1
|
Yeganeh Markid T, Pourahmadiyan A, Hamzeh S, Sharifi-Bonab M, Asadi MR, Jalaiei A, Rezazadeh M, Ghafouri-Fard S. A special focus on polyadenylation and alternative polyadenylation in neurodegenerative diseases: A systematic review. J Neurochem 2025; 169:e16255. [PMID: 39556113 DOI: 10.1111/jnc.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Neurodegenerative diseases (NDDs) are one of the prevailing conditions characterized by progressive neuronal loss. Polyadenylation (PA) and alternative polyadenylation (APA) are the two main post-transcriptional events that regulate neuronal gene expression and protein production. This systematic review analyzed the available literature on the role of PA and APA in NDDs, with an emphasis on their contributions to disease development. A comprehensive literature search was performed using the PubMed, Scopus, Cochrane, Google Scholar, Embase, Web of Science, and ProQuest databases. The search strategy was developed based on the framework introduced by Arksey and O'Malley and supplemented by the inclusion and exclusion criteria. The study selection was performed by two independent reviewers. Extraction and data organization were performed in accordance with the predefined variables. Subsequently, quantitative and qualitative analyses were performed. Forty-seven studies were included, related to a variety of NDDs, namely Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Disease induction was performed using different models, including human tissues, animal models, and cultured cells. Most investigations were related to PA, although some were related to APA or both. Amyloid precursor protein (APP), Tau, SNCA, and STMN2 were the major genes identified; most of the altered PA patterns were related to mRNA stability and translation efficiency. This review particularly underscores the key roles of PA and APA in the pathogenesis of NDDs through their mechanisms that contribute to gene expression dysregulation, protein aggregation, and neuronal dysfunction. Insights into these mechanisms may lead to new therapeutic strategies focused on the modulation of PA and APA activities. Further research is required to investigate the translational potential of targeting these pathways for NDD treatment.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Pourahmadiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soroosh Hamzeh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Aslan-Kara K, Dündar-Yenilmez E, Ateş E, Alparslan MM, Peköz T, Bozdemir H, Tuli A. EFHC1 gene mutation profile of Turkish JME patients and its association with disease risk. Seizure 2024; 114:79-83. [PMID: 38088014 DOI: 10.1016/j.seizure.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVES Juvenile myoclonic epilepsy (JME) is a common form of generalized epilepsy with an important genetic component. This cohort study aimed to examine the frequency of EFHC1 gene variants in Turkish JME patients and a healthy control group and evaluate the association between these mutations and disease risk. METHODS We screened 72 JME patients with a mean age of 31.8 ± 9.9 (20-65) years and 35 controls with a mean age of 29.1 ± 7.6 (17-50) years from southern Turkey using direct sequencing analyses. RESULTS EFCH1 single nucleotide variants were detected in 24 of 72 JME patients and 3 of 35 controls. The most common mutations were R182H in JME patients (p = 0.010) and 3'UTR in the control group (p < 0.001). The R182H mutation is a common variant in JME (95 % CI: 1.232-76.580, p = 0.031) and the 3'UTR mutation may be associated with lower risk of JME in the Turkish population (95 % CI: 13.89-166.67, p < 0.001). SIGNIFICANCE Our results indicate that EFHC1 gene variants carry a risk for JME and the 3'UTR variant may have a protective role against JME in the Turkish population. Screening for other genes is needed to further clarify the genetic inheritance of JME in Turkish patients.
Collapse
Affiliation(s)
- Kezban Aslan-Kara
- Department of Neurology, School of Medicine, Çukurova University Faculty of Medicine, Sarıçam-Adana 01330, Türkiye.
| | - Ebru Dündar-Yenilmez
- Department of Medical Biochemistry, Çukurova University Faculty of Medicine, Türkiye
| | - Elçin Ateş
- Department of Neurology, School of Medicine, Çukurova University Faculty of Medicine, Sarıçam-Adana 01330, Türkiye
| | | | - Taylan Peköz
- Department of Neurology, School of Medicine, Çukurova University Faculty of Medicine, Sarıçam-Adana 01330, Türkiye
| | - Hacer Bozdemir
- Department of Neurology, School of Medicine, Çukurova University Faculty of Medicine, Sarıçam-Adana 01330, Türkiye
| | - Abdullah Tuli
- Department of Medical Biochemistry, Çukurova University Faculty of Medicine, Türkiye
| |
Collapse
|
3
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
4
|
Ando C, Ma S, Miyoshi M, Furukawa K, Li X, Jia H, Kato H. Postnatal nutrition environment reprograms renal DNA methylation patterns in offspring of maternal protein-restricted stroke-prone spontaneously hypertensive rats. Front Nutr 2023; 10:1134955. [PMID: 37125041 PMCID: PMC10133489 DOI: 10.3389/fnut.2023.1134955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Maternal malnutrition hampers the offspring health by manipulating the epigenome. Recent studies indicate that the changes in DNA methylation could be reversed by afterbirth nutrition supplementation. In this study, we used DNA methylation arrays to comprehensively investigate the DNA methylation status of the renal promoter regions and the effects of postnatal protein intake on DNA methylation. We fed stroke-prone spontaneously hypertensive (SHRSP) rat dams a normal diet or a low-protein diet during pregnancy, and their 4-week-old male offspring were fed a normal diet or a high-/low-protein diet for 2 weeks. We found that the methylation status of 2,395 differentially methylated DNA regions was reprogrammed, and 34 genes were reset by different levels of postnatal protein intake in the offspring. Among these genes, Adora2b, Trpc5, Ar, Xrcc2, and Atp1b1 are involved in renal disease and blood pressure regulation. Our findings indicate that postnatal nutritional interventions can potentially reprogram epigenetic changes, providing novel therapeutic and preventive epigenetic targets for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Chika Ando
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sihui Ma
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Moe Miyoshi
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyohei Furukawa
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Xuguang Li
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Huijuan Jia,
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Hisanori Kato,
| |
Collapse
|
5
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
6
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Population-scale genetic control of alternative polyadenylation and its association with human diseases. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Shulman ED, Elkon R. Systematic identification of functional SNPs interrupting 3'UTR polyadenylation signals. PLoS Genet 2020; 16:e1008977. [PMID: 32804959 PMCID: PMC7451987 DOI: 10.1371/journal.pgen.1008977] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA) is emerging as a widespread regulatory layer since the majority of human protein-coding genes contain several polyadenylation (p(A)) sites in their 3’UTRs. By generating isoforms with different 3’UTR length, APA potentially affects mRNA stability, translation efficiency, nuclear export, and cellular localization. Polyadenylation sites are regulated by adjacent RNA cis-regulatory elements, the principals among them are the polyadenylation signal (PAS) AAUAAA and its main variant AUUAAA, typically located ~20-nt upstream of the p(A) site. Mutations in PAS and other auxiliary poly(A) cis-elements in the 3’UTR of several genes have been shown to cause human Mendelian diseases, and to date, only a few common SNPs that regulate APA were associated with complex diseases. Here, we systematically searched for SNPs that affect gene expression and human traits by modulation of 3’UTR APA. First, focusing on the variants most likely to exert the strongest effect, we identified 2,305 SNPs that interrupt the canonical PAS or its main variant. Implementing pA-QTL tests using GTEx RNA-seq data, we identified 330 PAS SNPs (called PAS pA-QTLs) that were significantly associated with the usage of their p(A) site. As expected, PAS-interrupting alleles were mostly linked with decreased cleavage at their p(A) site and the consequential 3’UTR lengthening. However, interestingly, in ~10% of the cases, the PAS-interrupting allele was associated with increased usage of an upstream p(A) site and 3’UTR shortening. As an indication of the functional effects of these PAS pA-QTLs on gene expression and complex human traits, we observed for few dozens of them marked colocalization with eQTL and/or GWAS signals. The PAS-interrupting alleles linked with 3’UTR lengthening were also strongly associated with decreased gene expression, indicating that shorter isoforms generated by APA are generally more stable than longer ones. Last, we carried out an extended, genome-wide analysis of 3’UTR variants and detected thousands of additional pA-QTLs having weaker effects compared to the PAS pA-QTLs. mRNA molecules that encode for proteins end with a long stretch of adenosines, called poly(A) tail. The poly(A) tail contributes to the stability of the mRNA molecules, their translation to proteins and their import from the nucleus to the cytoplasm. The process of adding this tail to the mRNAs is called polyadenylation, and the termination site on the mRNAs at which the poly(A) tail is added is called the poly(A) site. In recent years it became evident that the vast majority of mRNAs of human genes contain several alternative poly(A) sites and their usage generates different mRNA isoforms that differ in their stability and translation efficiency. Therefore, alternative polyadenylation (APA) is emerging as a novel and important, yet underexplored, mechanism that regulate gene expression. The choice between alternative p(A) sites in an mRNA molecule is regulated by regulatory sequences located within a region in the mRNA called the 3’ untranslated region (3’UTR). A major challenge in present human genetics research is to understand how common genetic variants affect individuals’ health. In our study, we systematically identified dozens of genetic variants that affect the choice between alternative p(A) sites and demonstrated that by that, these variants influence the expression level of the target genes. Our results help to illuminate a novel mechanism by which genetic variants that are common in the population affect different traits including our risk for developing diseases.
Collapse
Affiliation(s)
- Eldad David Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
9
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
10
|
Wang R, Zheng D, Yehia G, Tian B. A compendium of conserved cleavage and polyadenylation events in mammalian genes. Genome Res 2018; 28:1427-1441. [PMID: 30143597 PMCID: PMC6169888 DOI: 10.1101/gr.237826.118] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Cleavage and polyadenylation is essential for 3' end processing of almost all eukaryotic mRNAs. Recent studies have shown widespread alternative cleavage and polyadenylation (APA) events leading to mRNA isoforms with different 3' UTRs and/or coding sequences. Here, we present a compendium of conserved cleavage and polyadenylation sites (PASs) in mammalian genes, based on approximately 1.2 billion 3' end sequencing reads from more than 360 human, mouse, and rat samples. We show that ∼80% of mammalian mRNA genes contain at least one conserved PAS, and ∼50% have conserved APA events. PAS conservation generally reduces promiscuous 3' end processing, stabilizing gene expression levels across species. Conservation of APA correlates with gene age, gene expression features, and gene functions. Genes with certain functions, such as cell morphology, cell proliferation, and mRNA metabolism, are particularly enriched with conserved APA events. Whereas tissue-specific genes typically have a low APA rate, brain-specific genes tend to evolve APA. In addition, we show enrichment of mRNA destabilizing motifs in alternative 3' UTR sequences, leading to substantial differences in mRNA stability between 3' UTR isoforms. Using conserved PASs, we reveal sequence motifs surrounding APA sites and a preference of adenosine at the cleavage site. Furthermore, we show that mutations of U-rich motifs around the PAS often accompany APA profile differences between species. Analysis of lncRNA PASs indicates a mechanism of PAS fixation through evolution of A-rich motifs. Taken together, our results present a comprehensive view of PAS evolution in mammals, and a phylogenic perspective on APA functions.
Collapse
Affiliation(s)
- Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey 07103, USA
| | - Ghassan Yehia
- Genome Editing Core Facility, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey 07103, USA
| |
Collapse
|
11
|
Wang R, Zheng D, Yehia G, Tian B. A compendium of conserved cleavage and polyadenylation events in mammalian genes. Genome Res 2018. [PMID: 30143597 DOI: 10.1101/gr.237826.118.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Cleavage and polyadenylation is essential for 3' end processing of almost all eukaryotic mRNAs. Recent studies have shown widespread alternative cleavage and polyadenylation (APA) events leading to mRNA isoforms with different 3' UTRs and/or coding sequences. Here, we present a compendium of conserved cleavage and polyadenylation sites (PASs) in mammalian genes, based on approximately 1.2 billion 3' end sequencing reads from more than 360 human, mouse, and rat samples. We show that ∼80% of mammalian mRNA genes contain at least one conserved PAS, and ∼50% have conserved APA events. PAS conservation generally reduces promiscuous 3' end processing, stabilizing gene expression levels across species. Conservation of APA correlates with gene age, gene expression features, and gene functions. Genes with certain functions, such as cell morphology, cell proliferation, and mRNA metabolism, are particularly enriched with conserved APA events. Whereas tissue-specific genes typically have a low APA rate, brain-specific genes tend to evolve APA. In addition, we show enrichment of mRNA destabilizing motifs in alternative 3' UTR sequences, leading to substantial differences in mRNA stability between 3' UTR isoforms. Using conserved PASs, we reveal sequence motifs surrounding APA sites and a preference of adenosine at the cleavage site. Furthermore, we show that mutations of U-rich motifs around the PAS often accompany APA profile differences between species. Analysis of lncRNA PASs indicates a mechanism of PAS fixation through evolution of A-rich motifs. Taken together, our results present a comprehensive view of PAS evolution in mammals, and a phylogenic perspective on APA functions.
Collapse
Affiliation(s)
- Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey 07103, USA
| | - Ghassan Yehia
- Genome Editing Core Facility, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey 07103, USA
| |
Collapse
|
12
|
Synergic effects of the ApoC3 and ApoA4 polymorphisms on the risk of hypertension. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Abstract
Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3' termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation.
Collapse
|
14
|
Kim YR, Hong SH. Influences of −482C>T and 3238G>C polymorphisms of the Apolipoprotein C3 gene on prevalence of metabolic syndrome. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Afonso-Grunz F, Müller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 2015; 72:3127-41. [PMID: 26037721 PMCID: PMC11114000 DOI: 10.1007/s00018-015-1922-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression by altering the translation efficiency and/or stability of targeted mRNAs. In vertebrates, more than 50% of all protein-coding RNAs are assumed to be subject to miRNA-mediated control, but current high-throughput methods that reliably measure miRNA-mRNA interactions either require prior knowledge of target mRNAs or elaborate preparation procedures. Consequently, experimentally validated interactions are relatively rare. Furthermore, in silico prediction based on sequence complementarity of miRNAs and their corresponding target sites suffers from extremely high false positive rates. Apparently, sequence complementarity alone is often insufficient to reflect the complex post-transcriptional regulation of mRNAs by miRNAs, which is especially true for animals. Therefore, combined analysis of small non-coding and protein-coding RNAs is indispensable to better understand and predict the complex dynamics of miRNA-regulated gene expression. Single-nucleotide polymorphisms (SNPs) and alternative polyadenylation (APA) can affect miRNA binding of a given transcript from different individuals and tissues, and especially APA is currently emerging as a major factor that contributes to variations in miRNA-mRNA interplay in animals. In this review, we focus on the influence of APA and SNPs on miRNA-mediated gene regulation and discuss the computational approaches that take these mechanisms into account.
Collapse
Affiliation(s)
- Fabian Afonso-Grunz
- GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, 60438, Frankfurt am Main, Germany,
| | | |
Collapse
|
16
|
Gender-specific association of polymorphisms in the 5′-UTR and 3′-UTR of VEGF gene with hypertensive patients. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Association of single nucleotide polymorphisms in the 3'UTR of ERAP1 gene with essential hypertension in the Northeastern Han Chinese. Gene 2015; 560:211-6. [PMID: 25665737 DOI: 10.1016/j.gene.2015.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/21/2015] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) may be involved in blood pressure regulation by inactivation of angiotensin II and generation of bradykinin. Our previous study with cDNA microarray indicated that the expression of ERAP1 is down-regulated in essential hypertension (EH) patients. Since the 3'untranslated region (3'UTR) is known to play an important role in the post-transcriptional regulation by influencing the stability and translation process of mRNA, the present study aims to identify single nucleotide polymorphisms (SNPs) in the 3'UTR of ERAP1 gene in a case-control study among the Northeastern Han Chinese through PCR-sequencing, and analyze the association with EH. Our results further verified the lower expression level of ERAP1 in the peripheral blood cells in patients with EH (917.12±517.57 vs. 1506.59±1214.09pg/mL, P=0.011). Four SNPs, 3'UTR-761G>A, 3'UTR-787C>T, 3'UTR-1008A>C and 3'UTR-1055A>G, were identified in the 3'UTR of ERAP1. 3'UTR-1008A>C and 3'UTR-1055A>G were in almost complete linkage disequilibrium. Association analysis showed that the genotypic and allelic frequencies of 3'UTR-1008A>C and 3'UTR-1055A>G were significantly different between EH and the control groups. Logistic regression and haplotypic analysis indicated that alleles of E20-1037C and E20-1084G as well as haplotype of C-G were the risk factors of EH (P<0.05). Subgroup analysis performed by age suggested that the frequencies of genotype and allele of 3'UTR-1008A>C and 3'UTR-1055A>G as well as the haplotypes C-G and A-A were significantly different between EH and the control in the younger group (<50), but not in the older group (≥50). Younger population with the 3'UTR-1008CC and/or 3'UTR-1055GG genotypes also tended to have higher blood pressure, especially the diastolic blood pressure. In conclusion, the 3'UTR-1008A>C and 3'UTR-1055A>G polymorphisms of ERAP1 gene were associated with EH, especially in the younger population, and the haplotype C-G could be the independent marker of EH.
Collapse
|