
- Research Institute, Hypertension Unit, Hospital 12 de Octubre and Department of Public Health and Preventive Medicine, University Autónoma, Madrid, Spain
| |
Collapse
|
31
|
cAMP regulates expression of the cyclic nucleotide transporter MRP4 (ABCC4) through the EPAC pathway. Pharmacogenet Genomics 2015; 24:522-6. [PMID: 25121519 DOI: 10.1097/fpc.0000000000000084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4) has been established as an independent regulator of cyclic AMP (cAMP) levels particularly in vascular smooth muscle cells and in hematopoietic cells. Here, we assessed whether cAMP in turn regulates MRP4. A significant upregulation of MRP4 mRNA and protein by long-term treatment with cAMP-enhancing agents was observed in HeLa cells, smooth muscle cells, and megakaryoblastic leukemia M07e cells. This upregulation was not affected by inhibition of protein kinase A, but could be reverted by inhibitors and siRNA of an alternative cAMP-signaling route involving exchange proteins activated by cyclic AMP (EPAC) and mitogen-activated protein kinases. A selective EPAC activator could equally induce MRP4. The transcriptional regulation was confirmed in a luciferase reporter gene assay using a vector containing a 1494-bp fragment of the promoter region of the MRP4/ABCC4 gene. Our results suggest that enhanced cAMP levels upregulate MRP4 expression, which can result in increased cAMP efflux.
Collapse
|
32
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 PMCID: PMC4394689 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Cyclic AMP/physiology
- Humans
- International Agencies
- Ligands
- Models, Molecular
- Pharmacology/trends
- Pharmacology, Clinical/trends
- Protein Isoforms/agonists
- Protein Isoforms/chemistry
- Protein Isoforms/classification
- Protein Isoforms/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/chemistry
- Receptors, Peptide/classification
- Receptors, Peptide/metabolism
- Relaxin/agonists
- Relaxin/analogs & derivatives
- Relaxin/antagonists & inhibitors
- Relaxin/metabolism
- Second Messenger Systems
- Societies, Scientific
- Terminology as Topic
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
33
|
Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. Serelaxin-mediated signal transduction in human vascular cells: bell-shaped concentration-response curves reflect differential coupling to G proteins. Br J Pharmacol 2014; 172:1005-19. [PMID: 25297987 DOI: 10.1111/bph.12964] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/16/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE In a recently conducted phase III clinical trial, RELAX-AHF, serelaxin infusion over 48 h improved short- and long-term clinical outcomes in patients with acute heart failure. In this study we used human primary cells from the umbilical vasculature to better understand the signalling mechanisms activated by serelaxin. EXPERIMENTAL APPROACH We examined the acute effects of serelaxin on signal transduction mechanisms in primary human umbilical vascular cells and its chronic actions on markers of cardiovascular function and disease. KEY RESULTS The RXFP1 receptor, the cognate serelaxin receptor, was expressed at the cell surface in HUVECs and human umbilical vein smooth muscle cells (HUVSMCs), human umbilical artery smooth muscle cells (HUASMCs) and human cardiac fibroblasts (HCFs), but not human umbilical artery endothelial cells. In HUVECs and HUVSMCs, serelaxin increased cAMP, cGMP accumulation and pERK1/2, and the concentration-response curves (CRCs) were bell-shaped. Similar bell-shaped CRCs for cGMP and pERK1/2 were observed in HCFs, whereas in HUASMCs, serelaxin increased cAMP, cGMP and pERK1/2 with sigmoidal CRCs. Gαi/o and lipid raft disruption, but not Gαs inhibition, altered the serelaxin CRC for cAMP and cGMP accumulation in HUVSMC but not HUASMC. Longer term serelaxin exposure increased the expression of neuronal NOS, VEGF, ETβ receptors and MMPs (gelatinases) in RXFP1 receptor-expressing cells. CONCLUSIONS AND IMPLICATIONS Serelaxin caused acute and chronic changes in human umbilical vascular cells that were cell background dependent. Bell-shaped CRCs that were observed only in venous cells and fibroblasts involved Gαi/o located within membrane lipid rafts.
Collapse
Affiliation(s)
- M Sarwar
- Drug Discovery Biology, Monash Institute of Pharmacology, Monash University, Melbourne, Vic., Australia
| | | | | | | | | |
Collapse
|
34
|
Dschietzig TB. Recombinant human relaxin-2: (how) can a pregnancy hormone save lives in acute heart failure? Am J Cardiovasc Drugs 2014; 14:343-55. [PMID: 24934696 DOI: 10.1007/s40256-014-0078-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute heart failure (AHF) syndrome, characterized by pulmonary and/or venous congestion owing to increased cardiac filling pressures with or without diminished cardiac output, is still associated with high post-discharge mortality and hospitalization rates. Many novel and promising therapeutic approaches, among them endothelin-1, vasopressin and adenosine antagonists, calcium sensitization, and recombinant B-type natriuretic hormone, have failed in large studies. Likewise, the classic drugs, vasodilators, diuretics, and inotropes, have never been shown to lower mortality.The phase III trial RELAX-AHF tested recombinant human relaxin-2 (rhRlx) and found it to improve clinical symptoms moderately, to be neutral regarding the combination of death and hospitalization at day 60, to be safe, and to lower mortality at day 180. This review focuses on basic research and pre-clinical findings that may account for the benefit of rhRlx in AHF. The drug combines short-term hemodynamic advantages, such as moderate blood pressure decline and functional endothelin-1 antagonism, with a wealth of protective effects harboring long-term benefits, such as anti-inflammatory, anti-fibrotic, and anti-oxidative actions. These pleiotropic effects are exerted through a complex and intricate signaling cascade involving the relaxin-family peptide receptor-1, the glucocorticoid receptor, nitric oxide, and a cell type-dependent variety of kinases and transcription factors.
Collapse
|
35
|
Abstract
Over the past few decades, research on the peptide hormone, relaxin, has significantly improved our understanding of its biological actions under physiological and diseased conditions. This has facilitated the conducting of clinical trials to explore the use of serelaxin (human recombinant relaxin). Acute heart failure (AHF) is a very difficult to treat clinical entity, with limited success so far in developing new drugs to combat it. A recent phase-III RELAX-AHF trial using serelaxin therapy given during hospitalization revealed acute (ameliorated dyspnea) and chronic (improved 180-day survival) effects. Although these findings support a substantial improvement by serelaxin therapy over currently available therapies for AHF, they also raise key questions and stimulate new hypotheses. To facilitate the development of serelaxin as a new drug for heart disease, joint efforts of clinicians, research scientists and pharmacological industries are necessary to study these questions and hypotheses. In this review, after providing a brief summary of clinical findings and the pathophysiology of AHF, we present a working hypothesis of the mechanisms responsible for the observed efficacy of serelaxin in AHF patients. The existing clinical and preclinical data supporting our hypotheses are summarized and discussed. The development of serelaxin as a drug provides an excellent example of the bilateral nature of translational research.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Monash University
| | | | | | | |
Collapse
|