1
|
Berghöfer J, Khaveh N, Mundlos S, Metzger J. Simultaneous testing of rule- and model-based approaches for runs of homozygosity detection opens up a window into genomic footprints of selection in pigs. BMC Genomics 2022; 23:564. [PMID: 35933356 PMCID: PMC9357325 DOI: 10.1186/s12864-022-08801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Past selection events left footprints in the genome of domestic animals, which can be traced back by stretches of homozygous genotypes, designated as runs of homozygosity (ROHs). The analysis of common ROH regions within groups or populations displaying potential signatures of selection requires high-quality SNP data as well as carefully adjusted ROH-defining parameters. In this study, we used a simultaneous testing of rule- and model-based approaches to perform strategic ROH calling in genomic data from different pig populations to detect genomic regions under selection for specific phenotypes. RESULTS Our ROH analysis using a rule-based approach offered by PLINK, as well as a model-based approach run by RZooRoH demonstrated a high efficiency of both methods. It underlined the importance of providing a high-quality SNP set as input as well as adjusting parameters based on dataset and population for ROH calling. Particularly, ROHs ≤ 20 kb were called in a high frequency by both tools, but to some extent covered different gene sets in subsequent analysis of ROH regions common for investigated pig groups. Phenotype associated ROH analysis resulted in regions under potential selection characterizing heritage pig breeds, known to harbour a long-established breeding history. In particular, the selection focus on fitness-related traits was underlined by various ROHs harbouring disease resistance or tolerance-associated genes. Moreover, we identified potential selection signatures associated with ear morphology, which confirmed known candidate genes as well as uncovered a missense mutation in the ABCA6 gene potentially supporting ear cartilage formation. CONCLUSIONS The results of this study highlight the strengths and unique features of rule- and model-based approaches as well as demonstrate their potential for ROH analysis in animal populations. We provide a workflow for ROH detection, evaluating the major steps from filtering for high-quality SNP sets to intersecting ROH regions. Formula-based estimations defining ROHs for rule-based method show its limits, particularly for efficient detection of smaller ROHs. Moreover, we emphasize the role of ROH detection for the identification of potential footprints of selection in pigs, displaying their breed-specific characteristics or favourable phenotypes.
Collapse
Affiliation(s)
- Jan Berghöfer
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nadia Khaveh
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Mundlos
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, BCRT, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Julia Metzger
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
2
|
Paris JM, Letko A, Häfliger IM, Ammann P, Drögemüller C. Ear type in sheep is associated with the MSRB3 locus. Anim Genet 2020; 51:968-972. [PMID: 32805068 DOI: 10.1111/age.12994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2020] [Indexed: 12/01/2022]
Abstract
Ear morphology is an important determinant of sheep breeds. It includes different variable traits such as ear size and erectness, suggesting a polygenic architecture. Here, we performed a comprehensive genome-wide analysis to identify regions under selection for ear morphology in 515 sheep from 17 breeds fixed for diverse ear phenotypes using 34k SNP genotyping data. GWASs for two ear type traits, size and erectness, revealed a single genome-wide significant association on ovine chromosome 3. The derived marker alleles were enriched in sheep with large and/or floppy ears. The GWAS signal harboured the MSRB3 gene encoding methionine sulphoxide reductase B3, which has already been found to be associated with different ear types in other species. We attempted whole-genome resequencing to identify causal variant(s) within a 1 Mb interval around MSRB3. This experiment excluded major copy number variants in the interval, but failed to identify a compelling candidate causal variant. Fine-mapping suggested that the causal variant for large floppy ears most likely resides in a 175 kb interval downstream of the MSRB3 coding region.
Collapse
Affiliation(s)
- J M Paris
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - A Letko
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - I M Häfliger
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - P Ammann
- ProSpecieRara, Basel, 4052, Switzerland
| | - C Drögemüller
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| |
Collapse
|
3
|
Liang J, Zhang Y, Wang L, Liu X, Yan H, Wang L, Zhang L. Molecular cloning of WIF1 and HMGA2 reveals ear-preferential expression while uncovering a missense mutation associated with porcine ear size in WIF1. Anim Genet 2019; 50:157-161. [PMID: 30815903 DOI: 10.1111/age.12759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 02/01/2023]
Abstract
Considerable diversity exists in porcine ear size, which is an important morphological feature of pig breeds. Previously, we localized four crucial candidate genes-high mobility group AT-hook 2 (HMGA2), LEM domain-containing 3 (LEMD3), methionine sulfoxide reductase B3 (MSRB3) and Wnt inhibitory factor 1 (WIF1)-on Sus Scrofa chromosome 5 affecting porcine ear size, then cloned LEMD3 and MSBR3. In this study, we performed rapid amplification of cDNA ends to obtain full-length cDNA sequences of 2338-bp WIF1 and 2998-bp HMGA2. Using quantitative real-time PCR, we revealed that WIF1 expression was highest in ear cartilage of 60-day-old pigs and that this is therefore a better candidate gene for ear size than HMGA2. We further screened coding sequence variants in both genes and identified only one missense mutation (WIF1:c.1167C>G) in a conserved epidermal growth factor-like domain from the mammalian WIF1 protein. The protein-altering mutation was significantly associated with ear size across the Large White × Minzhu hybrid and Beijing Black pig populations. When WIF1:c.1167C>G was included as fixed effect in the model to re-run a genome-wide association study in the Large White × Minzhu intercross population the P-value of the peak SNP on SSC5 from re-running the genome-wide association study dropped from 2.45E-12 to 7.33E-05. Taken together, the WIF1:c.1167C>G could be an important mutation associated with ear size. Our findings provide helpful information for further studies of the molecular mechanisms controlling porcine ear size.
Collapse
Affiliation(s)
- J Liang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Y Zhang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - X Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - H Yan
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Zhang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
4
|
Zhang Z, Duan Y, Wu Z, Zhang H, Ren J, Huang L. PPARD is an Inhibitor of Cartilage Growth in External Ears. Int J Biol Sci 2017; 13:669-681. [PMID: 28539839 PMCID: PMC5441183 DOI: 10.7150/ijbs.19714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 01/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor beta/delta (PPARD) is an important determinant of multiple biological processes. Our previous studies identified a missense mutation in the PPARD gene that significantly reduces its transcription activity, and consequently causes enlarged external ears in pigs. However, the mechanisms underlying the causality has remained largely unknown. Here, we show that PPARD retards the development of auricular cartilage by accelerating the apoptosis of cartilage stem/progenitor cells (CSPCs), the terminal differentiation of cartilage cells and the degradation of cartilage extracellular matrix in the auricle. At the transcription level, PPARD upregulates a set of genes that are associated with CSPCs apoptosis and chondrogenic differentiation, chondroblast differentiation and extracellular matrix degradation. ChIP-seq identified direct target genes of PPARD, including a well-documented gene for cartilage development: PPARG. We further show that compared to wild-type PPARD, the G32E mutant up-regulates the expression of PPARG and subsequently leads to the downregulation of critical genes that inhibit cartilage growth. These findings allow us to conclude that PPARD is an inhibitor of auricular cartilage growth in pigs. The causative mutation (G32E) in the PPARD gene attenuates the PPARD-mediated retardation of cartilage growth in the auricle, contributing to enlarged ears in pigs. The findings advance our understanding of the mechanisms underlying auricular development in mammals, and shed insight into the studies of innate pinna disorders and cartilage regeneration medicine in humans.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanyu Duan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
5
|
Protein palmitoylation activate zygotic gene expression during the maternal-to-zygotic transition. Biochem Biophys Res Commun 2016; 475:194-201. [DOI: 10.1016/j.bbrc.2016.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022]
|
6
|
Zhang Y, Gao T, Hu S, Lin B, Yan D, Xu Z, Zhang Z, Mao Y, Mao H, Wang L, Wang G, Xiong Y, Zuo B. The Functional SNPs in the 5' Regulatory Region of the Porcine PPARD Gene Have Significant Association with Fat Deposition Traits. PLoS One 2015; 10:e0143734. [PMID: 26599230 PMCID: PMC4658063 DOI: 10.1371/journal.pone.0143734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/08/2015] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor delta (PPARD) is a key regulator of lipid metabolism, insulin sensitivity, cell proliferation and differentiation. In this study, we identified two Single Nucleotide Polymorphisms (SNPs, g.1015 A>G and g.1018 T>C) constituting four haplotypes (GT, GC, AC and AT) in the 5’ regulatory region of porcine PPARD gene. Functional analysis of the four haplotypes showed that the transcriptional activity of the PPARD promoter fragment carrying haplotype AC was significantly lower than that of the other haplotypes in 3T3-L1, C2C12 and PK-15 cells, and haplotype AC had the lowest binding capacities to the nuclear extracts. Transcription factor 7-like 2 (TCF7L2) enhanced the transcription activities of promoter fragments of PPARD gene carrying haplotypes GT, GC and AT in C2C12 and 3T3-L1 cells, and increased the protein expression of PPARD gene in C2C12 myoblasts. TCF7L2 differentially bound to the four haplotypes, and the binding capacity of TCF7L2 to haplotype AC was the lowest. There were significant associations between -655A/G and fat deposition traits in three pig populations including the Large White × Meishan F2 pigs, France and American Large White pigs. Pigs with genotype GG had significantly higher expression of PPARD at both mRNA and protein level than those with genotype AG. These results strongly suggested that the SNPs in 5’ regulatory region of PPARD genes had significant impact on pig fat deposition traits.
Collapse
Affiliation(s)
- Yunxia Zhang
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Tengsen Gao
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shanyao Hu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Bin Lin
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Dechao Yan
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zijun Zhang
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Yuanliang Mao
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Huimin Mao
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Litong Wang
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Guoshui Wang
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
7
|
Zhang LC, Li N, Liu X, Liang J, Yan H, Zhao KB, Pu L, Shi HB, Zhang YB, Wang LG, Wang LX. A genome-wide association study of limb bone length using a Large White × Minzhu intercross population. Genet Sel Evol 2014; 46:56. [PMID: 25366846 PMCID: PMC4219012 DOI: 10.1186/s12711-014-0056-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/28/2014] [Indexed: 11/23/2022] Open
Abstract
Background In pig, limb bone length influences ham yield and body height to a great extent and has important economic implications for pig industry. In this study, an intercross population was constructed between the indigenous Chinese Minzhu pig breed and the western commercial Large White pig breed to examine the genetic basis for variation in limb bone length. The aim of this study was to detect potential genetic variants associated with porcine limb bone length. Methods A total of 571 F2 individuals from a Large White and Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for femur length (FL), humerus length (HL), hipbone length (HIPL), scapula length (SL), tibia length (TL), and ulna length (UL). A genome-wide association study was performed by applying the previously reported approach of genome-wide rapid association using mixed model and regression. Statistical significance of the associations was based on Bonferroni-corrected P-values. Results A total of 39 significant SNPs were mapped to a 11.93 Mb long region on pig chromosome 7 (SSC7). Linkage analysis of these significant SNPs revealed three haplotype blocks of 495 kb, 376 kb and 492 kb, respectively, in the 11.93 Mb region. Annotation based on the pig reference genome identified 15 genes that were located near or contained the significant SNPs in these linkage disequilibrium intervals. Conditioned analysis revealed that four SNPs, one on SSC2 and three on SSC4, showed significant associations with SL and HL, respectively. Conclusions Analysis of the 15 annotated genes that were identified in these three haplotype blocks indicated that HMGA1 and PPARD, which are expressed in limbs and influence chondrocyte cell growth and differentiation, could be considered as relevant biological candidates for limb bone length in pig, with potential applications in breeding programs. Our results may also be useful for the study of the mechanisms that underlie human limb length and body height. Electronic supplementary material The online version of this article (doi:10.1186/s12711-014-0056-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Li-Gang Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | | |
Collapse
|
8
|
Chen X, Shi W, Wang F, Du Z, Yang Y, Gao M, Yao Y, He K, Wang C, Hao A. Zinc Finger DHHC-Type Containing 13 Regulates Fate Specification of Ectoderm and Mesoderm Cell Lineages by Modulating Smad6 Activity. Stem Cells Dev 2014; 23:1899-909. [DOI: 10.1089/scd.2014.0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xueran Chen
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Wei Shi
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Fen Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Zhaoxia Du
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Yang Yang
- Infertility Center, Qilu Hospital, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Ming Gao
- Reproductive Medical Center of Shandong University, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Yao Yao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Kun He
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Chen Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| |
Collapse
|